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jfrnda@gmail.com

Abstract. High utility itemset mining consists of identifying all the sets
of items that appear together and yield a high profit in a customer trans-
action database. Recently, this problem was extended to discover trend-
ing high utility itemsets (itemsets that yield an increasing or decreasing
profit over time). However, an important limitation of that problem is
that it is assumed that trends remain stable over time. But in real-life,
trends may change in different time intervals due to specific events. To
identify time intervals where itemsets have increasing/decreasing trends
in terms of utility, this paper proposes the problem of mining Locally
Trending High Utility Itemsets (LTHUIs) and their Trending High Util-
ity Periods (THUPs). Properties of the problem are studied and an effi-
cient algorithm named LTHUI-Miner is proposed to enumerate all the
LTHUIs and their THUPs. An experimental evaluation shows that the
algorithm is efficient and can discover insightful patterns not found by
previous algorithms.
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1 Introduction

Frequent itemset mining (FIM) is a popular data mining task, which consists
of enumerating all sets of values (items) that have a support (occurrence fre-
quency) that is no less than a minimum threshold in a transaction database [5].
FIM has recently been generalized as high utility itemset mining (HUIM) to con-
sider items having non binary purchase quantities in transactions and weights
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indicating their relative importance [2,4,10,13–15]. The goal of HUIM is to find
all itemsets that have a high utility (e.g. yield a high profit). Though, HUIM is
useful to understand customer behavior, a key problem of HUIM is that the time
dimension is ignored. But in real-life, the utility of itemsets vary over time. For
example, the sales of some products in a retail store may increase or decrease
over a few weeks as it loses or gains in popularity.

To discover high utility itemsets that have an increasing or decreasing utility
over time, the problem of mining trending HUIs was proposed [9]. However, this
problem only focuses on discovering itemsets that have trends spanning over the
whole database (e.g. a set of products having sales that always follows an upward
or downward trend). But that assumption is often unrealistic as an itemset may
have upward or downward trends only during some time periods rather than in
the whole database. For instance, the utility (profit) generated by the sale of
sunscreen in a store may have an upward trend from May to July but not during
the whole year. It is thus an important challenge to design algorithms to identify
trends in non predefined time intervals. This is also challenging as it requires to
not only consider a large search space of itemsets but also of time intervals.

This paper addresses this issue by proposing a novel problem of mining locally
trending high utility itemsets (LTHUIs), that is to find all time intervals where
itemsets have a high utility and show an upward or downward trend. To effi-
ciently discover these patterns, this paper proposes a novel algorithm named
Locally Trending High Utility Itemset Miner (LTHUI-Miner). It relies on novel
upper-bounds and pruning techniques. An experimental evaluation on real trans-
action data shows that the proposed algorithm has excellent performance and
can discover insightful patterns not found by previous algorithms.

The rest of this paper is organized as follows. Section 2 reviews related work.
Section 3 defines the proposed problem of LTHUI mining. Then, Sect. 4 describes
the designed algorithm, Sect. 5 presents the experimental evaluation. Lastly,
Sect. 6 draws a conclusion and discusses future work.

2 Related Work

HUIM extends FIM [1,5] and thus algorithms for these problems have similar-
ities. However, there is also a key difference. FIM algorithms discover frequent
itemsets by relying on the anti-monotonicity property of the support measure,
which states that the support of an itemset cannot be greater than that of its
subsets [1,5]. This is a very powerful property to reduce the search space, but
it does not hold for the utility measure in HUIM. To mine high utility item-
sets efficiently, state-of-the-art HUIM algorithms such as Two-Phase [14], HUI-
Miner [15], d2hup [13] and HU-FIMi [10] introduced various upper-bounds on the
utility measure that respect the anti-monotonicity property to reduce the search
space, and novel data structures to perform utility computation efficiently.

Though HUIM is useful to reveal profitable customer behavior, few HUIM
algorithms consider the time dimension. The PHM algorithm [3] finds patterns
that periodically appear and yield a high profit (e.g. a customer buys wine
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every week). The RUP algorithm [8] finds itemsets that recently had a high util-
ity by applying a decay function to the utility measure (recent events are consid-
ered more important in utility calculations). And recently, to discover itemsets
that follow some trends such as an increase or decrease in utility, the TPHUI-
Miner algorithm [9] was designed. However, a major limitation of the three above
algorithms is that they find patterns that shows some periodic behavior, recent
behavior or trends valid for the whole database rather than for specific time
intervals. But in real-life, the utility of itemsets vary over time, and some of
these behaviors may only appear in some time intervals.

To find itemsets that have a high utility in some specific time periods, on-
shelf high utility itemset mining was proposed [11]. However, the time periods
need to be fixed by the user beforehand. To find high utility itemsets in non
predefined time intervals, it was proposed to mine local high utility itemsets
with the LHUI-Miner algorithm [7]. Though this algorithm can find insightful
patterns, it is unable to discover trends such as an increase or decrease of utility
in specific time periods. To address these limitations, the next section proposes
the novel problem of discovering locally trending high utility itemsets.

3 Problem Definition

This section introduces HUIM, and then defines the proposed problem of min-
ing locally trending high utility itemsets. The input of HUIM is a transaction
database. Consider a set of items (products) I = {i1, i2, . . . , in}. A subset X ⊆ I
is called an itemset. An itemset {i} containing a single item i can be denoted
without brackets as i, when the context is clear. A transaction T is an itemset,
purchased by a customer. A transactional database is a multiset of transactions
D = {T1, T2, . . . , Tm}, where each transaction Ttid ∈ D has a unique identifier
tid and a timestamp t(Ttid), which may not be unique. Each item i appearing
in a transaction T is associated with a number q(i, T ) ∈ N

+ called its inter-
nal utility (purchase quantity). Moreover, each item i ∈ I is associated with an
external utility value p(i) ∈ N

+ representing its relative importance (e.g. unit
profit). For instance, Table 1 shows a database containing five items (a, b, c, d, e)
and nine transactions (T1, T2, . . . , T9), which will be used as running example.
Timestamps are denoted as d1, d3, . . . , d12. The internal utility of an item in a
transaction is shown as a number besides the item, while the external utility of
items is given in Table 2. Transaction T1 indicates that a customer purchased
the items b, c, and e with purchase quantities (internal utility) of 2, 2 and 1,
respectively. Their external utility (unit profit) are 2, 1 and 3, respectively.

The task of HUIM consists of enumerating all high utility itemsets, i.e. item-
sets having a utility that is no less than a positive minimum utility thresh-
old (minutil) set by the user [14]. The utility of an item i in a transac-
tion T is defined as u(i, T ) = p(i) × q(i, T ). The utility of an itemset X
in T is defined as u(X,T ) =

∑
i∈X∧X⊆T u(i, T ) if X ⊆ T , and otherwise

u(X,T ) = 0. The utility of an itemset X in a database D is defined as u(X) =∑
T∈D∧X⊆T u(X,T ). For example, the utility of itemset {a, c} in the database

is u({a, c}) = u({a, c}, T4) + u({a, c}, T5) + u({a, c}, T8) = 12 + 16 + 16 = 44.
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Table 1. A transaction database

Trans Items Timestamp

T1 (b, 2), (c, 2), (e, 1) d1

T2 (b, 4), (c, 3), (d, 2), (e, 1) d3

T3 (b, 5), (c, 1), (e, 1) d4

T4 (a, 2), (b, 10), (c, 2) d4

T5 (a, 2), (c, 6), (e, 2) d6

T6 (b, 4), (c, 3) d7

T7 (b, 16), (c, 2) d9

T8 (a, 2), (c, 6), (e, 2) d10

T9 (b, 5), (c, 2), (e, 1) d12

Table 2. External utilities of items

Item Unit profit

a 5

b 2

c 1

d 2

e 3

To find HUIs having increasing/decreasing trends in terms of utility in a
database, Hackman et al. [9] proposed to mine trending high utility itemsets,
i.e. HUIs having a positive/negative slope for a whole database. The slope of
a HUI is defined as follows. The utility of an itemset X at a timestamp d in
a database D is defined as: u(X, d) =

∑
X⊆T∈D∧t(T )=d u(X,T ). Let there be a

HUI X and TS be the set of timestamps in a database D. The utility set of X in
D is defined as the multiset US(X) = {u(X, d)|d ∈ TS}. The slope of X in D is:
slope(X,D) =

∑
d∈TS(u(X,d)−avg(US(X))×(d−avg(TS))

∑
u∈US(X)(u−avg(US(X))2 where avg is the average.

There are two important issues with the problem of mining trending HUIs [9].
First, in the above slope calculation, it can be argued that time should be used as
denominator instead of the utility because the user is typically interested in how
utility varies over time rather than the opposite. Second, the slope of a HUI is
calculated for the whole database. Hence, the algorithm of Hackman et al. [9] is
unable to find local trends such as a HUI that follows a trend only in a sub-time
interval. To address these issues, this paper proposes to mine itemsets that have
a high utility and follow an increasing/decreasing trend in some non predefined
time intervals. This paper redefines the concepts of utility and slope such that
the time is divided into non-overlapping consecutive bins to reduce the influence
of small fluctuations in the utility of items. The user must set a bin length binlen
∈ Z

+. Then, the average timestamp and average utility of each bin is used as
basis for slope calculations.

Definition 1 (Bin). Let there be a database D of m transactions, and two
timestamps i, j such that 0 ≤ i ≤ j. The bin from time i to j is defined as Bi,j =
{T |i ≤ t(T ) ≤ j ∧ T ∈ D}. The length of a bin Bi,j is length(Bi,j) = j− i + 1.
The average timestamp of a bin Bi,j is defined as at(Bi,j) = i+j

2 . The utility of
an itemset X in a bin Bi,j is defined as: u(X,Bi,j) =

∑
X⊆T∈Bi,j

u(X,T ). The

average utility of X in Bi,j is defined as au(X,Bi,j) = u(X,Bi,j)
length(Bi,j)

.
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Definition 2 (Binned database). Let there be a database D = {T1, T2, . . . ,
Tm} and a fixed bin length binlen. The time interval [t(T1), t(Tm)] is divided into
consecutive non-overlapping bins of length binlen. For the sake of simplicity, the
last bin is ignored if its length is less than binlen. The number of bins in D is
numbin =

⌊
t(Tm)−t(T1)

binlen

⌋
. The sequence of bins in D, ordered by time, is defined

as: BS = 〈B1,binlen, Bbinlen+1,binlen×2, . . . , Bbinlen×(numbin−1)+1,binlen×numbin〉.
Moreover, let BS[k] denotes the k-th element of BS.

To detect non predefined time intervals containing trends, a sliding window
of length winlen is slided over the sequence of bins BS.

Definition 3 (Window). Let there be a database D and a user-defined slid-
ing window length winlen, such that winlen = binlen × k where k ∈ Z

and k ≥ 2. Each window contains winlen/binlen bins. Let W[i,j] denotes
the window containing the i-th bin until the j-th bin of the sequence BS,
that is W[i,j] = {BS[k]|i ≤ k ≤ j}. A window W[k,l] is a subset of W[i,j]

iff W[k,l] ⊆ W[i,j] (i ≤ k, l ≤ j), i.e. all bins included in W[k,l] are also
included in W[i,j]. A window W[k,l] is a strict subset of W[i,j] iff W[k,l] ⊂
W[i,j]. The length of a window W[i,j] is length(W[i,j]) = binlen × (j − i + 1).
Let BN[i,j] be the sequence of bins that are contained in W[i,j], ordered by
time, that is BN[i,j] = 〈BS[i], BS[i + 1] . . . , BS[j]〉. Let AU(X)[i,j] denotes
the sequence of average utilities of an itemset X for the bins of BN[i,j], that
is AU(X)[i,j] = 〈au(X,BS[i]), au(X,BS[i + 1]) . . . , au(X,BS[j])〉. Let AT[i,j]

denotes the sequence of average timestamps corresponding to bins in BN[i,j],
that is AT[i,j] = 〈at(BS[i]), at(BS[i+1]) . . . , at(BS[j])〉. In the following, indices
[i, j] of W, BN, AU, and AT (which refer to sequence BS) are omitted when
the context is clear. The utility of an itemset X in a window W is defined as:
u(X,W ) =

∑
B∈W u(B,X).

We then define the slope of an itemset in a sliding window as follows:

Definition 4 (Slope of an itemset in a sliding window). Let A[k] be the
k-th element of a sequence of values A. The slope of an itemset X in a sliding
window W is: slope(X,W ) =

∑
k=1...|BN|(AU(X)[k]−avg(AU(X)))×(AT [k]−avg(AT ))

∑
t∈AT (t−avg(AT ))2

iff the itemset X appears in each bin of the sliding window W , i.e., AU(X)[k] 
=
0. A sliding window W meeting that latter condition is called a no-empty-bin
sliding window of X. Otherwise, the slope is undefined. Besides, in the case
where the denominator is 0, the slope is defined as 0.

For example, if binlen = 3, winlen = 2 × binlen = 6, BS =
〈B1,3, B4,6, B7,9, B10,12〉, and W[1,2] = {B1,3, B4,6}. The utility of itemset {b, c}
in B1,3 is u({b, c}, B1,3) = u({b, c}, T1) + u({b, c}, T2) = 6 + 11 = 17, the utility
of itemset {b, c} in W[1,2] is u({b, c},W[1,2]) = u({b, c}, B1,3) + u({b, c}, B4,6) =
17 + 33 = 50. The slope of itemset {b, c} in W[1,2] is slope({b, c},W[1,2]) =
(5.67−8.34)×(2−3.5)+(11−8.34)×(5−3.5)

(2−3.5)2+(5−3.5)2 = 1.78.
If binlen is set to a reasonably large value, the requirement that an itemset

X appears in each bin of a sliding window to have a slope is reasonable, and
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ensures that the slope is not influenced by missing values. Based on the above
definitions, the problem of mining locally trending HUIs is defined.

Definition 5 (Problem definition). Let there be some parameters binlen ∈
Z
+, winlen = x × binlen for an integer x ∈ Z

+ such that x ≥ 2,minutil ≥ 0,
minslope > 0 (or maxslope < 0) set by the user. A window W[i,j] is a Trending
High Utility Period (THUP) of an itemset X if for any sliding window W[k,l] ⊆
W[i,j] where length (W[k,l]) = winlen, u(X,W[k,l]) ≥ minutil, slope(X,W[k,l]) ≥
minslope, indicating an increasing trend (or slope(X,W[k,l]) ≤ maxslope, indi-
cating a decreasing trend). Furthermore, a THUP W[i,j] is said to be a maximum
THUP if there is no THUP W[o,p] such that W[i,j] ⊂ W[o,p]. The problem of
Locally Trending High Utility Itemset Mining (LTHUIM) is to find all Locally
Trending High Utility Itemsets (LTHUIs), and their maximum Trending High
Utility Periods (THUPs). An itemset is a LTHUI if it has at least one THUP.

For example, for binlen = 3, winlen = 6,minutil = 20 and minslope =
0.15, three LTHUIs are found. {b} has a maximum THUP [d1, d9] (utility = 82,
slope = 0.52), {b, c} has a maximum THUP [d1, d9] (utility = 95, slope = 0.52),
and {c, e} has a maximum THUP [d1, d6] (utility = 27, slope = 0.19).

4 The LTHUI-Miner Algorithm

The search space in traditional HUIM consists of 2I − 1 itemsets. For the pro-
posed problem, if there are w sliding windows, then there are (2I − 1) × w
potential THUPs to be considered. To efficiently find LTHUIs, the proposed
LTHUI-Miner uses three properties that reduce the search space by eliminating
items or itemsets w.r.t. the whole database or a sliding window.

Property 1 (Pruning a Low-TWU Item in a Database). For an item i and a
database D, let there be a measure TWU(i) =

∑
T∈D∧i∈T u(T, T ). If TWU(i) <

minutil, then any itemset X � i is not a LTHUI.

This property was proven for HUIs in the traditional HUIM problem [14].
But it also holds for LTHUIM since every LTHUI must be a HUI.

For example, if minutil = 20, binlen = 3 and winlen = 6, TWU(d) =∑
T∈D∧{d}∈T u(T, T ) = u(T2, T2) = 18 < minutil. Thus, d is a low TWU item

in the database, and any itemset X � {d} is not a LTHUI.
The second and third pruning properties require a total order ≺ on the set of

items I, which is used by LTHUI-Miner to explore the search space of itemsets.
LTHUI-Miner performs a depth-first search starting from itemsets containing
single items, and recursively extends each itemset by appending single items
according to that order. Formally, an itemset X ∪{y} obtained by appending an
item y to an itemset X is said to be an extension of X if i ≺ y,∀i ∈ X.

Property 2 (Pruning an Unpromising itemset using its Remaining Utility in a
Database). The remaining utility of an itemset X in a transaction T is defined
as ru(X,T ) =

∑
i∈T∧i�x∀x∈X u(i, T ) if X ⊆ T . The remaining utility of an

itemset X in a database is defined as reu(X) =
∑

T∈D∧X⊆T ru(X,T ). If u(X)+
reu(X) < minutil, then X and its transitive extensions are not LTHUIs.
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For example, if minutil = 30, binlen = 3 and winlen = 6. The TWU
ascending order on items is a ≺ e ≺ b ≺ c. Note that item d has been pruned
using Property 1. u({c}) + reu({c}) = 27 + 0 < minutil. Then, itemset {c} and
its transitive extensions are not LTHUIs.

Property 3 (Pruning an Unpromising itemset using its Remaining Utility in a
sliding window). The remaining utility of an itemset X in a sliding Window W
is defined as reu(X,W ) =

∑
T∈B∈W∧X⊆T ru(X,T ). If u(X,W ) + reu(X,W ) <

minutil, then X and its transitive extensions have no THUP in W .

This property can be proved by observing that such itemsets cannot have a
utility greater than or equal to minutil in the sliding window W , and thus these
itemsets cannot have a THUP in W . For example, if minutil = 20, binlen = 3
and winlen = 6, u({e},W[1,2]) + reu({e},W[1,2]) = 6 + 9 = 15 < minutil. Thus,
the window W[1,2] is not a THUP for itemset {e} and its transitive extensions.

To efficiently calculate the utility of any itemset during the depth-first search
and check the pruning conditions of Properties 2 and 3, the proposed algo-
rithm utilizes a novel structure called Trending Utility-list (TU-list), which
extends the utility-list structure used in traditional HUIM [4] with informa-
tion about bins and time periods. The first part of a TU-list of an itemset X
stores information about the utility of the itemset X in transactions where it
appears, and about the utilities of items that could extend X in these trans-
actions. Formally, the first part of a TU-list is a set of tuples called elements
such that there is a tuple (tid, iutil, rutil) for each transaction Ttid contain-
ing X where iutil = u(X,Ttid) and rutil = ru(X,Ttid). The second part
of a TU-list contains four lists named binUtils, binRutils, trendPeriods and
promisingPeriods. They store the utility of X for each bin, the remaining util-
ity of X for each bin, the maximum trending high utility periods of X and the
promising periods of X, respectively. A promising period of an itemset X is a
time period where X and its transitive extensions may have a utility greater than
or equal to minutil based on Property 3. Formally, let there be some parameters
winlen ∈ Z

+ and minutil ≥ 0 set by the user. A window W[i,j] is a promising
period of an itemset X if for any sliding window W[k,l] ⊆ W[i,j] where length
(W[k,l]) = winlen, u(X,W[k,l]) + reu(X,W[k,l]) ≥ minutil.

The TU-list structure of an itemset X has two interesting properties. First, it
allows to directly calculate the utility u(X) of X without scanning the database,
as the sum of the iutil values in the TU-list of X. Second, reu(X) can be
calculated as the sum of rutil values. Moreover, the utility and remaining utility
of an itemset X in a bin B and a window W can also be calculated from its
TU-list by considering only transactions in B and W , respectively.

For example, the TU-list of itemset {e} is elements = 〈(0, 3, 6), (1, 3, 11),
(2, 3, 11), (4, 6, 6), (7, 6, 6), (8, 3, 12)〉, binUtils = 〈6, 9, 0, 9〉, binRutils = 〈17, 17,
0, 18〉, trendPeriods = 〈〉 and promisingPeriods = 〈W[1,2]〉. Then, the utility
of itemset {e} in a database or window can be calculated without scanning the
database again, e.g., u({e}) = 3 + 3 + 3 + 6 + 6 + 3 = 24, u({e},W[1,2]) =
binUtils[1] + binUtils[2] = 6 + 9 = 15. The remaining utility of itemset {e}
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in a window can also be calculated directly using binRutils: reu({e},W[1,2]) =
binRutils[1] + binRutils[2] = 17 + 17 = 34.

Another property of TU-lists is that those of two itemsets of the form P ∪{x}
and P ∪ {y} can be joined to obtain the TU-list of an itemset P ∪ {x, y}. This
is done by first applying the construct procedure of HUI-Miner [15]. Then, the
binUtils, binRutils, trendPeriods and promisingPeriods lists can be calculated
by applying the findTrend procedure, presented in the next section.

The Algorithm. We next present the proposed LTHUI-Miner algorithm by
explaining how it finds increasing trends. Decreasing trends are found in a simi-
lar way. The algorithm takes as input a transaction database D and the binlen,
winlen, minutil and minslope parameters. The algorithm outputs all LTHUIs
and their maximum THUPs. The algorithm first scans the database to calculate
the bins, sliding windows and TWU(i) of each item i. Then, each item i such
that TWU(i) < minutil is ignored from further processing as it cannot be part
of a LTHUI by Property 1. Then, the processing order ≺ on remaining items
is defined as the increasing order of TWU, as in previous work [4]. Then, the
algorithm scans the database again to create the TU-list of each remaining item.
Thereafter, LTHUI-Miner recursively extends each of those items by appending
items following the � order. This is done by calling the LTHUISearch proce-
dure (Algorithm 1) with six parameters: (1) an itemset P (initially P = ∅),
(2) a set exP of one-item extensions of P of the form Px = P ∪ {x} where
x ∈ I (initially, the remaining items), (3) binlen, (4) winlen, (5) minutil,
and (6) minslope. The procedure first checks if the trendPeriods list of each
itemset Px in the set exP is empty. If not, the itemset Px is output as a
LTHUI with Px.TUlist.trendPeriods as its maximum THUPs. Moreover, if
promisingPeriods of Px is not empty and Px is promising in the database
according to Property 2, the algorithm will try to extend Px. This is done by
joining Px with each itemset Py ∈ exP such that y � x, to obtain itemsets of the
form Pxy. The TU-list of Pxy is constructed by calling the construct procedure.
Then, the procedure FindTrend is called to construct the binUtils, binRutils,
trendPeriods and promisingPeriods of that TU-list, and Pxy is added to a set
exPx. Then, the procedure LTHUI-Search is called with Px and exPx to check
if itemsets in exPx are LTHUIs and explore their extensions.

The FindTrend procedure takes as input (1) an itemset P , (2) a one item
extension of P , (3) binlen, (4) winlen, (5) minutil and (6) minslope. First, the
procedure scans the elements of the TU-list of Px to calculate binUtils and
binRutils. Then, the procedure moves a sliding window over the sequence of
bins BS to calculate the utility and slope of windows using two variables, namely
winStart (the index in BS of the first bin of a sliding window, initialized to 0)
and winEnd (the index in BS of the last bin of a sliding window, initialized
to winlen/binlen). However, the process of sliding a window while calculating
the slope and utility may be interrupted because some sliding windows in BS
may have empty bins, and the slope cannot be calculated in that case. Thus, a
loop is performed to find the next sliding window without empty bins, and then
continue the sliding process until an empty bin is encountered or winEnd reaches
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the last bin of the sequence BS. In more details, this is done by first finding the
first no-empty-bin sliding window starting from winStart, updating winStart,
winEnd and calculating utils (utility of the itemset Px in that window), rutils
(remaining utility of Px in that window) . Then, the following step is repeated
until (winEnd + 1) reaches the last bin of BS or the utility of Px in the bin
of index (winEnd + 1) is 0 or itemset P is unpromising in the sliding window
W[winStart+1,winEnd+1]: (1) increase the index of the first and last bin of the
sliding window, then update utils and rutils, (2) compare the value of utils,
utils + rutils with minutil to determine whether to merge the sliding window
with the previous period or add that window to Px.TUlist.trendPeriods and
Px.TUlist.promisingPeriods. These latter are used to store maximum THUPs
and promising periods.

LTHUI-Miner is correct and complete, as it explores itemsets by recursively
performing extensions of single items, and the algorithm only prunes extensions
based on the pruning properties.

Algorithm 1: LTHUISearch
input : P : an itemset, exP : a set of one item extensions of itemset P , binlen: the length of

a bin, winlen: the length of a sliding window, minutil,minslope: the minimum
utility and slope thresholds.

output: the LTHUIs that are transitive extensions of P and their maximum THUPs

1 foreach itemset Px in exP do
2 if Px.TUlist.trendPeriods �= ∅ then output Px with Px.TUlist.trendPeriods;
3 if Px.TUlist.promisingPeriods �= ∅ and

Px.TUList.sumIUtils + Px.TUList.sumRUtils ≥ minutil then
4 exPx ← ∅;
5 foreach itemset Py such that y � x in exP do
6 Pxy ← construct(P , Px, Py);
7 FindTrend (Px, Pxy, binlen, winlen, minutil, minslope);
8 exPx ← exPx ∪ {Pxy};
9 end

10 end
11 LTHUISearch (Px, exPx, binlen, winlen, minutil, minslope);

12 end

5 Experiment

To test the performance of LTHUI-Miner, experiments were done on a computer
having an Intel Xeon E3-1270 v5 processor with 64 GB RAM, on Windows 10.
LTHUI-Miner was implemented in Java. Two real-life datasets with timestamps
were used: retail and foodmart. Let |I|, |D| and A represents the number of dis-
tinct items, the number of transactions and the average transaction length. retail
contains transactions from an anonymous Belgian retail store (|I| = 16,470, |D| =
88,162, A = 10.30). foodmart is transactional data obtained and transformed
from the SQL-Server 2000 distribution (|I| = 1559, |D| = 4141, A = 4.40). The
timestamps of retail and foodmart were generated by adopting a distribution
used in prior work for retail data [7].
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Algorithm 2: FindTrend
input : P : an itemset, Px: a one item extension of P , binlen: the length of a bin, winlen:

the sliding window length, minutil: the minimum utility threshold, and minslope:
the minimum slope threshold.

output: Calculate the binUtils, binRutils, trendPeriods and promisingPeriods of the
TU-list of Px

1 Scan the elements of the TU-list of Px to calculate binUtils and binRutils;
2 numBPW = winlen/binlen (the number of bins per sliding window);
3 winStart = 0 (the index of a sliding window’s first bin in BS);
4 winEnd = numBPW (the index of a sliding window’s last bin in BS);
5 while winEnd < BS.size do
6 Find the first no-empty-bin sliding window W for Px starting from winStart;
7 Update winStart and winEnd in terms of W ;
8 Calculate utils = u(Px,W ) and rutils = reu(Px,W );
9 while winEnd + 1 < BS.size and Px.TUlist.binUtils.get(winEnd + 1) �= 0 and P is

promising in W[winStart+1,winEnd+1] do
10 // increase index of the first bin of the sliding window
11 utils = utils − Px.binUtils.get(winStart);
12 rutils = rutils − Px.binRutils.get(winStart);
13 winStart = winStart + 1;
14 // increase index of the last bin of the sliding window
15 utils = utils + Px.binUtils.get(winEnd);
16 rutils = rutils + Px.binRutils.get(winEnd);
17 winEnd = winEnd + 1;
18 Merge the [winStart, winEnd] period with the previous trend period if

utils ≥ minutil and slope(Px,W[winStart,winEnd]) ≥ minslope. Otherwise add
it to Px.TUlist.trendPeriods.

19 Merge the [winStart, winEnd] period with the previous promising period if
utils + rutils ≥ minutil. Otherwise add it to Px.TUlist.promisingPeriods.

20 end

21 end

Because LTHUIM is a new problem, the performance of LTHUI-Miner can-
not be compared with prior work. Thus, we compared three versions of LTHUI-
Miner: (1) LTHUI-Miner (with all pruning techniques), denoted as lthui, (2)
LTHUI-Miner without Property 3, denoted as lthui-no-prop3, and (3) a version
of LTHUI-Miner without Property 2 and 3. However, that latter ran out of mem-
ory for all the experiments, and thus its results are not reported in the following.
Experiments were done by varying the minutil and minslope parameters to see
the influence on runtime and pattern count, respectively. No results are shown
for an algorithm if it ran out of memory, or the runtime exceeded one hour.

Influence of minutil on Runtime and Memory. In the first experiment,
the parameter minutil was varied to evaluate the performance of LTHUI-
Miner in terms of runtime. LTHUI-Miner was run with winlen = 2000 (about
5.5 h), binlen = 1000 and minslope = 0.1 on the retail dataset, and run with
winlen = 500, binlen = 250 and minslope = 0.1 on the foodmart dataset. Fig. 1
(a) compares the runtimes of lthui and lthui-no-prop3 for the two datasets. It
is observed that as minutil is decreased, runtime increases, which is reasonable
since more patterns may be found. It is also observed that pruning an unpromis-
ing itemset in a sliding window using the remaining utility (Property 3) greatly
reduces the runtime. For example, on the retail dataset, when minutil = 1500,
the execution time of lthui-no-prop3 is 498 s, which is more than 32 times that
of lthui, and on the foodmart dataset, when minutil = 1400, lthui is up to
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176 times faster than lthui-no-prop3. Memory consumption was also measured
to compare the two algorithm versions. It was found that in most cases, the
memory usage of lthui is less than lthui-no-prop3, which shows that Property 3
reduces memory consumption. Details are not shown due to the page limitation.

(a) Influence of minutil on runtime

(b) Influence of minslope on the number of patterns found

Fig. 1. Experiment results

Influence of minslope on the Number of Patterns Found. In the second
experiment, the minslope parameter was varied to evaluate its influence on the
number of patterns found. Algorithms were run with binlen = 1000, winlen =
2 × binlen and minutil = 600 on the retail dataset and binlen = 250, winlen =
2 × binlen and minutil = 100 on the foodmart dataset. Results for the number
of patterns are shown in Fig. 1 (b) for the two datasets. It is observed that as
minslope increases, the number of patterns decreases, which was expected.

Pattern Analysis. On the two datasets, some patterns having a strong trend
were found, which means that the utility of these itemsets was high and increased
rapidly in their THUPs. For example, on retail and foodmart dataset, 179 and
13 patterns have slope values greater than 1.1 and 0.6 respectively. Discovering
such strong trends can be very helpful for a retail store manager to understand
customer behavior and take decisions, since products in LTHUIs generate high
profits and the profits is growing quickly during their THUPs.
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6 Conclusion

This paper has defined a novel problem of mining Locally Trending High Util-
ity Itemsets having increasing/decreasing trend(s) in some non-predefined time
periods. The properties of LTHUI mining were studied and a novel algorithm
named LTHUI-Miner was proposed to efficiently mine all LTHUIs and their max-
imum THUPs. Besides, three pruning strategies were designed to improve the
performance of LTHUI-Miner. The experimental evaluation has shown that the
algorithm is efficient and can find useful patterns. In future work, techniques
to automatically adjust parameters will be considered, as well as extensions for
high utility episode mining [6], incremental pattern mining [12], [?] and using
swarm optimization [16].
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