Chapter 3 )
The Dynamic Random Access Memory Qs
Challenge in Embedded Computing

Systems

Matthias Jung, Christian Weis, and Norbert Wehn

3.1 Introduction

Dynamic random access memories (DRAMs) are key components in all comput-
ing systems that require large working memory. Due to the strong increase in
data volume in many embedded applications, such as machine learning, image
processing, autonomous systems, etc., DRAMs largely impact the overall system
performance and power consumption. In many of these applications, the overall
system performance is often limited by the memory bandwidth or latency and not by
the computation itself. Due to the dynamic storage scheme of DRAMs and shrinking
technology nodes, reliability is also a major concern in current and future DRAMs.

Therefore, new challenges arise, which we will discuss in this chapter. The
most important metrics, which are typically considered for DRAM subsystems
(especially in the high-performance computing (HPC) domain), are bandwidth,
latency, and capacity. However, in the context of embedded systems it requires
to consider further metrics, such as power, temperature, reliability, safety, and
security. In the following we will highlight these challenges and refer to some of
our recent contributions, which tackle these challenges.

M. Jung
Fraunhofer IESE, Kaiserslautern, Germany
e-mail: Matthias.Jung @iese.fraunhofer.de

C. Weis - N. Wehn (0<)
TU Kaiserslautern, Kaiserslautern, Germany
e-mail: weis @eit.uni-kl.de; wehn @eit.uni-klde

© The Author(s) 2021 19
J.-J. Chen (ed.), A Journey of Embedded and Cyber-Physical Systems,
https://doi.org/10.1007/978-3-030-47487-4_3


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47487-4_3&domain=pdf
mailto:Matthias.Jung@iese.fraunhofer.de
mailto:weis@eit.uni-kl.de
mailto:wehn@eit.uni-klde
https://doi.org/10.1007/978-3-030-47487-4_3

20 M. Jung et al.
3.2 Bandwidth and Latency

Bandwidth is the amount of data that can be transferred between DRAM and a
computational unit within 1s. The maximum DRAM bandwidth is limited to the
number of data pins times the interface frequency. Latency is the access time
that it takes to complete an access. In fact, latency helps bandwidth, but not
vice versa [33]. For instance, lower DRAM latency results in more accesses per
second, and therefore higher bandwidth, whereas increasing the number of data pins
increases the bandwidth without decreasing latency. A fast execution of applications
on embedded systems must not only be supported by the computational units, but
the memory subsystem must be designed to avoid hitting the memory wall [43]. For
example, embedded applications for autonomous driving will require between 400
and 1024 GB/s of memory bandwidth [16], which is hard to realize with the current
DRAM technologies. To put the problem in perspective, we survey current memory
architectures.

Figure 3.1 shows different DRAM-based memory subsystems, and Figs. 3.2 and
3.3 show their properties with respect to interface frequency, maximum theoretical
bandwidth, and energy consumption per transferred bit.! The maximum bandwidth
of conventional DIMM-based DDR solutions is limited by the I/O count and
interface speed. This limitation arises due to the package, power considerations,
and costs on both the memory and processing sides.

Package on Package (PoP):

Soldered on top of the MPSoC.
Smartphones
e.g. LPDDR3, LPDDR4

Device Based:

Embedded / Tablets / Graphic Cards
e.g. LPDDR3, GDDR5

DIMM Based:

General Purpose Computers
e.g. DDR3, DDR4

or MPSoC

Buffer on Board:

Memory Controller on Buffer Chip,
Serial Connection
e.g. FBDIMM, IBM CDIMM, Intel SMI/SMB

3D/2.5D-Integrated:

Stacked on Logic or Silicon Interposer
by means of TSVs
e.g. Wide I/O, HBM

Memory Cube:

3D-Stacked, Memory Controller on
Bottom Layer, Serial Interconnect (SerDes)
e.g. HMC, SMC

Fig. 3.1 DRAM-based memory subsystems

INote that the latency, actual sustainable bandwidth, and the total energy consumption of a DRAM
strongly depend on the application being executed. Reaching the maximum theoretical bandwidths
in Fig. 3.2 is practically impossible on general-purpose systems.



3 The Dynamic Random Access Memory Challenge in Embedded Computing. . . 21
1000
100
£
5
2
10
1
100 1000 10000 100000
Interface Frequency (log) [MHz]
Fig. 3.2 Interface frequency and maximum bandwidth of different DRAM types
_ 12% 14
%. n4 12
3 g
¥ 10 =
z B Gy . £
I e Y % [ B &
é . / / Capacity . (;
g . 7 /j o

DDR3 DDR4 GDDR5X GDDR6 HBM DiRAM4 HMC LPDDR3 IPDDR4 Wide 102

Fig. 3.3 Properties of today’s DRAMs (Sources: Micron, Hynix, Nvidia, Xilinx, JEDEC)



22 M. Jung et al.

To avoid pin limitations, designers and vendors are using Buffer on Board
(BoB) organizations [7], in which an additional logic component is interposed
between the CPU and DRAM to control the memory and to communicate with
the CPU over a narrow, high-speed, serial interface. This technique is mainly used
in server applications where several terabytes of DRAM are required. The required
storage capacity in embedded systems is much smaller than in the high-performance
systems BoB targets, and thus this organization is inappropriate. All the other
following DRAM devices can achieve easily several GB capacity, which is enough
for most of the embedded applications.

Package on Package (PoP) organizations reduce the distance between the DRAM
and the MPSoC (from centimeters to millimeters), providing higher bandwidth,
lower latency, better power efficiency, and smaller form factors, all of which are
especially important for smartphones and tablets. Low power DDR DRAMs (e.g.,
LPDDR4) can be used either as a device on a PCB or mounted directly as PoP.
The latter organization permits only one device to be connected, requiring DRAM
commands to be serialized due to the resulting low pin count. For example, if
eight LPDDR4 devices are used on a PCB, they deliver a theoretical bandwidth
of 137 GB/s.

To address the huge memory demand of highly parallel GPUs, graphic DDR
DRAMs (e.g., GDDR5X or GDDR6) use techniques like quad data rate (QDR) to
deliver high bandwidth compared to conventional DDR DRAM. While LPDDR4
devices are designed and optimized for ultra-low power consumption with aggres-
sive power gating and higher-threshold transistors, GDDR5X/6 devices focus
on delivering the highest achievable bandwidth. Both use an architecture with
distributed banks (heavy sub-banking) due to the wider data I/O widths of x 16/x32
and the larger data prefetch of up to 16 bit per data I/O. However, GDDR5X/6
devices improve the column-to-column cycle time (fccp) by reducing data path
delays from primary sense amplifiers to the global sense amplifiers. Furthermore,
GDDRS5X/6 chips use an on-die phase lock loop (PLL) to achieve very high I/O
performance in QDR mode. In contrast, LPDDR4 devices have no on-die PLL
or delay lock loop (DLL). Combining 16 GDDR6 devices in QDR mode yields a
theoretical bandwidth of 1 TB/s, as shown in Fig. 3.2.

Another way of achieving high bandwidth is 3D stacking: examples include
WIDE I/O, Micron’s Hybrid Memory Cube (HMC), and Samsung’s High Bandwidth
Memory (HBM). These memories reduce the distance between CPU and external
RAM from centimeters to micrometers by means of through-silicon via (TSV)
technology. The available bandwidth increases due to more pins provided by the
TSVs, but, more importantly, this technology provides a major boost in energy
efficiency compared to standard off-chip (G)DDR devices.

The combination of high bandwidth communication and the lower power
consumption of 3D integrated memory is an ideal fit for embedded systems. For
example, four parallel HBM?2 devices on a 2.5D silicon interposer can provide up to
1TB/s [16]. However, 3D memories suffer from thermal issues, which we discuss
in Sect. 3.4.



3 The Dynamic Random Access Memory Challenge in Embedded Computing. . . 23

400

350

300

250

200

Number

150

100

50

00 50 100 — 150 200 250

Access Time [ns]

Fig. 3.4 Latency for an application running on DDR3 DRAM

From an application point of view, the DRAM subsystem has non-deterministic
timing behavior [8] due to its complex protocol (i.e., the latency of a DRAM request
depends on previous issued commands) and the runtime optimization of the memory
controller; this makes it difficult to provide predictable performance and thus to
guarantee real-time task predictability [1]. Figure 3.4 shows a histogram of the
CHStone ADPCM benchmark [11] simulated on the DRAMSys framework [1 8].2
Although the average latency is concentrated around 40 ns, the memory latency can
easily vary by an order of magnitude.

As with the bandwidth issues discussed above, the memory controller plays an
integral role in this non-deterministic timing behavior. The memory controller has to
manage, on one side, accesses to the DRAM memory from the compute fabric and,
on the other side, the complex interface protocol of the DRAMs. In the following we
discuss the main contributions to the DRAM latency that origin from the complex
internal memory architecture and the memory controller.

* Row Misses: The latency of a bank access varies depending on the state of its
row buffer. If a memory access targets the same row as the row currently cached
in the buffer (a row hit), it results in lower latency and lower energy memory

2The simulated DRAM is a DDR3 with a RBC address mapping and disabled scheduler.



24 M. Jung et al.

accesses. On the other hand, if a memory access targets a different row from
that currently in the buffer (a row miss), it results in higher latency and energy
consumption.

* Close vs. Open Page Policy: Commercial off-the-shelf (COTS) DRAM con-
trollers usually support two major modes: an open page policy (OPP) and
closed page policy (CPP). The OPP keeps the current row active after a read or
write, whereas the CPP precharges the row automatically after each access. The
latter makes the latency for each access more predictable, but it also decreases
performance for access patterns with high row-hit potential.

e Refresh: DRAMs must be refreshed regularly due to their charge-based bit
storage architecture. The memory controller has to issue this refresh operation
periodically (e.g., every 64 ms). Normal accesses to the DRAM have to be
blocked for the duration of the refresh operation g rc (350 ns for DDR4), degrad-
ing performance with respect to both bandwidth and latency and increasing
energy consumption.’ If a memory access arrives at the same time that a refresh
happens it will experience unpredictable latency.

* Scheduling: COTS memory controllers are optimized for average case perfor-
mance and therefore employ runtime scheduling of requests (c.f. Sect. 3.2) for
online optimization. For example, with schedulers that attempt to maximize row
hits it is possible that a request that misses the row could starve, which again
results in a hardly predictable latency.

* Arbitration: A major challenge arises when several computational units are issu-
ing read and write requests to the memory controller. The different applications
running on these compute units will place their requests in different input buffers,
and arbitration must be performed. This leads to interference that can cause high
unpredictability.

* Command/Address and Data bus Contention: All banks in a DRAM share
the same command/address and data buses, which can limit overall performance.
If the data bus utilization is 100%, the maximum bandwidth is reached. On the
other hand if the command bus utilization is 100%, WR and RD commands must
be issued in later cycles that negatively impacts the bandwidth and the latency.

¢ Current Limiting and Power Supply Network: In order to limit peak currents
there exists a rolling time-frame, in which a maximum of four banks can
be activated, called four activate window (tpaw). There is also a minimum
time interval between two ACT commands to different banks, (tprp). Also
these constraints can influence bandwidth, latency, and predictability in specific
scenarios.

¢ Further Effects: Bank-Groups in DDR4 or GDDR or rank-to-rank switching
constraints in DDR memories also impact the predictability.

3In fact, the degradation grows linearly with the capacity, which means it grows exponentially with
each density generation. Liu et al. [27] and Bhati et al. [3] predicted that 40-50% of the power
consumption of future DRAM devices will be caused by refresh commands, and the maximum
DRAM bandwidth will be significantly reduced.



3 The Dynamic Random Access Memory Challenge in Embedded Computing. . . 25

Due to this unpredictable timing behavior, processors for embedded applications
with real-time and strict latency constraints have thus far largely avoided using
DRAM. For example, Infineon’s Aurix CPU, which is widely used for safety-critical
applications, does not provide a DRAM controller.

In past years there were many investigations with respect to DRAM controllers
for real-time and mixed-criticality applications in embedded systems. A detailed
book which summarizes those approaches has been presented by Goossens et al. [8].
Most of these approaches concentrate operating the DRAM with statically pre-
computed command patterns which guarantee a predictable behavior. However, this
predictability often comes with a degradation of sustainable bandwidth. Moreover,
the bandwidth numbers presented in Fig. 3.2 are theoretical maxima: the sustainable
memory bandwidth is much less, and it strongly depends on how the data is stored
in the memories, i.e., the memory access pattern [12]. Therefore, it is not only
important to choose a memory that provides high bandwidth, it is also important
to design a DRAM controller that can bring the sustainable bandwidth closer to the
theoretical maximum.

As already mentioned, general-purpose DRAM controllers use online scheduling
techniques to improve the sustainable bandwidth, e.g., by reducing the number of
row misses or read/write transitions. In order to reduce the number of read/write
transitions, DRAM controllers buffer read and write commands in two distinct
queues. An arbiter switches between read and write mode to diminish the twrg
penalty, the minimum time interval between the end of a WR burst and a RD
command.

However, in embedded systems, many applications (e.g., signal, image, or neural
network processing) have regular, fixed, and deterministic memory access patterns.
On the compute side, inherent application-specific knowledge has been heavily
exploited for efficient compute architectures. However, on the memory side there
is limited research that exploits application knowledge to improve the memory
access behavior. In [12] we presented an application-specific memory controller
(ASMC). Key of this controller is an optimized mapping of the logical addresses
to physical DRAM addresses such that the row misses in the access pattern stream
are minimized. The corresponding mathematical optimization problem is an integer
linear programming problem. The solution of this problem maximizes the number
of row buffer hits and exploits the bank-level parallelism of the DRAM device
in order to reduce the latency and therefore to keep up the sustainable bandwidth
near to the maximum. Therefore, such an ASMC can outperform online schedulers
because it was designed with a global application view. Furthermore, for real-time
embedded systems with this method we can easily determine WCET bounds, since
no non-deterministic online scheduling is involved.

The efficiency of this approach is demonstrated on an industrial embedded
image processing application that consists of image rotation and FFT. Due to real-
time requirements this application requires a minimum bandwidth of 9.57 GB/s.
Figure 3.5 shows the bandwidth and energy for the standard address mappings of
a standard memory controller with standard row-bank-column (RBC) mapping and
bank-row-column (BRC) mapping, a manual optimization of the mapping of an



26 M. Jung et al.

—— Max. Bandwidth == Min. Bandwidth
14 1,6E-2

12 14E-2

— 1,2E-2 1

1,0E-2 A

Energy [J]
o0
(=}
m
w

Bandwidth [GB/s]

6,0E-3

4,0E-3 A

2 ] i .,
0 + T T T 0,0E+0

BRC RBC Manual ConGen BRC RBC Manual ConGen

Fig. 3.5 Industrial image processing application

experienced engineer and the ASMC approach. The ASMC approach has a runtime
of ~50 min, whereas the manual approach requires ~1 week for an engineer to
fully understand the application and analyze the behavior. Furthermore, by using
the generated address mapping, all the online scheduling capabilities of the memory
controller could be removed, which reduced the required area of the memory
controller by 35%.

As mentioned already in Sect. 3.2 the refresh has a large impact on DRAM’s
bandwidth and latency. The overhead of refreshes can be reduced by only refreshing
the memory cells inside the DRAM that hold data that are still alive. A large body of
research exists developing schemes that manually refresh the DRAM row-by-row,
characterizing each row’s ability to retain data and eliminating unnecessary Refresh
operations on rows that can be refreshed less often. These schemes have been
shown to be extremely efficient. Since eliminating refresh improves both energy and
performance of the memory system, these schemes offer the potential for significant
gains in DRAM-system efficiency. However, these schemes are incompatible with
the modern auto-refresh mechanism that is widely used: auto-refresh operates on
multiple rows at once and not on a row-by-row basis. In addition, auto-refresh
cannot skip any row, whether that row needs to be refreshed or not. Thus, the manual
schemes use explicit row-level Activate (ACT) and Precharge (PRE) commands to
refresh row-by-row, called row granular refresh (RGR). However, it was shown
in [4] that techniques based on RGR could never be as effective as the DRAM’s
internal auto-refresh.

In [28] we presented a technique called optimized RGR which allows a row-
by-row refresh with the same efficiency as the auto-refresh. Here, we investigated
the timings that are relevant to Activate and Precharge commands and showed
that these DRAM timing parameters can be reduced for performing the Refresh



3 The Dynamic Random Access Memory Challenge in Embedded Computing. . . 27

Fig. 3.6 Average response 100
latency using different refresh "2 g B [X'mode M 2X mode 4X mode
techniques and modes E 30
according to JEDEC: 1X—all g 70
rows are refreshed per 5
Refresh command, 2X—half 8 60
of the rows are refreshed, g 50
4X—a quarter of the rows are ? 40
refreshed f 30
%" 20
2 10
0
No Refresh Auto Refresh RGR ORGR RGR select. ORGR select.

operation row-by-row. We could demonstrate a reduction of latency and increase
of bandwidth compared to standard auto-refresh, as shown in Fig. 3.6. The results
can be even improved if only alive data is refreshed (ORGR select). Additionally,
ORGR improved the energy efficiency compared to RGR.

It is becoming clear that embedded applications must concentrate on DRAM
solutions like GDDR and HBM in combination with ASMCs and sophisticated
refresh mechanisms in order to cope with their high bandwidth and low latency
requirements.

3.3 Power Consumption

Power is one of the major challenges in today’s embedded system development.
According to Fig. 3.3, the preliminary choice for low power designs is LPDDR4
and Wide 1/02 due to their very low energy consumption. However, when aiming
at high memory bandwidth, e.g., 1 TB/s these devices are not optimal. For example,
to achieve the aforementioned bandwidth with LPDDR4, 64 devices (x32) are
required. Although the average power would be only ~17 W at a peak frequency of
2000 MHz, the high number of resulting I/O pins (2048) becomes unfeasible. Hence,
the only alternative candidates for high bandwidth are HBM2 and GDDRS5X/6.
According to Figs.3.2 and 3.3 the average power consumed* by the HBM (4
stack x1024) and GDDR6 (16 devices, QDR, x32) devices are ~60W and
~150W, respectively. These numbers show that DRAM will be a significant
power contributor to embedded systems which require a high memory bandwidth.
Therefore, it is mandatory to efficiently use DRAM’s power-down modes in order
to reduce power consumption.

In state-of-the-art memory controllers the entry to a power-down mode is
scheduled when there was no activity in a period of time called timeout. DRAMs

4Operated at respective peak frequency.



28 M. Jung et al.

0,
14% E PDNP(15) W SREF (100) B SREF (500) W Staggered
&
= 11 %
<
w
>
=1
]
g 7%
=]
S
=
E 4%
=
. (NNRN MO RN HWAN HE0 A0 NREN alNN | |III
@
\&e \b\ é@o é@ é@o é@ @0‘}\ @0‘}\
F ¢ & & & 8
S S & & Q Q
Nt Nt S S

Fig. 3.7 Comparison of energy savings normalized to power-down disabled

offer three power-down modes, called active power-down (PDNA), precharge
power-down (PDNP), and self-refresh (SREF). In [35] we showed that a highly
opportunistic SREF entry results in an increased power consumption, since the
SREF will always execute an internal refresh in the beginning. Therefore, the
timeout for a SREF entry should be at least 500 clock cycles for a Wide /O DRAM.

In [19] we presented an optimized power-down policy, called staggered power-
down, which considers all three available DRAM power-down modes to achieve the
maximum saving in energy and the minimum in slow-down on the execution of the
applications. The basic idea is to change to the next more efficient power-down state
on a refresh event. With this method, unnecessary SREF entries will be avoided
and the hardware timeout counters, as used in state-of-the-art controllers, are not
required anymore. As shown in Fig. 3.7 for Wide I/O DRAMs an energy reduction
up to 10% in high activity periods and up to 13% in idle phases is feasible.

A high power consumption also fosters a high thermal dissipation that largely
impacts the reliability of a DRAM. This challenge is discussed in more detail in the
next paragraph.

3.4 Temperature vs. Reliability

DRAMs are very sensitive to high temperature, which increases the leakage in the
memory cells. Figure 3.8 shows the different leakage paths in a DRAM cell:



3 The Dynamic Random Access Memory Challenge in Embedded Computing. . . 29
Fig. 3.8 Leakage paths in ~ 50 nm
modern buried wordline +—>

Vbp

DRAM architecture [23, 34]

N‘

Bitline

Source

Wordline

* Drain Leakage (1), which includes the P-N junction leakage as well as gate

induced drain leakage (GIDL). GIDL is mainly caused by trap assisted tunneling
(TAT), and it is influenced by the number and distribution of traps in the band-gap
region as well as the electric field. Since the negative wordline voltage and the
positive charge stored in the cell capacitor (when a 1 is stored in the cell) increase
the electric field in the band-gap region (gate-drain overlap region), GIDL is
the major source of leakage for a stored 1 in the DRAM cell [31].
Sub-threshold Leakage (2), which is the drain-source leakage of the cell
transistor when it is in the OFF state. This current depends on various factors
such as negative wordline voltage, bulk voltage, etc. When the bitlines are in
precharged state (Vpp/2) this can slightly charge the cell capacitor and therefore
cause the degradation of a 0 stored in the cell. It can also degrade a 1 stored in
the cell by discharging to the bitline, but the leakage will be very small due to the
increased threshold voltage of the access transistor when a 1 is stored (body-bias
effect).

Cell Capacitor Leakage (3), which is the leakage through the cell capacitor
dielectric. With the technology scaling, also the capacitor area is decreasing.
Therefore, to maintain the cell capacitance at the previous value, dielectric
thickness has to be reduced, which increases the leakage. The use of new metal
insulator metal (MIM) structure with high-k dielectric materials has helped to
reduce this leakage. Capacitor leakage influences both stored 0’s and stored 1’s.

In order to avoid data corruption by retention errors due to leakage, the refresh

frequency needs to be increased. The general rule of thumb is to double the refresh



30 M. Jung et al.

rate for every 10 °C increase over 85 °C [20]. For example, the refresh period must
be decreased from 64 ms to 4-8 ms for 125 °C, which leads to a serious collapse of
the sustainable bandwidth [16].

This situation is even worse for today’s 3D stacked DRAM systems (e.g., Wide
I/0, HBM, HMC, etc.), which aggravate the thermal crisis: i.e., these DRAMs
are even more sensitive to temperature changes because of the stacked thin dies.
Additionally, when aiming for highest bandwidths with HBM or HMC, these
devices will consume, as mentioned before, a significant amount of power on a
small area compared to their commodity counterparts. Thus, the self-heating of 3D-
DRAMs is even more accelerated. Besides the leakage currents, crosstalk on bitlines
and wordlines can also disturb the data stored in the cells or disturb their sensing.
Due to the aforementioned effects and shrinking technology nodes, reliability is a
major concern in DRAMSs. Many techniques exist to improve the reliability, e.g.,
using error correcting codes (ECC) and/or spatial redundancy.

Approximate and probabilistic computing evolved as design paradigms that
exploit the error resilience of applications to increase their performance and
decrease the power consumption [10]. This paradigm can be extended to DRAMs
resulting in approximate DRAMs (ADRAM) that enable a trade-off between energy
efficiency, performance, and reliability. The inherent error resilience of applications
allows sacrificing data storage robustness and stability by lowering the refresh rate
or disabling refresh in DRAMs completely, as shown in Fig. 3.9. However, to apply
ADRAM the statistical DRAM behavior with respect to retention time, process
variation, and temperature has to be characterized.

Several studies for the usage of ADRAM are presented in [13-15, 20]. One
scenario is safe refresh disabling, i.e., if the data lifetime is smaller than the refresh
period, the refresh can be completely switched off without impact on the system

Standard
Refresh Period Data Life time

G

Working Point T Application
Robustnes

Cumulative Failure Probability (log)

(e.g. 64ms) Retention Time (log)

Fig. 3.9 Approximate DRAM design space



3 The Dynamic Random Access Memory Challenge in Embedded Computing. . . 31

System Behaviour [18] Power Estimation [6]

DRAMSys g DRAMPower
cem>

R g i? Power and
Reliability Performance

ndu|
JUBWINSEIA

Input

Retention 3%D
Error Model 12

Thermal Simulation [38]

Measurement

Fig. 3.10 Simulation framework for approximate DRAM explorations

behavior. To perform an accurate characterization we measured state-of-the-art
DRAM devices, such as DDR3, DDR4, and Wide I/O. These measurements were
the base for a simulation platform for ADRAM investigations.

Exploring ADRAM in a system context is challenging, since a trade-off between
accuracy and simulation performance must be considered. Our framework relies
on SystemC Transaction Level Models (TLM) for fast and accurate simulation.
Figure 3.10 shows the closed loop simulation. This simulation loop consists of (1)
DRAM and gem5 Core Models [5, 18], (2) a DRAM power model [6, 29], which
uses either parameters from datasheets, or real measurements [13, 15], (3) a thermal
model based on 3D-ICE [38], and (4) a DRAM retention error model [42].

As mentioned before, ECC is an efficient technique to improve DRAM’s
reliability, e.g., retention errors or errors induced by crosstalk. State-of-the-art ECC
DDR DIMMs, for instance, consist of 8 DRAM devices and a further device for
storing the ECC redundancy. Moreover, vendors recently introduced on-die ECC
for LPDDR4 [24, 26] to correct retention errors. With ECC the refresh rate can
be lowered by 4x, which largely reduces the power consumption. Finding an
efficient ECC is a non-trivial task. Traditional ECC techniques for DRAMs assume
a symmetric behavior of the retention errors, i.e., the error probability for a stored 0
and 1 is identical. In [22] and [23] we presented a more accurate error model for the
retention behavior that exploits the internal cell structure (the so-called true- or anti-
cells) of a DRAM. This model is asymmetric and we could show that the channel
capacity according to Shannon’s capacity definition (the memory cell is considered
as a noisy channel) of a single memory cell is larger than in the traditional commonly
used symmetrical model. Hence, a more efficient coding must exist. In [23] we
presented a new and low-overhead coding scheme that improves the reliability with
respect to retention errors.



32 M. Jung et al.
3.5 Safety and Security

Since DRAMs are more and more used in safety-critical applications like automo-
tive, safety and security are major concerns for DRAMs that were originally mainly
developed for consumer applications. Apart from the temperature based retention
errors discussed in Sect. 3.4, DRAMs are also prone to transient soft errors, i.e.,
effects of cosmic particle strikes [9]. Moreover, due to the high frequency of DRAM
interfaces transient transmission errors on the DRAM bus can occur. Furthermore,
there can be hard errors related to stuck at failures or aging, which could result in
a defect column decoder. There exists only a limited amount of studies on DRAM
error rates in the field since manufacturers and data centers are very careful to share
this sensitive information [30, 36, 41]. Sridharan et al. report 20-66 FIT for a single
DRAM device [39, 40]. This highlights the need for appropriate safety mechanisms
in order to decrease the FIT rates. For example, the memory controller contains
an additional logic that tests the interface periodically in order to detect errors or
a strong ECC that is able to correct errors online in order to guarantee functional
safety.

Apart from random failures, malicious causes can lead to a safety goal violation,
too. Because of transitions to open environments for [oT or Car2X communication
the vulnerability of DRAMs for embedded systems must be considered. As DRAM
process technology scales down, the electrical interference between the memory
cells increases, which leads to disturbance errors. Recently, the row-hammer prob-
lem [21, 32] and its exploits [25, 37] have caused a lot of attention in research and
newspapers. By repeatedly opening and closing a DRAM row, called hammering,
bits in adjacent rows can flip. This effect can be exploited to write on memory
locations with prohibited access rights to, e.g., gain kernel privileges or escape a
sandbox or hypervisor. In [25] the author showed that secret data can be read with a
combination of row-hammer and data dependencies [23]. The row-hammer security
attack [21] is a potential malicious behavior that has to be avoided. Controller
triggered techniques like target row refresh where rows will be refreshed when their
activation count exceeds a threshold or techniques on the device level like [2, 44] can
alleviate this problem. In [17] a methodology for reverse engineering DRAMs by
reconstructing the physical location of memory cells without opening the device
package and microscoping the device was presented. This method consists of a
retention error analysis while a temperature gradient is applied to the DRAM device.
With this insight into the internal DRAM structure row-hammer countermeasure
techniques can be improved.

3.6 Conclusion

Emerging applications executed on embedded computing systems require ever
increasing main memory sizes. Thus, DRAMs are indispensable to be integrated
in such systems. However, the use of DRAMs implies many new challenges.



3 The Dynamic Random Access Memory Challenge in Embedded Computing. . . 33

In this chapter, we highlighted some of the major challenges for the integration
of DRAM subsystems into embedded computing systems. These challenges are
namely: bandwidth, latency, power, temperature, reliability, safety, and security.
Furthermore, we showed several solutions from our recent research activities in
order to tackle and overcome these challenges.

References

1.

10.

11.

12.

13.

A. Agrawal, G. Fohler, DRAM-related challenges in task scheduling with timing predictability
on COTS multi-cores for safety-critical Systems, in Proceedings of the International Sympo-
sium on Memory Systems, MEMSYS ’17 (ACM, New York, 2017), pp. 265-267. https://doi.
org/10.1145/3132402.3132417

. A. Amaya, H. Gomez, E. Roa, Mitigating Row Hammer attacks based on dummy cells in

DRAM, in 2017 IEEE International Conference on Consumer Electronics (ICCE) (2017), pp.
442-443. https://doi.org/10.1109/ICCE.2017.7889389

. I. Bhati, M.T. Chang, Z. Chishti, S.L. Lu, B. Jacob, DRAM refresh mechanisms, trade-offs, and

penalties. IEEE Trans. Comput. PP(99), 1 (2015). https://doi.org/10.1109/TC.2015.2417540

. I. Bhati, M.T. Chang, Z. Chishti, S.L. Lu, B. Jacob, DRAM refresh mechanisms, penalties,

and trade-offs. IEEE Trans. Comput. 65(1), 108—121 (2016). https://doi.org/10.1109/TC.2015.
2417540

. N. Binkert, B. Beckmann, G. Black, S.K. Reinhardt, A. Saidi, A. Basu, J. Hestness, D.R.

Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M.D. Hill, D.A.
Wood, The gem5 simulator. SIGARCH Comput. Archit. News 39(2), 1-7 (2011). https://doi.
org/10.1145/2024716.2024718

. K. Chandrasekar, C. Weis, Y. Li, B. Akesson, O. Naji, M. Jung, N. Wehn, K. Goossens,

DRAMPower: open-source DRAM power and energy estimation tool (2014). http://www.
drampower.info

. E. Cooper-Balis, P. Rosenfeld, B. Jacob, Buffer-on-board memory systems, in 2012 39th

Annual International Symposium on Computer Architecture (ISCA) (2012), pp. 392-403.
https://doi.org/10.1109/ISCA.2012.6237034

. S. Goossens, K. Chandrasekar, B. Akesson, K. Goossens, Memory controllers for mixed-

time-criticality systems: architectures, methodologies and trade-offs, in Embedded Systems
(Springer, Berlin, 2016). https://books.google.de/books?id=19_7CwAAQBAJ

. M. Greenberg, Understanding automotive DDR DRAM (2017). https://www.synopsys.com/

designware-ip/technical-bulletin/automotive-ddr-dram.html

J. Han, M. Orshansky, Approximate computing: an emerging paradigm for energy-efficient
design, in 2013 18th IEEE European Test Symposium (ETS) (2013), pp. 1-6. https://doi.org/
10.1109/ETS.2013.6569370

Y. Hara, H. Tomiyama, S. Honda, H. Takada, Proposal and quantitative analysis of the
CHStone benchmark program suite for practical c-based high-level synthesis. J. Inf. Process.
17, 242-254 (2009). https://doi.org/10.2197/ipsjjip.17.242

M. Jung, I. Heinrich, M. Natale, D.M. Mathew, C. Weis, S. Krumke, N. Wehn, ConGen:
an application specific dram memory controller generator, in Proceedings of the Second
International Symposium on Memory Systems, MEMSYS ’16 (ACM, New York, 2016), pp.
257-267. https://doi.org/10.1145/2989081.2989131

M. Jung, D. Mathew, C. Rheinlédnder, C. Weis, N. Wehn, A platform to analyze DDR3 DRAM’s
power and retention time. IEEE Design Test 34(4), 52-59 (2017). https://doi.org/10.1109/
MDAT.2017.2705144


https://doi.org/10.1145/3132402.3132417
https://doi.org/10.1145/3132402.3132417
https://doi.org/10.1109/ICCE.2017.7889389
https://doi.org/10.1109/TC.2015.2417540
https://doi.org/10.1109/TC.2015.2417540
https://doi.org/10.1109/TC.2015.2417540
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2024716.2024718
http://www.drampower.info
http://www.drampower.info
https://doi.org/10.1109/ISCA.2012.6237034
https://books.google.de/books?id=l9_7CwAAQBAJ
https://www.synopsys.com/designware-ip/technical-bulletin/automotive-ddr-dram.html
https://www.synopsys.com/designware-ip/technical-bulletin/automotive-ddr-dram.html
https://doi.org/10.1109/ETS.2013.6569370
https://doi.org/10.1109/ETS.2013.6569370
https://doi.org/10.2197/ipsjjip.17.242
https://doi.org/10.1145/2989081.2989131
https://doi.org/10.1109/MDAT.2017.2705144
https://doi.org/10.1109/MDAT.2017.2705144

34

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

M. Jung et al.

M. Jung, D. Mathew, C. Weis, N. Wehn, Approximate computing with partially unreliable
dynamic random access memory—approximate DRAM, in Proceedings of the 53rd Annual
Design Automation Conference, DAC '16 (ACM, New York, 2016), pp. 100:1-100:4. https://
doi.org/10.1145/2897937.2905002

M. Jung, D.M. Mathew, C. Weis, N. Wehn, Efficient reliability management in SoCs—an
approximate DRAM perspective, in 21st Asia and South Pacific Design Automation Conference
(ASP-DAC) (2016)

M. Jung, S.A. McKee, C. Sudarshan, C. Dropmann, C. Weis, N. Wehn, Driving into the
memory wall: the role of memory for advanced driver assistance systems and autonomous
driving, in Proceedings of the International Symposium on Memory Systems, MEMSYS ’18
(ACM, New York, 2018), pp. 377-386. https://doi.org/10.1145/3240302.3240322

M. Jung, C. Rheinldnder, C. Weis, N. Wehn, Reverse engineering of DRAMs: Row Hammer
with Crosshair, in International Symposium on Memory Systems (MEMSYS 2016) (2016)

M. Jung, C. Weis, N. Wehn, DRAMSys: a flexible DRAM subsystem design space exploration
framework. IPSJ Trans. Syst. LSI Design Methodol. 8, 63-74 (2015). https://doi.org/10.2197/
ipsjtsldm.8.63

M. Jung, C. Weis, N. Wehn, M. Sadri, L. Benini, Optimized active and power-down mode
refresh control in 3D-DRAMs, in Proceedings of the 2014 22nd International Conference on
Very Large Scale Integration (VLSI-SoC) (2014), pp. 1-6. https://doi.org/10.1109/VLSI-SoC.
2014.7004159

M. Jung, E. Zulian, D. Mathew, M. Herrmann, C. Brugger, C. Weis, N. Wehn, Omitting
refresh—a case study for commodity and wide I/O DRAMs, in Proceedings of the Ist
International Symposium on Memory Systems (MEMSYS 2015) (Washington, 2015)

Y. Kim, R. Daly, J.H. Kim, C. Fallin, J.H. Lee, D. Lee, C. Wilkerson, K. Lai, O. Mutlu, Flipping
bits in memory without accessing them: an experimental study of DRAM disturbance errors,
in ACM/IEEE 41st International Symposium on Computer Architecture (ISCA) (2014), pp.
361-372. https://doi.org/10.1109/ISCA.2014.6853210

K. Kraft, M. Jung, C. Sudarshan, D.M. Mathew, C. Weis, N. Wehn, Improving the error
behavior of DRAM by exploiting its Z-channel property, in [EEE Conference Design,
Automation and Test in Europe (DATE) (2018)

K. Kraft, D.M. Mathew, C. Sudarshan, M. Jung, C. Weis, N. Wehn, F. Longnos, Efficient
coding scheme for DDR4 memory subsystems, in ACM International Symposium on Memory
Systems (MEMSYS 2018) (2018)

H.J. Kwon, E. Seo, C.Y. Lee, Y.H. Seo, G.H. Han, H.R. Kim, J.H. Lee, M.S. Jang, S.G. Do,
S.H. Cho, J.K. Park, S.Y. Doo, J.B. Shin, S.H. Jung, H.J. Kim, .LH. Im, B.R. Cho, J.W. Lee, J.Y.
Lee, K.H. Yu, HK. Kim, C.H. Jeon, H.S. Park, S.S. Kim, S.H. Lee, J.W. Park, S.S. Lee, B.T.
Lim, J. Park, Y.S. Park, H.J. Kwon, S.J. Bae, J.H. Choi, K.I. Park, S.J. Jang, G.Y. Jin, 23.4 an
extremely low-standby-power 3.733Gb/s/pin 2Gb LPDDR4 SDRAM for wearable devices, in
2017 IEEE International Solid-State Circuits Conference (ISSCC) (2017), pp. 394-395. https://
doi.org/10.1109/ISSCC.2017.7870427

A. Kwong, D. Genkin, D. Gruss, Y. Yarom, RAMBIleed: reading bits in memory without
accessing them, in Proceedings of the 41st Annual IEEE Symposium on Security and Privacy
(2020)

C.K. Lee, Y.J. Eom, J.H. Park, J. Lee, H.R. Kim, K. Kim, Y. Choi, H.J. Chang, J. Kim, J.M.
Bang, S. Shin, H. Park, S. Park, Y.R. Choi, H. Lee, K.H. Jeon, J.Y. Lee, H.J. Ahn, K.H. Kim,
J.S. Kim, S. Chang, H.R. Hwang, D. Kim, Y.H. Yoon, S.H. Hyun, J.Y. Park, Y.G. Song, Y.S.
Park, H.J. Kwon, S.J. Bae, T.Y. Oh, I.D. Song, Y.C. Bae, J.H. Choi, K.I. Park, S.J. Jang,
G.Y. Jin, 23.2 a 5Gb/s/pin 8Gb LPDDR4X SDRAM with power-isolated LVSTL and split-die
architecture with 2-die ZQ calibration scheme, in 2017 IEEE International Solid-State Circuits
Conference (ISSCC) (2017), pp. 390-391. https://doi.org/10.1109/ISSCC.2017.7870425

J. Liu, B. Jaiyen, R. Veras, O. Mutlu, RAIDR: retention-aware intelligent DRAM refresh, in
Proceedings of the 39th Annual International Symposium on Computer Architecture, ISCA
’12 (IEEE Computer Society, Washington, 2012), pp. 1-12. http://dl.acm.org/citation.cfm?id=
2337159.2337161


https://doi.org/10.1145/2897937.2905002
https://doi.org/10.1145/2897937.2905002
https://doi.org/10.1145/3240302.3240322
https://doi.org/10.2197/ipsjtsldm.8.63
https://doi.org/10.2197/ipsjtsldm.8.63
https://doi.org/10.1109/VLSI-SoC.2014.7004159
https://doi.org/10.1109/VLSI-SoC.2014.7004159
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/ISSCC.2017.7870427
https://doi.org/10.1109/ISSCC.2017.7870427
https://doi.org/10.1109/ISSCC.2017.7870425
http://dl.acm.org/citation.cfm?id=2337159.2337161
http://dl.acm.org/citation.cfm?id=2337159.2337161

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

The Dynamic Random Access Memory Challenge in Embedded Computing. . . 35

D.M. Mathew, d.F. Zulian, M. Jung, K. Kraft, C. Weis, B. Jacob, N. Wehn, Using run-
time reverse-engineering to optimize DRAM refresh, in International Symposium on Memory
Systems (MEMSYS17) (2017)

D.M. Mathew, E.F. Zulian, S. Kannoth, M. Jung, C. Weis, N. Wehn, A Bank-Wise DRAM
power model for system simulations, in Proceedings of the 9th Workshop on Rapid Simulation
and Performance Evaluation: Methods and Tools, RAPIDO ’17 (ACM, New York, 2017), pp.
5:1-5:7. https://doi.org/10.1145/3023973.3023978

J. Meza, Q. Wu, S. Kumar, O. Mutlu, Revisiting memory errors in large-scale production
data centers: analysis and modeling of new trends from the field, in IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN) (2015)

N.J. Min Hee Cho, An innovative indicator to evaluate DRAM cell transistor leakage current
distribution. J. Electron Devices Soc. 6, 494—499 (2017)

O. Mutlu, The Row—Hammer problem and other issues we may face as memory becomes
denser, in Design, Automation Test in Europe Conference Exhibition (DATE), 2017, pp.
1116-1121 (2017). https://doi.org/10.23919/DATE.2017.7927156

D.A. Patterson, Latency lags bandwith. Commun. ACM 47(10), 71-75 (2004). https://doi.org/
10.1145/1022594.1022596

T. Schloesser, 6F% buried wordline DRAM cell for 40 nm and beyond, in /EEE International
Electron Devices Meeting (San Francisco, 2008)

D. Schmidt, N. Wehn, DRAM power management and energy consumption: a critical
assessment, in Proceedings of the 22nd Annual Symposium on Integrated Circuits and System
Design (Natal, 2009)

B. Schroeder, E. Pinheiro, W.D. Weber, DRAM errors in the wild: a large-scale field study.
ACM SIGMETRICS Perform. Eval. Rev. 37(1), 193-204 (2009)

M. Seaborn, T. Dullien, Exploiting the DRAM Row-Hammer bug to gain kernel privi-
leges (2015). http://googleprojectzero.blogspot.de/2015/03/exploiting-dram-rowhammer-bug-
to-gain.html

A. Sridhar, A. Vincenzi, M. Ruggiero, T. Brunschwiler, D. Atienza, 3D-ICE: fast compact
transient thermal modeling for 3D ICs with inter-tier liquid cooling, in 2010 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD) (2010)

V. Sridharan, N. DeBardeleben, S. Blanchard, K.B. Ferreira, J. Stearley, J. Shalf, S. Guru-
murthi, Memory errors in modern systems: the good, the bad, and the ugly. SIGARCH Comput.
Archit. News 43(1), 297-310 (2015). https://doi.org/10.1145/2786763.2694348

V. Sridharan, D. Liberty, A study of DRAM failures in the field, in 2012 International
Conference on High Performance Computing, Networking, Storage and Analysis (SC) (2012),
pp- 1-11. https://doi.org/10.1109/SC.2012.13

I. Stefanovici, A. Hwang, B. Schroeder, DRAM’s Damning defects—and how they cripple
computers. IEEE Spectrum (2015)

C. Weis, M. Jung, P. Ehses, C. Santos, P. Vivet, S. Goossens, M. Koedam, N. Wehn, Retention
time measurements and modelling of bit error rates of WIDE 1/0 DRAM in MPSoCs, in
Proceedings of the IEEE Conference on Design, Automation and Test in Europe (DATE)
(European Design and Automation Association, 2015)

W.A. Wulf, S.A. McKee, Hitting the memory wall: implications of the obvious. SIGARCH
Comput. Archit. News (1995). https://doi.org/10.1145/216585.216588

C.M. Yang, C.K. Wei, Y.J. Chang, T.C. Wu, H.P. Chen, C.S. Lai, Suppression of Row Hammer
effect by doping profile modification in Saddle-Fin array devices for sub-30-nm DRAM
technology. IEEE Trans. Device Mater. Reliab. 16(4), 685-687 (2016). https://doi.org/10.1109/
TDMR.2016.2607174


https://doi.org/10.1145/3023973.3023978
https://doi.org/10.23919/DATE.2017.7927156
https://doi.org/10.1145/1022594.1022596
https://doi.org/10.1145/1022594.1022596
http://googleprojectzero.blogspot.de/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.de/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://doi.org/10.1145/2786763.2694348
https://doi.org/10.1109/SC.2012.13
https://doi.org/10.1145/216585.216588
https://doi.org/10.1109/TDMR.2016.2607174
https://doi.org/10.1109/TDMR.2016.2607174

36 M. Jung et al.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.


http://creativecommons.org/licenses/by/4.0/

	3 The Dynamic Random Access Memory Challenge in Embedded Computing Systems
	3.1 Introduction
	3.2 Bandwidth and Latency
	3.3 Power Consumption
	3.4 Temperature vs. Reliability
	3.5 Safety and Security
	3.6 Conclusion
	References


