
A Distributed Coordinate Descent
Algorithm for Learning Factorization

Machine

Kankan Zhao1,2, Jing Zhang1,2, Liangfu Zhang1,2, Cuiping Li1,2(B),
and Hong Chen1,2

1 Key Laboratory of Data Engineering and Knowledge Engineering, Beijing, China
2 School of Information, Renmin University of China, Beijing, China

{zhaokankan,zhang-jing,liangfu zhang,licuiping,chong}@ruc.edu.cn

Abstract. Although much effort has been made to implement Factor-
ization Machine (FM) on distributed frameworks, most of them achieve
bad model performance or low efficiency. In this paper, we propose a
new distributed block coordinate descent algorithm to learn FM. In
addition, a distributed pre-computation mechanism incorporated with
an optimized Parameter Server framework is designed to avoid the mas-
sive repetitive calculations and further reduce the communication cost.
Systematically, we evaluate the proposed distributed algorithm on three
different genres of datasets for prediction. The experimental results show
that the proposed algorithm achieves significantly better performance
(3.8%–6.0% RMSE) than the state-of-the-art baselines, and also achieves
a 4.6–12.3× speedup when reaching a comparable performance.

Keywords: FM · Block coordinate descent · Distributed framework ·
Pre-computation

1 Introduction

Although there exists some research on adapting FM to the distributed frame-
works, the problem remains largely unsolved. As we know, most of them imple-
mented the (stochastic) gradient descent (SGD) to optimize the FM model,
which is limited by the appropriate learning rate. Especially when the dataset
and model space are quite large, an inappropriate learning rate may waste a lot
of time in searching the optimal solution. Although some solutions can adjust
the learning rate adaptively, the slow convergence rate is intolerable. Comparing
with gradient optimization, coordinate descent (CD) can avoid setting learning
rate, which makes CD converge faster and perform better in convex model. Thus,
a distributed algorithm for solving FM by the CD algorithm is worth studying.

In this paper, we propose a novel CD algorithm under the Parameter Server
(PS) framework to learn FM model. It divides all the parameters into blocks
by the specific blocking scheme, and then updates one block at a time when
maintaining the other blocks unchanged. We call this method as Block Coordi-
nate Descent (BCD). It achieves better model performance within the less time.
c© Springer Nature Switzerland AG 2020
H. W. Lauw et al. (Eds.): PAKDD 2020, LNAI 12085, pp. 881–893, 2020.
https://doi.org/10.1007/978-3-030-47436-2_66

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47436-2_66&domain=pdf
https://doi.org/10.1007/978-3-030-47436-2_66


882 K. Zhao et al.

However, the high communication cost and massive repetitive calculations still
affect the efficiency of framework. To address the above drawbacks, we design
a distributed pre-computation mechanism incorporated with an optimized PS
framework, by which we can avoid massive repetitive calculations and reduce
the communication cost.

The main contributions of this paper can be listed as:

– We propose a novel distributed BCD method to optimize the FM under the
PS. By dividing all the parameters into blocks according to the specific block-
ing scheme, and updating the parameters in a synchronous way, our proposed
approach can achieve better accuracy and efficiency.

– We design a distributed pre-computation mechanism incorporated with the
optimized PS framework, by which our approach can not only avoid massive
repetitive calculations but also reduce the parameter exchanges.

– The experimental results show that our algorithm achieves better RMSE
performance (3.8%–6.0%) than the state-of-the-art methods, and achieves a
4.6–12.3× speedup to obtain a comparable RMSE performance.

2 Preliminary

This section describes the FM model and its CD optimization.

2.1 Factorization Machine

Suppose the training set of a prediction problem is formulated by D = {(x, y)},
where each pair (x, y) represents an instance x with p-dimension variables and
its target value (or label) y, then a FM model of order d = 2 is defined as:

ŷ(x) = w0 +
∑p

j=1
wjxj +

∑p

j=1

∑p

j′=j+1
〈Vj ,Vj′〉xjxj′ , (1)

where notation w0 is the global bias, wj models the weight of the j-th variable,
and Vj represents a k-dimension interaction weight vector of j-th variable.

Give each θ ∈ (w0,w,V), FM can be represented as a linear combination of
two functions gθ and hθ that are independent of θ. For example, when θ = wm,
then hθ = xm and gθ = w0 +

∑p
i=1&i�=m wixi +

∑p
i=1

∑p
j=i+1〈Vi,Vj〉xixj .

ŷ(x) = gθ(x) + θhθ(x) (2)

2.2 Learning FM with Coordinate Descent

Suppose we are updating θt
j to θt+1

j , the least square loss function is defined as:

∑
(x,y)∈D

(y − ŷ(x|Θ))2 + λΘ‖θt
j‖2 (3)



A Distributed Coordinate Descent Algorithm for Learning FM 883

By minimizing the above loss function, the optimal θt+1
j can be obtained as:

θt+1
j =

∑
(x,y)∈D(y − ŷ(x|Θ) + θt

jhθt
j
(x))hθt

j
(x)

λΘ +
∑

(x,y)∈D h2
θt
j
(x) (4)

It is clear that whenever updating a parameter, CD enumerates all the
instances containing the related non-zero variables, and calculate y − ŷ(x) and
hθ(x) for each instance, which is very time consuming. To improve the train-
ing efficiency, [13] proposed a pre-computation mechanism under single-machine
FM. To reduce the complexity of computing y − ŷ(x), the term e(x, y) is defined
as:

e(x, y) = y − ŷ(x) (5)

By storing e(x, y) in a vector e ∈ Rn (n is the number of instances) and
pre-computing it at the beginning, the computation of error terms can be done
in constant time O(1). After changing θt

j to θt+1
j , e(x, y) can be updated by:

e(x, y) ← e(x, y) + (θt+1 − θt)hθ(x) (6)

To reduce the complexity of calculating Vjf , we reformulate hVjf
as:

hVjf
(x) = xjq(x, f) − x2

jVjf , q(x, f) =
∑p

j′=1
Vj′fxj′ (7)

The term q(x, f) can be pre-computed for each instance and stored in a
matrix Q ∈ Rn×k. By pre-computing q(x, f), hθ(x) can be computed in constant
time. When updating Vt

jf to Vt+1
jf , the corresponding q(x, f) is updated as:

q(x, f) ← q(x, f) + (Vt+1
jf − Vt

jf )xi (8)

3 Distributed BCD Framework

In this section, we first introduce how to infer FM by BCD, and then give the
details of the propose distributed BCD framework.

3.1 Learning FM with BCD

CD updates one coordinate each time while fixing others unchanged. However, if
we directly extend it to the distributed platform without any changes, the model
training will be very low-efficiency.

To overcome the above drawback, we propose a new CD method named
BCD. BCD divides all coordinates into multiple blocks according to the spe-
cific scheme. During the training process, all the workers update the same block
simultaneously while keeping the other blocks unchanged. The main problem
for learning FM under BCD method is how to divide three types of FM model
parameters (w0,w,V) into blocks? Different blocking schemes may affect the



884 K. Zhao et al.

model performance significantly because they correspond to the different orders
of the parameter updating in FM. To simplify the blocking process, we combine
the global w0 with w to form an extended w. Then, according to the differ-
ent combinations of parameter types, we can determine two types of blocking
schemes. For the first scheme, each block contains not only w, but also V. In
other words, we divide the parameters according to the order of the variables
where each variable j correspond to wj and Vj , i.e., a block of parameters can be
{wi,Vi,wi+1,Vi+1...,wj ,Vj}. We name it as Mixed scheme. For the second
scheme, each block contains either w or V. Or, put another way, we first update
all blocks which include w parameters and then update the blocks with V param-
eters, i.e., a block of parameters can be {wi,wi+1, ...,wj} or {Vi,Vi+1...,Vj}.
We name this scheme as Separate scheme.

3.2 Distributed BCD Under Standard PS

After analyzing the detail of inferring FM by BCD algorithm, we propose adapt-
ing BCD-based FM to a specific distributed environment. As far as we know, two
types of distributed platforms, Map-Reduce (Spark) platform and PS framework,
are popular and always used to the machine learning tasks. Generally speaking,
PS framework is more efficient than Map-Reduce platform. Therefore, we pro-
pose a distributed BCD to learn FM under the PS framework.

(a) BCD under syn-PS (b) BCD under optimized PS

Fig. 1. The distributed BCD framework with pre-computation mechanism or not.

As mentioned in Sect. 3.1, the key idea of BCD is to update a block of
parameters while maintaining all the other parameters unchanged. Thus, we can
distribute BCD algorithm under synchronous PS framework. Before the model
training, the server first initializes the model parameters and assigns the dataset
to each worker randomly. Specific to each epoch, the workers update blocks in
turns. In the update of each block, the workers firstly pull the valid parameters
of current block and some other related parameters (the parameters which are
co-occurrence with the parameters of the current block) from the server, and
then calculate the intermediate results by the update rule. When all the workers
pushed intermediate results to the server, the server updates the correspond-
ing parameters by aggregating all intermediate results. To make the algorithm



A Distributed Coordinate Descent Algorithm for Learning FM 885

more understandable, we illustrate the learning framework of distributed BCD
in Fig. 1(a). In the figure, notation Bj denotes the valid parameters of block j,
BR

j denotes the related parameters which are co-occurrence with the parameters
of block j, and IRj denotes the intermediate results for block j.

However, we also observe some drawbacks of this approach. First, when
updating a block, in addition to the current block, the workers always need
to pull some other related parameters. The high communication cost affects
the efficiency of the model training. Second, there are only part of parameters
changed when calculating ŷ(x) and hV(x) in Eq. (4). But we completely re-
calculate these two terms for updating each parameter. The massive repetitive
calculations are very time consuming. To overcome these problems, we propose
a distributed pre-computation mechanism under an optimized PS framework in
the next section.

4 Distributed Precomputation

In this section, we design a distributed pre-computation mechanism incorporated
with an optimized PS framework to solve this problem.

As a variant of CD method, our distributed BCD also has the massive repet-
itive calculations problem. To address this problem, we propose a distributed pr-
computation mechanism to further improve the efficiency of our distributed BCD
framework. The key idea is to pre-compute e(x, y) and q(x, f) for each instance
at the beginning, store these pre-computation terms and the valid parameters
(corresponding to non-zero variables of the training instance allocated to it) in
each worker, and then modify them incrementally with new parameters.

However, two problems need to be solved when we implement the pre-
computation to the distributed BCD framework discussed in Sect. 3.2. First, the
workers in the above distributed framework pull the needed parameters before
updating the block while the pull operation in the pre-computation mechanism
is not necessary because all the valid parameters has been stored in each worker.
Second, the pre-computation mechanism requests to update the pre-computation
terms with the latest block at the end of block updating but the above system
doesn’t.

Obviously, to incorporate the pre-computation into our distributed BCD
framework, we must optimize the above synchronous PS architecture. Follow
the principle of pre-computation mechanism, we give the detail training process
in Algorithm 1. Before the model learning, server node does the same initializa-
tion as the algorithm described in Sect. 3.1 (Line 2). And then, each worker pulls
all valid parameters, and pre-compute e and q for all instances (Line 4). Specific
to the update of each block, the workers first calculate the intermediate results
for the current block and then push them back to the server (Line 7&8). After
collecting all the intermediate results, server node updates the parameters of
current block and then push the latest version back to all workers (Line 14&15).
Once each worker receives the latest block, it updates its own parameters and
pre-computation terms (Line 9&10). To better understand the algorithm, we



886 K. Zhao et al.

illustrate the training architecture of our optimized distributed framework in
Fig. 1(b). The notations e(x, y) and q(x, y) are two pre-computation terms, and
B∗

j denotes the latest parameters in block j. From the perspective of architec-
ture, we can see that the purposes, occasions and triggers of operations are very
different in these two frameworks. In terms of framework efficiency, the optimized
PS framework has two advantages. First, the massive repetitive calculations can
be avoided by the pre-computation. Second, the communication cost between
the server and the workers is further reduced because only the parameters of the
current block need to transfer in the optimized framework.

Algorithm 1. Distributed BCD for FM under optimized PS
Input: Dataset D, B blocks, M workers, maximal iterations T
Output: Model parameters w and V
1: Servers:
2: Initialize parameters and assign D to workers
3: Workers:
4: Pull valid parameters and conduct pre-computing e(x, y) and q(x, f)
5: for t = 0 to T do
6: for b = 0 to B do
7: Compute the inter results with Eq.(4) for b-th block
8: Push all intermediate results to the server
9: Receive pushed latest parameters from the server

10: Update the pre-computation terms with Eq.(6) and Eq.(8)
11: end for
12: end for
13: Servers:
14: Aggregate all intermediate results from workers and update parameters
15: Push the latest parameters to each worker

5 Experiments

In this section, we conduct various experiments to evaluate our algorithm.

5.1 Experimental Setup

Datasets. We perform our experiments on three datasets: MovieLens10M1,
Movielens20M(See footnote 1) and Yahoo music2. The details are shown in
Table 1.

1 https://grouplens.org/datasets/movielens.
2 https://webscope.sandbox.yahoo.com/catalog.php?datatype=r.

https://grouplens.org/datasets/movielens
https://webscope.sandbox.yahoo.com/catalog.php?datatype=r


A Distributed Coordinate Descent Algorithm for Learning FM 887

Table 1. Datasets

Dataset Ratings Users Items

Movielens10M 10 million 71,567 10,681

Movielens20M 20 million 138,000 27,000

Yahoo music 717 million 1.8 million 136,000

Comparison Methods. The comparison methods are as follows:
FM-SCD-PS: Implemented by SCD and implemented on PS [20].
FM-Asyn-SGD-PS: A simple version of distributed FM proposed in [9]

which is implemented with standard SGD and asynchronous PS.
FM-Ada-SGD-PS: Implemented with AdaGrad and asynchronous PS.
FM-Syn-SGD-PS: Implemented with standard SGD and synchronous PS.
FM-SGD-Spark: Implemented with standard SGD and Spark. For the sake

of fairness, we simulate Spark with standard PS system.
FM-BCD-NPC-PS: Implemented with BCD and PS but no pre-

computation.
FM-BCD-PS (Our final approach): Implemented with BCD and the

distributed pre-computation mechanism under our optimized PS.
Evaluation Measures. We consider the following performance measurements:

– Accuracy & Efficiency Performance. We use RMSE and the training
time to compare the performance of different methods respectively.

– Parameter Analysis. We analyze the effect of different factors in our meth-
ods: different blocking schemes and using pre-computation or not.

Platform and Implementation. All methods are implemented using Scala
and performed on a cluster containing 16 machines. Among them, 15 machines
are used as workers, of which each one contains 2 CPU cores and 16 G memory,
and the other one is served as the server, which contains 8 CPU cores and 64 G
memory. For the BCD-based algorithms, we default to set the block size as 5000
in Movielens3 datasets and 10000 in Yahoo music dataset. Due to the different
convergence rates of SGD and CD algorithms, we set T as 10, 20 and 3000 for
BCD-based methods, CD baseline and gradient based algorithms, respectively.

5.2 Accuracy and Efficiency Performance

We compare RMSE performance and the corresponding elapsed time of all the
comparison methods on the three datasets. To present the learning details of
methods, we record a pair of the metric RMSE evaluated on the test set and the
corresponding elapsed time. Then we plot all the (RMSE, time) pairs for each
algorithm in Fig. 2.

From the results, we can see that the resultant (RMSE, time) points of the
proposed FM-BCD-PS are more concentrated in the bottom-left corner than
3 We use Movielens to represent two datasets: Movielens10M and Movielens20M.



888 K. Zhao et al.

those of other methods, which indicates that FM-BCD-PS can achieve smaller
RMSE with less training time than the other methods. The reason for this is
that our distributed BCD framework inherits the fast convergence rate of CD
method and further improves the efficiency with pre-computation mechanism.

Specifically, when comparing with FM-SCD-PS, FM-BCD-PS achieves bet-
ter RMSE performance (6.0%–7.8%) within less time (4.6–9.7× speedup for
the same 10 iterations). The reason for this lies in that FM-SCD-PS tries to
learn parameters on partial related instances and the corresponding imbalance
workload in each worker. When comparing with the SGD-based baselines, FM-
BCD-PS improves RMSE performance by 3.8%, 4.4% and 6.0%4, respectively,
on Movielens10M, Movielens20M and Yahoo music. Meanwhile, it achieves 7.6–
11.1(See footnote 4)×, 8.3–12.3(See footnote 4)× and 5.4–7.4(See footnote 4)×
speedup on Movielens10M, Movielens20M and Yahoo music, respectively. The
main reason is that BCD converges faster than SGD.

(a) Movielens10M (b) Movielens20M (c) Yahoo music

Fig. 2. Performance of all the comparison methods.

5.3 Parameter Analysis

We now discuss how different factors affect the model performance.

(a) Movielens10M (b) Movielens20M (c) Yahoo music

Fig. 3. Performance of FM-BCD-PS over different blocking schemes.

Effect of Different Blocking Schemes. As mentioned in Sect. 3.1, our pro-
posed algorithm can apply two types of blocking schemes. We compare them and

4 Here we abandon the results of FM-SGD-Spark for its bad performance.



A Distributed Coordinate Descent Algorithm for Learning FM 889

study how different blocking schemes affect the RMSE performance of FM-BCD-
PS in Fig. 3. From Fig. 3, we can see that the Separate scheme achieves better
RMSE performance (4.6%-5.9%) with similar runtime in all datasets than the
Mixed scheme. This is due to the fact that Mixed scheme update the coordinates
(wi,vi) corresponding to the same feature i in the same block which will affect
each other. Different from Mixed scheme, Separate scheme not only ensures that
the coordinates corresponding to the same features locate in different blocks,
but also guarantee that the most coordinates existing in the same instance are
put in the different blocks. Thus, we adopt the Separate scheme on our proposed
FM-BCD-PS algorithm in all other experiments.

Effect of the Pre-computation Mechanism. We compare FM-BCD-NPC-
PS with FM-BCD-PS, and study how the proposed pre-computation mechanism
affects the efficiency performance of our algorithm in Fig. 4 and 5.

(a) Movielens10M (b) Movielens20M (c) Yahoo music

Fig. 4. Runtime of FM-BCD-PS and FM-BCD-NPC-PS.

In Fig. 4, we record the runtime for each iteration of two algorithms. From
Fig. 4, we can see that FM-BCD-PS achieves up to 4.6× speedup on both Movie-
lens datasets and 7.2× speedup on Yahoo music dataset when obtaining a com-
parable RMSE performance. The reason for this is that FM-BCD-PS not only
reduces the size of data exchanged between the server and the workers but also
avoids the massive repetitive calculations for updating coordinates.

(a) Movielens10M (b) Movielens20M (c) Yahoo music

Fig. 5. Exchange Data Size of FM-BCD-PS and FM-BCD-NPC-PS.

In Fig. 5, the blue scatter plots and the red scatter plots illustrate the size of
exchange data in each block of FM-BCD-PS and FM-BCD-NPC-PS respectively.



890 K. Zhao et al.

Furthermore, in the same color of scatter plots, the dot scatter plots and triangle
scatter plots are used to respectively represent the maximum and minimum
size of exchange data of the block. From Fig. 5, we can see that FM-BCD-PS
achieves fewer exchange data size in each block than FM-BCD-NPC-PS. That
is to say, the proposed distributed pre-computation mechanism can also reduce
the communication cost between the server and the workers.

(a) Movielens10M (b) Movielens20M (c) Yahoo music

Fig. 6. RMSE of FM-BCD-PS over different block sizes.

Effect of Block Size. We study how the block size affects RMSE and efficiency
performance of the proposed FM-BCD-PS in Fig. 6 and 7 respectively. To further
illustrate the reliability of the experimental results, we sample 20%, 40%, 60%,
80% and 100% of Yahoo music to do experiments, respectively.

From Fig. 6, we can see that there is no big difference of RMSE over different
block sizes on all datasets, which indicates that the block size has little or nothing
effect on the model performance. The reason is that most coordinates existing
in the same instance are still located in the different blocks. That is to say, the
update of coordinates in the same block do not affect each other.

(a) Movielens10M (b) Movielens20M (c) Yahoo music

Fig. 7. Efficiency of FM-BCD-PS over different block sizes.

Figure 7 shows the training time can be reduced by increasing the block size.
However, the elapsed time becomes stale when the block size reaches about 6000
on Movielens datasets and 12000 on Yahoo music dataset. This is due to the fact
that there is a balance between the communication cost of each block and the
number of blocks. In summary, we can speed up the model training by increasing
the block size to an appropriate value while keeping the model performance.



A Distributed Coordinate Descent Algorithm for Learning FM 891

6 Related Work

6.1 Factorization Machine

To achieve better performance, researchers mainly focus on three directions to
extend FM. First, how to learn the FM with high-order interaction? Although
[11] gives the general form of the FM model, the papers only propose the learning
methods for 2-order FM [5,11,13]. To optimize the high-order FM efficiently,
[2,3,10] give their solutions. Secondly, researchers consider combining FM with
neural network algorithms in different ways [6,15,17,19]. Thirdly, to address the
non-convex problem of the FM model, researchers try to reconstruct the FM and
make it be convex [1,16]. To improve the training efficiency, some research efforts
have been made to scale up FM [4,9,18,20]. These works focus on building FM
on distributed frameworks. DiFacto [9] is a distributed FM and can perform fine-
grained capacity control based on both data and model statistics. Zhong et al.
proposed another version of distributed FM which can take advantages of both
data parallelism and model parallelism [20]. To address the heavy communication
cost problem, [18] proposes a client-to-client architecture to learn FM model.

6.2 Coordinate Descent on Big Data

To adapt the CD to large scale datasets, researchers tried to extend it to dis-
tributed platform [14,20]. [14] designed the first distributed CD system: Hydra.
It divides the coordinates to disjoint subset and distributes them to all workers.
If we adapt FM to Hydra, the instances stored in each worker are in large-scale
and the calculation of gradients for coordinates are imbalanced. In such cases,
the training efficiency will be greatly affected. Similar to Hydra, [20] proposed a
stochastic CD (SCD) under the hybrid distributed framework. The distributed
SCD-based FM has two drawbacks. First, its model performance is not good
since the update of parameters may be based on the partial related instances.
Second, the model training is not efficient because it does not ensure a balanced
amount of calculation among the workers.

7 Discussion and Future Work

We discuss how to distribute logistic regression (LR), matrix factorization
(MF) [8] and other factorization models to our proposed framework.

Logistic Regression. LR only considers the effect of independent variables and
equals to the factorization machine that ignores the interaction part, i.e.,

ŷ(x) = w0 +
∑p

i=1
wixi. (9)

Compared with FM, LR has fewer features but with similar update rule.
Thus, LR can directly apply the distributed BCD framework.



892 K. Zhao et al.

Matrix Factorization. MF only incorporates user and item identifications as
features and equals to the FM that ignores the other heuristic features, i.e.,

ŷ(x) = w0+
m∑

u=1

wu +
n∑

i=1

wi +
m∑

u=1

n∑

i=1

〈Vu,Vi〉 = w0+wu +wi +〈Vu,Vi〉 (10)

where m and n denotes the number of users and items, respectively. In this case,
wu represents the bias for user u, and wi is the bias for item i. Accordingly, there
is only two interaction latent factors vu and vi for user u and item i, respectively.

Compared with FM, MF has fewer variables but with the same update rule.
Thus, we can implement the distributed BCD on MF.

Other Factorization Models. FM is a general factorization method, which
can mimic other state-of-the-art models like SVD++ [7], PITF [12] and so on.
Therefore, our framework can optimize these models in a similar way.

8 Conclusions

This paper proposes a new distributed BCD framework to learn the FM.
Through conducting a pre-computation mechanism incorporated with our opti-
mized PS framework, we can avoid massive repetitive calculations and further
reduce the communication cost. In addition, it is worth mentioning that our
proposed distributed BCD framework can also be applied to many other factor-
ization models, such as LR, MF, SVD++ and so on. We compare the proposed
algorithm with the state-of-the-art baselines, and find that our proposed FM-
BCD-PS can achieve better performance (3.8%–6.0% RMSE) within shorter time
(4.6–12.3× speedup). For future work, we aim to generalize the distributed BCD
framework and apply more other machine learning algorithms on it.

Acknowledgments. This work is supported by National Key R&D Program of China
(No.2018YFB1004401), and NSFC under the grant No. (61772537, 61772536, 61702522,
61532021).

References

1. Blondel, M., Fujino, A., Ueda, N.: Convex factorization machines. In: Appice, A.,
Rodrigues, P.P., Santos Costa, V., Gama, J., Jorge, A., Soares, C. (eds.) ECML
PKDD 2015. LNCS (LNAI), vol. 9285, pp. 19–35. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-23525-7 2

2. Blondel, M., et al.: Higher-order factorization machines. In: NIPS 2016, pp. 3351–
3359 (2016)

3. Blondel, M., et al.: Polynomial networks and factorization machines: new insights
and efficient training algorithms. In: ICML 2016, pp. 850–858 (2016)

4. Cao, B., et al.: Multi-view machines. In: WSDM 2016, pp. 427–436 (2016)
5. Freudenthaler, C., et al.: Bayesian factorization machines (2011)
6. Guo, H., et al.: DeepFM: a factorization-machine based neural network for CTR

prediction. In: IJCAI 2017, pp. 1725–1731 (2017)

https://doi.org/10.1007/978-3-319-23525-7_2
https://doi.org/10.1007/978-3-319-23525-7_2


A Distributed Coordinate Descent Algorithm for Learning FM 893

7. Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative fil-
tering model. In: SIGKDD 2008, pp. 426–434 (2008)

8. Koren, Y., et al.: Matrix factorization techniques for recommender systems. Com-
puter 42(8), 30–37 (2009)

9. Li, M., et al.: DiFacto: distributed factorization machines. In: WSDM 2016, pp.
377–386 (2016)

10. Lu, C.T., et al.: Multilinear factorization machines for multi-task multi-view learn-
ing. In: WSDM 2017, pp. 701–709 (2017)

11. Rendle, S.: Factorization machines. In: ICDM 2010, pp. 995–1000. IEEE (2010)
12. Rendle, S., et al.: Pairwise interaction tensor factorization for personalized tag

recommendation. In: WSDM 2010, pp. 81–90 (2010)
13. Rendle, S., et al.: Fast context-aware recommendations with factorization

machines. In: SIGIR 2011, pp. 635–644 (2011)
14. Richtárik, P., et al.: Distributed coordinate descent method for learning with big

data. J. Mach. Learn. Res. 17(1), 2657–2681 (2016)
15. Xiao, J., et al.: Attentional factorization machines: learning the weight of feature

interactions via attention networks. In: IJCAI 2017, pp. 3119–3125 (2017)
16. Yamada, M., et al.: Convex factorization machine for toxicogenomics prediction.

In: SIGKDD 2017, pp. 1215–1224 (2017)
17. Zhang, W., Du, T., Wang, J.: Deep learning over multi-field categorical data. In:

Ferro, N., et al. (eds.) ECIR 2016. LNCS, vol. 9626, pp. 45–57. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-30671-1 4

18. Zhao, K., Zhang, J., Zhang, L., Li, C., Chen, H.: CDSFM: a circular distributed
SGLD-based factorization machines. In: Pei, J., Manolopoulos, Y., Sadiq, S., Li,
J. (eds.) DASFAA 2018. LNCS, vol. 10828, pp. 701–709. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-91458-9 43

19. Zheng, L., et al.: Joint deep modeling of users and items using reviews for recom-
mendation. In: WSDM 2017, pp. 425–434 (2017)

20. Zhong, E., et al.: Scaling factorization machines with parameter server. In: CIKM
2016, pp. 1583–1592 (2016)

https://doi.org/10.1007/978-3-319-30671-1_4
https://doi.org/10.1007/978-3-319-91458-9_43

	A Distributed Coordinate Descent Algorithm for Learning Factorization Machine
	1 Introduction
	2 Preliminary
	2.1 Factorization Machine
	2.2 Learning FM with Coordinate Descent

	3 Distributed BCD Framework
	3.1 Learning FM with BCD
	3.2 Distributed BCD Under Standard PS

	4 Distributed Precomputation
	5 Experiments
	5.1 Experimental Setup
	5.2 Accuracy and Efficiency Performance
	5.3 Parameter Analysis

	6 Related Work
	6.1 Factorization Machine
	6.2 Coordinate Descent on Big Data

	7 Discussion and Future Work
	8 Conclusions
	References




