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Abstract We present a numerical two-scale simulation approach of the Nakajima
test for dual-phase steel using the software package FE2TI, a highly scalable
implementation of the well known homogenization method FE2. We consider the
incorporation of contact constraints using the penalty method as well as the sample
sheet geometries and adequate boundary conditions. Additional software features
such as a simple load step strategy and prediction of an initial value by linear
extrapolation are introduced.

The macroscopic material behavior of dual-phase steel strongly depends on its
microstructure and has to be incorporated for an accurate solution. For a reasonable
computational effort, the concept of statistically similar representative volume
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elements (SSRVEs) is presented. Furthermore, the highly scalable nonlinear domain
decomposition methods NL-FETI-DP and nonlinear BDDC are introduced and
weak scaling results are shown. These methods can be used, e.g., for the solution of
the microscopic problems. Additionally, some remarks on sparse direct solvers are
given, especially to PARDISO. Finally, we come up with a computationally derived
Forming Limit Curve (FLC).

1 Introduction

In the EXASTEEL project, we are solving challenging nonlinear multiscale prob-
lems from computational material science showing parallel scalability beyond a
million parallel processes. Our software package FE2TI solves large scale contact
problems in sheet metal forming of microheterogeneous materials and scales
to some of the largest supercomputers available today. Although an exascale
computer is not yet available, FE2TI is exascale ready: For our current production
simulations, we have not pushed the combined parallelism of the FE2 multiscale
computational homogenization method and of our nonlinear solvers to the limit.
Both, i.e., the FE2 method by itself, as well as our nonlinear solvers are scalable
to the largest supercomputers currently in production in the leading international
computing facilities.1

In particular, as a problem, we consider the finite element simulation of sheet
metal forming processes of dual-phase (DP) steels, whose macroscopic material
behavior strongly depends on its microscopic material properties. A brute force
discretization with respect to the microscopic structure would lead to extremely
large systems of equations, which are not feasible, even on the upcoming exascale
supercomputers. To give an example, a reasonable finite element discretization
down to the microscopic scale would require 103–109 finite elements for a three
dimensional cube with a volume of 1 μm3. Extrapolating this to a sheet with an
area of 1 m2 and a thickness of 1 mm would lead to 1018–1024 finite elements. A
brute force simulation would also require knowledge of the complete microstructure
of the steel sheet which is not available. Therefore, an efficient multiscale or
homogenization approach is indispensable to save 3 to 6 orders of magnitude of

1In 2011, the overall scientific goal of the German DFG priority program SPP 1648 “Software
for Exascale Computing” (SPPEXA) was stated as “to master the various challenges related
to [. . . ] [the] paradigm shift from sequential or just moderately parallel to massively parallel
processing” and thereby to “advance the frontier of parallel computing” [4]. From the beginning,
SPPEXA aimed at a true co-design, i.e., closely connecting “computer science with the needs of
Computational Science and Engineering (CSE) and HPC” [4]. The project EXASTEEL addresses
three of the main SPPEXA research areas, namely computational algorithms, application software,
and programming, i.e., we have, e.g., introduced new nonlinear solver algorithms, implemented
our multiscale application software FE2TI, and applied hybrid programming and performance
engineering to our codes. This work was only possible in close collaboration of mathematics,
computer science, and engineering.
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unknowns. Our choice of a computational homogenization approach is the FE2

method which is well established in engineering; see Sect. 3 for a short introduction
and further references. In the FE2 method, the microscopic and macroscopic
level are discretized independently of each other. No material laws are needed
for the macroscopic level, all information needed is obtained from microscopic
computations based on material laws and data on the microscopic level. Let us
note that the microscopic problems can be solved in parallel once the solution of
the macroscopic problem is available as input. The solution of the macroscopic
problem, however, requires the information of all microscopic solutions. Thus,
the FE2 method is not trivially parallelizable but requires a sequential solution
of the microscopic and the macroscopic problems; this is similar to the coarse
level of a hybrid two-level domain decomposition method with multiplicative
coarse level and additive subdomain solvers. The nonlinear problems on both
levels, the macroscopic and the microscopic one, can be solved (after linearization)
using highly parallel scalable and robust implicit solvers such as parallel algebraic
multigrid methods (AMG) or parallel domain decomposition preconditioners such
as FETI-DP (Finite Element Tearing and Interconnecting-Dual-Primal) [27, 28, 47–
50] or BDDC (Balancing Domain Decomposition by Constraints) [20, 24, 71–73]
methods. These preconditioners are usually applied as part of a Newton-Krylov
approach, where the tangent problem in each Newton iteration is solved using
preconditioned Krylov iteration methods. A more recent approach to nonlinear
implicit problems, developed extensively within EXASTEEL, is given by non-
linear parallel domain decomposition methods, which are applied directly to
the nonlinear problem, i.e., before linearization. In such methods, the nonlinear
problem is first decomposed into concurrent nonlinear problems, which are
then solved by (decoupled) Newton’s methods in parallel. In this project,
nonlinear FETI-DP and nonlinear BDDC domain decomposition methods (see
also Sect. 6) have been introduced and have successfully scaled to the largest
supercomputers available—independently of the multiscale context given by the
FE2 homogenization methods, which adds an additional level of parallelism. It was
found that the nonlinear domain decomposition methods can reduce communication
and synchronization and thus time to solution. They can, however, also reduce
the energy to solution; see Sect. 6.1.1 and [63]. These methods can be applied
within our highly scalable software package FE2TI but can also be used for all
problems where implicit nonlinear solvers are needed on extreme scale computers.
For scaling results of the FE2 method to more than one million MPI ranks, see
Fig. 3 in Sect. 3.2 and [64]. Note that these scaling results can be obtained only using
additional parallelization on the macroscopic level. Note also that our new nonlinear
implicit solvers based on nonlinear FETI-DP have scaled to the complete Mira
supercomputer, i.e., 7,58,000 MPI ranks (see Fig. 15 and [57]); on the JUQUEEN
supercomputer [44] (see [60]) our solver based on nonlinear BDDC has scaled to
2,62,000 MPI ranks for a 3D structural mechanics problem as well as 5,24,000
MPI ranks for a 2D problem. In the present article, the software package is used
to derive a virtual forming limit diagram (FLD) by simulating the Nakajima test,
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a standard procedure for the derivation of FLDs. An FLD contains a Cartesian
coordinate system with major and minor strain values and a regression function
of these values, which is called forming limit curve (FLC). An FLC gives the extent
to which the material can be deformed by stretching, drawing or any combination
of stretching and drawing without failing [77, p. v].

The software and algorithms developed here have participated in scaling work-
shops at the Jülich Supercomputing Centre, Forschungszentrum Jülich, Germany
(see the reports [53, 58]), as well as at the Argonne Leadership Computing Facility
(ALCF), Argonne National Laboratory, USA. They have scaled on the following
world-leading supercomputers in Europe, the United States, and Asia (TOP500 rank
given for the time of use):

• JUQUEEN at the Jülich Supercomputing Centre, Germany; European Tier 0;
TOP500 rank 9 in the year 2015 (458,752 cores; 5.8 petaflops); FE2TI and FETI-
DP have scaled to the complete machine [53, 56–58, 64]; since 2015 FE2TI is a
member of the High-Q Club of the highest scaling codes on JUQUEEN [53].

• JUWELS at Jülich Supercomputing Centre, Germany; European Tier 0; TOP500
rank 23 in the year 2018 (114,480 cores; 9.8 petaflops); main source of compute
time for the computation of an FLD; see Sect. 5

• Mira at Argonne Leadership Computing Facility (ALCF), Argonne National
Laboratory (ANL), USA; TOP500 rank 5 in the year 2015 (786,432 cores;
10.1 petaflops); FE2TI and nonlinear FETI-DP have scaled to the complete
machine [54, 57]

• Theta at ALCF, USA; TOP500 rank 18 in the year 2017 (280,320 cores; 9.6
petaflops); is ANL’s bridge to the upcoming first US exascale machine AURORA
(or AURORA21) scheduled for 2021; BDDC domain decomposition solver has
scaled to 193,600 cores [60] and recently to 262,144 cores

• Oakforest-PACS at Joint Center for Advanced High Performance Computing,
Japan; TOP500 rank 6 in the year 2016 (556,104 cores; 24.9 petaflops); first deep
drawing computations using FE2TI

The remainder of the article is organized as follows. In Sect. 2, we introduce
the experimental test setup of the Nakajima test and the evaluation strategy of
major and minor strain values described in DIN EN ISO 12004-2:2008 [77]. In
Sect. 3, we briefly describe the ingredients of our highly scalable software package
FE2TI, including the computational homogenization method FE2 and the contact
formulation which is integrated into the software package FE2TI since the sheet
metal deformation in the Nakajima test is caused by contact. We also present
some strategies to reduce computing time. In Sect. 4, we describe the numerical
realization of the Nakajima test. Then, in Sect. 5, we present numerical results of
several in silico Nakajima simulations with different specimens resulting in a virtual
FLC. In Sect. 6, we give an overview over our highly scalable linear and nonlinear
implicit solvers, including nonlinear FETI-DP and nonlinear BDDC. These methods
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can be used to solve all nonlinear problems occurring in FE2TI, as shown, e.g.,
in [64]. In Sect. 7, performance engineering aspects regarding the sparse direct
solver package PARDISO [81] are discussed. The PARDISO sparse direct solver is a
central building block in our implicit solvers and in FE2TI. In Sect. 8, we introduce
different improvements on the microscopic material model to even better match
some experimental results.

2 Nakajima Test

Stricter CO2 emission regulations in combination with higher passenger safety
norms in the automotive industry requires steel grades with higher toughness and
less weight. The class of DP steels belongs to the advanced high-strength steels and
combines strength and ductility. Its favorable macroscopic properties result from
the microscopic heterogeneous structure; see the beginning of Sect. 8 for further
remarks.

To demonstrate the macroscopic material behavior of a specific steel grade,
different material parameters and forming behaviors have to be proven. A prominent
member of material characterization is the forming limit diagram (FLD). It contains
major and minor strain values at failure initiation in a Cartesian coordinate system
and represents the forming limits of a steel grade for one specific material thickness.
In this context, material failure is already associated with the beginning of local
necking in the direction of thickness and not only with crack formation [77, p. v].
The major and minor strain values vary from uniaxial to equi-biaxial tension.

The Nakajima test is a standard procedure in material testing. In the Nakajima
test, a specimen is clamped between a blank holder and a die and a hemispherical
punch is driven into the specimen until a crack can be observed; see Fig. 1 (left).
Friction between the forming tool and the specimen has to be avoided as much
as possible. Therefore, different lubrication systems can be applied; see [77, Ch.
4.3.3.3]. To get different pairs of major and minor strains, one has to use at least five
different shapes of sample geometries and for each shape, one has to carry out three
different valid tests [77]. The recommended shapes of the sample sheet geometries
are described in [77, Ch. 4.1.2], see also Sect. 4.1 and Fig. 1 (right) for an example
of a permissible sample sheet. In experiments, the surface of a specimen is equipped
with a regular grid or a stochastic pattern and is recorded by one or more cameras
during the deformation process.

There are at least two different strategies to get the pair of major and minor strains
for the FLC, namely the cross section method [77] and a method based on thinning
rates proposed by W. Volk and P. Hora [97]. Since the FLC gives information about
material deformation without failing, we are interested in major and minor strains
just before localized necking occurs.
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Fig. 1 Left: Cross section of the initial test setup of the Nakajima test. Right: Dimensions of a
specimen used for the simulation of the Nakajima test with a shaft length of 25 mm and a parallel
shaft width of 90 mm. The inner (red) circle represents the inner wall of the die and the outer
(green) circle represents the beginning of the clamped part between die and blank holder. Material
outside the outer (green) circle is only considered for a width of the parallel shaft of 90 mm or
more (dark grey)

In the method based on thinning rates, the last recorded image before localized
necking occurs is explicitly determined. This specific image is used to derive major
and minor strains for the FLC.

The cross section method is standardized in DIN EN ISO 12004-2:2008 [77]. It
uses knowledge about the position of the crack and evaluates major and minor strain
values in the last recorded image before crack along cross sections perpendicular to
the crack. Then, from these values, the state immediately before material failure is
interpolated. Cross sections have a length of at least 20 mm at both sides of the crack.
One cross section cuts exactly through the center of the crack and one or two cross
sections are positioned above and below with a distance of about 2 mm. For each
cross section, we want to compute a pair of major and minor strains εFLC

1 and εFLC
2 ,

which represent the major and minor strains just before the beginning of plastic
instability.2 Therefore, we have to fit an inverse second-order polynomial using a
least squares fit; see Figs. 2 and 8 (bottom). Instead of fitting inverse second-order
polynomials to the values along the cross sections we fit second order polynomials
to the inverse of the values. For the least squares fit we have to determine optimal
fit windows for both sides of the crack separately; see Figs. 2 and 8 (bottom). For
a detailed description of the procedure we refer to [77]. Let us note that εFLC

1 and
εFLC

2 in general never exist during the deformation process. Hence, these numbers
do not have a physical meaning [97].

2Note that here and in the following, all macroscopic variables and objects are denoted with an
overline to distinguish them from microscopic variables and objects.
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Fig. 2 Fitted inverse second-order polynomials to the major strain values along the first cross
section just before material failure. See also the description of the cross section method in Sect. 2.
Optimal fit windows are computed as described in [77, Ch. 5.2.3, 5.2.4]. Left: Specimen with a
width of the parallel shaft of 70 mm. Right: Full circular specimen

3 FE2TI: A Highly Scalable Implementation of the FE2

Algorithm

For the finite element simulation of the Nakajima test, we use our FE2TI software
package [9, 52, 57, 64], which is a C/C++ implementation of the FE2 computational
homogenization approach [29–31, 33, 70, 75, 86, 87, 91]. It is based on PETSc
[6] and MPI. The multiscale simulations based on FE2TI and using FETI-DP and
BoomerAMG as solvers are a “CSE Success Story” in SIAM Review [80, p. 736].

3.1 FE2 Algorithm

For DP steel, the overall macroscopic material behavior strongly depends on
its microscopic properties. Assuming that the macroscopic length scale L is
much larger than the length scale l representing the microscopic heterogeneities,
i.e., L � l, the scale separation assumption is satisfied and a scale bridging or
homogenization approach such as the FE2 method can be applied.

The idea of the FE2 approach is to discretize the micro- and macroscopic scale
separately using finite elements. The macroscopic domain is discretized without any
consideration of the microscopic material properties, i.e., the material is assumed to
be homogeneous from a macroscopic point of view. Additionally, a microscopic
boundary value problem is defined on a representative volume element (RVE)
which is assumed to represent the microscopic heterogeneities sufficiently. One
microscopic finite element problem is assigned to each macroscopic Gauß point
and the phenomenological law on the macroscopic level is replaced by volumetric
averages of stresses and associated consistent tangent moduli of the microscopic
solution. Note that the boundary values of the microscopic level are induced through
the macroscopic deformation gradient at the integration point the microscopic
problem is attached to.
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To derive an RVE representing a realistic microstructure, electron backscatter
diffraction is used; see [14]. Note that for DP steel the martensitic inclusions in
the ferrite are quite small and widely spread, which enforces a fine discretization to
incorporate the heterogeneities sufficiently. To overcome this problem, we make use
of so called statistically similar RVEs (SSRVEs) [8, 83], which are constructed in an
optimization process with only inclusions of simple geometry such as ellipsoids, but
describe the mechanical behavior in an approximate way. Note that the constructed
ellipsoids are simpler than the realistic microstructure and hence, the SSRVE can be
discretized with a coarser grid.

For further details such as the derivation of consistent tangent moduli we refer to
the literature [33, 87] and to earlier works on computational homogenization in the
EXASTEEL project [9, 52, 57, 64].

3.2 FE2TI Software Package

The FE2TI software package was developed within the EXASTEEL project and
has been successfully used for the simulation of tension tests of DP steel [9, 52, 57,
64]. It belongs to the highest scaling codes on the European Tier-0-supercomputer
JUQUEEN since 2015.3

For comparably small sizes of microscopic problems, we can solve the resulting
tangent problems with a sparse direct solver such as PARDISO [81], UMFPACK
[22], or MUMPS [2]. For larger sizes of microscopic problems, we have to use
efficient parallel solvers which are also robust for heterogeneous problems. Such
methods are Newton-Krylov methods with appropriate preconditioners such as
domain decomposition or (algebraic) multigrid or nonlinear domain decomposition
methods, possibly, combined with algebraic multigrid.

In our software package, Newton-Krylov-FETI-DP and the more recent highly
scalable nonlinear FETI-DP methods, which were developed in this project (see
[51, 54, 59] and Sect. 6.1), are integrated. Other nonlinear domain decomposition
approaches are the related Nonlinear FETI-1 or Neumann-Neumann approaches
[13, 78] or ASPIN [17, 18, 35–37, 40, 41, 66]. Furthermore, FE2TI can also use
the highly scalable algebraic multigrid implementation BoomerAMG [5, 38] from
the hypre package [25] for micro- as well as macroscopic problems. The scalability
of BoomerAMG was recently improved for problems in elasticity, and scalability
of BoomerAMG to half a million ranks was then achieved within the EXASTEEL
project [5] in close collaboration with the authors of BoomerAMG.

For the contact simulations presented here, we consider problem sizes for which
we can use the direct solver package PARDISO to solve the resulting tangent
problems on the microscopic as well as on the macroscopic level. This limits the

3https://www.fz-juelich.de/ias/jsc/EN/Expertise/High-Q-Club/FE2TI/_node.html and also https://
juser.fz-juelich.de/record/188191.

https://www.fz-juelich.de/ias/jsc/EN/Expertise/High-Q-Club/FE2TI/_node.html
https://juser.fz-juelich.de/record/188191
https://juser.fz-juelich.de/record/188191
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size of our problems but is suitable for mid-sized supercomputers. In our opinion,
this is a relevant criterion for the applicability in industry. Using our parallel
nonlinear solvers, the FE2TI package scales up to the largest machines even without
making use of the full scaling potential of the solvers (see Fig. 3); and for the
combination of large macroscopic problems with large RVEs an exascale computer
will be necessary in the future. While Fig. 3 (left) represents a weak scaling
study with large RVEs and comparably small macroscopic problems, in Fig. 3
(right) the macroscopic problems are larger. Therefore, in the latter case, a parallel
macroscopic solve using GMRES with an AMG preconditioner is beneficial. The
scalability in Fig. 3 (right) somewhat suffers from an increase in the numbers of
Newton iterations. Let us remark that the setup in Fig. 3 (right) is the setup of
a typical production run. The strong scaling potential of FE2TI is also presented
in Fig. 4; see [9] for details. For more scalability results on different architectures
also see [64].

Even if the macroscopic problem is solved with a direct solver, the assembly pro-
cess is parallelized. For the incorporation of a material law on the microscopic level
the software is equipped with an interface to FEAP, and we use an implementation
of a J2 elasto-plasticity model [65]. Material parameters are chosen as in Brands et
al. [14, Fig. 10].

Fig. 3 Weak scalability of the FE2TI software on the JUQUEEN supercomputer [44]. Left: Time
to solution of a single load step solving a three-dimensional heterogeneous hyperelastic model
problem; uses Q1 finite elements (macro) and P2 finite elements (micro); 1.6M d.o.f. on each RVE;
512 FETI-DP subdomains for each RVE; the macroscopic problem size grows proportionally to
the number of MPI ranks while the microscopic problem size is fixed; corresponding data in [57,
Tab. 2]; High-Q club computation in 2015. Right: Total time to solution for 13 load steps solving
3D heterogeneous plasticity; uses Q1 finite elements (macro) and P2 finite elements (micro); 200K
d.o.f. on each RVE; 64 FETI-DP subdomains for each RVE; the macroscopic problem is increased
proportionally to the number of MPI ranks; for the larger problems using parallel AMG for the
problem on the macroscale, instead of a sparse direct solver, is beneficial; see also [64, Fig. 15]
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Fig. 4 Strong scalability of the FE2TI software for a nonlinear elasticity problem. Macroscopic
problem with 32 finite elements; each RVE with 107K degrees of freedom is solved using 512
FETI-DP subdomains. Simulation of one macroscopic load step. Left: Total time to solution;
Right: Speedup. Figures from [9]

3.3 Contact Kinematics and Incorporation of Contact
Constraints for Frictionless Contact in FE2TI

For the simulation of the Nakajima test, we have to consider contact between
the deformable specimen B and different rigid tools Ti , i = 1, 2, 3, namely
the hemispherical punch, blank holder, and die; see Fig. 1 (left). Therefore, we
implemented a contact algorithm on the macroscopic scale in FE2TI. To simplify
the notation, we consider an arbitrary rigid tool T in the following.

A general convention in contact formulations is to consider one contact partner
as the master body and one contact partner as the slave body [68, 99].

Only points of the contact surface of the slave body are allowed to penetrate
into the master body. Following [68], one can choose the rigid surface as slave
surface as well as a master surface, and in [99, Rem. 4.2] it is recommended to
use the rigid surface as master surface; we have applied the latter in our simulations.
Nevertheless, the contact contributions to the stiffness matrix and the right-hand-
side are computed in the coordinate system of the deformable body.

In every iteration, we have to check for all finite element nodes xB ∈ �B of the
contact surface of B whether it penetrates into T or not; see Fig. 5 for a simplified
illustration. For each xB ∈ �B we have to determine the related minimum distance
point xmin

T := minxT∈�T
||xB − xT|| of the contact surface of T. Now, we can

formulate a non-penetration condition

gNP = (xB − xmin
T ) · nmin

T ≥ 0, xB ∈ �B. (1)

Alternatively, for all points xB ∈ �c := {
xB ∈ �B

∣∣ gNP < 0
}

which penetrate into
the master body, the amount of penetration can be computed by

gN = (xB − xmin
T ) · nmin

T , xB ∈ �c, (2)



EXASTEEL: Virtual Laboratory 361

gN = �xB − xmin
T � · nmin

T

xB

xmin
T

Rigid tool
surface �T

Sheet metal
surface �B

nmin
T

:= nT �xmin
T �

Point on the rigid tool
surface with minimal
distance to FE-node xB

FE-node with active
contact constraint

FE-node with inactive
contact constraint

Fig. 5 Illustration for the determination of active contact nodes and the amount of penetration

and is set to zero for all other points. Here, nmin
T is the outward normal of the rigid

tool at xmin
T ; see Fig. 5.

Since the contact partners of the sheet metal are assumed to be rigid, the tools
are not discretized by finite elements but the contact surfaces are characterized by
analytical functions. This also simplifies the computation of the related minimum
distance point and, hence, the computation of the outward normal direction as well
as of the amount of penetration. For a detailed description of contact between two
deformable bodies we refer to [99, Ch. 4.1].

As in standard finite element simulations of continuum mechanics problems, we
are interested in the minimization of an energy functional �̃, but under additional
consideration of an inequality constraint due to the non-penetration condition
(Eq. (1)). Constrained optimization can be performed, e.g., using the (quadratic)
penalty method, where an additional penalty term is added to the objective function
if the constraint is violated; see [76, Ch. 17]. Let us note that the incorporation of
contact constraints into a finite element formulation does not change the equations
describing the behavior of the bodies coming into contact [99].

There are several different strategies to incorporate contact constraints into
finite element formulations, where the penalty method and the Lagrange multiplier
method are the most prominent members; see [99, Ch. 6.3]. The penalty method
is the most widely used strategy to incorporate contact constraints into finite
element simulation software [99, Ch. 10.3.3] because the number of unknowns does
not increase. In comparison to the Lagrange multiplier method [99], the contact
constraints are only resolved approximately and a small penetration depending
on the choice of the penalty parameter εN > 0 is allowed. For εN → ∞, the
exact solution of the Lagrange multiplier method is reached, but for higher penalty
parameters εN , the resulting system of equations becomes ill-conditioned [99]. For
a suggestion of a choice of the penalty parameter εN , see [99, Remark 10.2].
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Using the penalty method, we have to add an additional term

�̃P =
∫

�c

1

2
· εN · g2

N dA

to the energy functional �̃ for all active contact nodes xB ∈ �c [99, Ch. 6.3].
The penalty parameter εN can be interpreted as the stiffness of a spring in the
contact interface; see [99, Ch. 2.1.3]. Let us note that the definition of an active
set is different from standard textbooks as [76, Def. 12.1], where points belong
to the active set if they fulfill equality of the inequality constraint. Other authors
like Konyukhov and Schweizerhof considered the Heaviside function to follow the
common definition of an active set; see, e.g., [67, 68]. Since the energy functional is
changed due to the contact constraints, also the resulting stiffness matrix and right-
hand-side are affected.

3.4 Algorithmic Improvements in FE2TI

In simulations making use of load stepping (or pseudo time stepping) as a global-
ization strategy, as is the case in FE2TI (see Sect. 4), the time to solution strongly
depends on the number of load steps as well as on the number of macroscopic
Newton iterations per load step. The required time of a single macroscopic Newton
step again depends on the time to solution of the microscopic problems.

While a large load step may seem desirable, it can lead to slow convergence
or even divergence; convergence can be forced by reducing the load step size thus
increasing the total number of load steps; this can be observed in Table 1. To adapt
the size of the load steps, we use a simple dynamic load step strategy; see Sect. 3.4.1.

Keeping the number of macroscopic Newton iterations as small as possible is
directly related to a good choice of the initial value of a single load step. For a
better prediction of the initial value, we use linear extrapolation; see Sect. 3.4.2.
This is especially relevant for our contact problems where quadratic convergence of
Newton’s method can be lost.

Table 1 First 2 mm displacement of the forming tool with constant load increments l of 3.125e−3
(first row) and 1.0e−1 (second row) for the specimen with a parallel shaft width of 50 mm; two
MPI ranks per core; computed on JUWELS [45]

Cov. dist. Load Newton ∅ Newton its. ∅ Time per ∅ Time per

punch steps its. per load step Runtime load step Newton it.

Load increment 2 mm 640 966 1.51 7595.30 s 11.87 s 7.86 s

3.125e−3

Load increment 2 mm 20 130 6.50 1407.03 s 70.45 s 10.82 s

1.0e−1
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3.4.1 Dynamic Loadstepping

Our load step strategy depends on macroscopic as well as microscopic information.
The macro load increment l is reduced when microscopic stagnation is observed
or when a maximum number of macroscopic Newton iterations per load step is
reached. Stagnation on the RVE level is detected whenever the norm of the current
microscopic Newton iteration compared to the previous one does not reduce after
more than six microscopic Newton iterations or if the number of microscopic
Newton iterations is larger than 20. The load step is increased based on the number
of macroscopic Newton iterations per load step. Note that l is not allowed to exceed
a predefined maximum load increment l

max
. For details, see Fig. 6.

Whenever stagnation in a microscopic problem occurs, the microscopic solver
gives this information to the macroscopic level and the load step is repeated with
a reduced load increment. Otherwise, stagnation of a microscopic problem would
lead to a simulation break down due to a missing tangent modulus and stresses in
the macro Gauß point where the micro problem is attached.

3.4.2 (Linear) Extrapolation

For Newton-type methods, it is important to choose a good initial value. If the initial
value is close to the solution, only a few Newton iterations are necessary. As in [64],

Macroscopic Load Step k

Convergence within
20 Newton iterations

No Convergence within
20 Newton iterations

Not more than 50% of
Newton iterations of

previous load step k − 1

More than 50% of
Newton iterations of

previous load step k − 1

l k +1 = 2 · l k
If l k +1 > l

max
set l k +1 = l

max

Continue with load step k + 1

l k +1 = l k
Continue with
load step k + 1

| |u (20)
k | | < 1.4tol | |u (20)

k | | ≥ 1.4tol

Invest 5 more
Newton iterations

l k = 0.5 · l k
Repeat load step k

Convergence No Convergence

k + 1
l k +1 = 0.5 · l k

Continue with load step
l k = 0.5 · l k

Repeat load step k

Fig. 6 Schematic procedure of reduction and increase of the load increment l depending on
macroscopic events. Here, l

max
is a predefined maximum load, ||u(20)

k || is the norm of the solution
of the 20th Newton iteration of the current load step k, and tol is the Newton tolerance
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we use linear extrapolation based on the converged solutions uk and uk−1 of the
former two load steps to guess a good initial value u

(0)
k+1,

u
(0)
k+1 = uk−1 + lk+1 − lk−1

lk − lk−1
· (uk − uk−1).

In [64], this technique was already successfully used in the FE2 simulations using
the FE2TI software package without contact constraints. For results using second
order extrapolation, we refer to [95, Ch. 4.2.2].

3.4.3 Checkpoint/Restart

To perform the simulation of the Nakajima test until material failure of a sam-
ple sheet, i.e., until a failure zone occurs in the metal sheet, often significant
computation times are needed, even if the full supercomputer is available. To
reduce the consequences of hardware failures and also to overcome specific wall
time limits on HPC systems, we equipped our FE2TI package with synchronous
Checkpoint/Restart (CR). We integrated the CRAFT library (Checkpoint/Restart
and Automatic Fault Tolerance) [88], which was developed in the second phase
of the SPPEXA project ESSEX. Let us note that we use synchronous application
level checkpointing with different checkpoints for the macroscopic level and the
microscopic level.

In [21], different checkpoint intervals are introduced based on the expected run
time of the simulation and the mean time of hardware failure of the HPC system
the software is performed on, but in all our simulations presented here, we choose
a fixed checkpoint interval of 75 load steps. Here, we do not take into account that
the load increment may change during the simulation and that small load increments
are usually faster. As an improvement, the checkpointing could take into account the
displacement of the forming tool or a fixed wall time interval could be used which
also could depend on the mean time of hardware failure.

4 Numerical Simulation of the Nakajima Test Using FE2TI

For the simulation of the Nakajima test, we use our highly scalable parallel software
package FE2TI; see Sect. 3. For the solution of the boundary value problems on
both scales, we here use the sparse direct solver package PARDISO [81]. Since
we are considering a DP600 grade of steel, we use a fitted J2 elasto-plasticity
model on the microscopic level; see [14, Fig. 10]. Throughout this article, we use
structured Q2 finite element discretizations for the sample sheet and an unstructured
P2 finite element discretization for the RVEs. Both, the macroscopic as well as the
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microscopic meshes, are generated using the open source software package GMSH
[34]. We use the load stepping and extrapolation described in Sects. 3.4.1 and 3.4.2.

In the Nakajima test, the macroscopic deformation is driven by the rigid punch.
Hence, load stepping is applied to the movement of the forming tool, where the
hemispherical punch moves a small step in upward direction in each load step.

Since in reality a tribological system is set up to avoid friction between the
hemispherical punch and the sheet metal [77], we consider frictionless contact.
Hence, we have to deal exclusively with contact conditions in normal direction of
the rigid tools. Considering frictionless contact, we neglect friction between the
specimen and the blank holder or die.

4.1 Description of Specimen Geometry

In our simulations, we consider specimens with a central parallel shaft and also a
completely circular specimen. The length of the parallel shaft is 25 mm and the fillet
radius is 30 mm, which both fit to the normed range in [77]; also see Fig. 1 (right).

For all specimens, the material is assumed to be completely clamped by the
bead, which has a radius of 86.5 mm. We therefore only consider material points
p = (

px, py, pz

)
which have a distance of at most 86.5 mm to the center of the

sample sheet; see Fig. 1 (right) for an example of a sample sheet with a parallel
shaft width of 90 mm. In our simulations, the sample sheet is always 1 mm thick,
and we consider specimens with a parallel shaft width of 30, 50, 70, 90, 100, 110,
125, and 129 mm as well as the completely circular sample sheet. Note that the
center cb = (cx, cy, cb

z) of the bottom surface of all sample sheets is placed in the
origin of the coordinate system.

The specifications of the rigid tools are also within the range given in [77]. The
radius of the hemispherical punch is 50 mm. The blank holder is a square plate of
173 mm × 173 mm with a circular hole in the middle with a radius of 55 mm; see
the inner circle in Fig. 1 (right). The die is placed within a distance of 5 mm to the
rigid punch, i.e., the inner wall of the die also has a radius of 55 mm; see, again,
the inner circle in Fig. 1 (right). The die radius (see Fig. 1 (left)) is 10 mm, i.e., all

material points p with
√

p2
x + p2

y ≥ 65 are potentially clamped; see the outer circle
in Fig. 1 (right).

For all sample sheets with a parallel shaft width less than 90 mm as well as
for the completely circular specimen, we only consider material points p with√

p2
x + p2

y ≤ 65 and choose all points with
√

p2
x + p2

y = 65 as Dirichlet boundary
nodes. For specimens with wider parallel shaft widths, we choose boundary
conditions analogously to [43]; see also [95].
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Fig. 7 Left: Symmetric computational domain from the full sample sheet and additional Dirichlet
boundary conditions along the symmetric boundary surfaces. Right: Orientation of the RVEs for
the different quadrants of the full geometry of the sample sheet after mirroring the first quadrant
due to the symmetric assumption

4.2 Exploiting Symmetry

The setup of the Nakajima test is symmetric. Assuming that the failure zone evolves
symmetrically, i.e., along the vertical center line, it is sufficient to only simulate a
quarter of the full geometry and to rebuild the full solution by mirroring; see Fig. 7
(left). This is only exact, if the RVEs are also symmetric, since mirroring of the
macroscopic solution also implies mirroring of the RVEs; see Fig. 7 (right). Hence,
for an asymmetric RVE, we violate the assumption of a periodic unit cell because
mirroring leads to a change in orientation for all four quadrants. In this case, the
solution generated by the symmetric assumption is only an approximation to the
solution of the simulation using the full geometry of the sample sheet, even for the
first quadrant of the full geometry. Nevertheless, we use the symmetric assumption
throughout this article, even when the RVEs are asymmetric, to reduce the number
of MPI ranks by 75%; see Sect. 3.4. As a sanity check, we have also performed
simulations for the full geometry; these will, however, be presented elsewhere due
to space limitations.

For the simulation of one quarter, we have to add further boundary conditions
along the symmetric boundaries of the quarter. Then, we have to fix all y-coordinates
of macroscopic material points p with py = cy . Analogously, we have to fix all x-
coordinates for macroscopic points with px = cx ; see Fig. 7 (left) and Sect. 4.1.

4.3 Failure Criterion

For the detection of macroscopic crack initialization, we have to formulate a failure
criterion and a maximum critical value, which will indicate the initialization of
failure. Note that, for the computation of the forming limit, we do not need to
simulate cracks or crack propagation. Instead, we are only interested to compute
when structural failure occurs.
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We use the Cockcroft and Latham criterion [19],

Wk = W(αk) =
∫ αk

0
max (σ I (α), 0) dα, (3)

which was used by Tarigopula et al. [93] for analyzing large deformation in DP
steels. It depends on the maximum principal stress component σ I and the equivalent
plastic strain αk := α(tk) at load step k (pseudo time tk) and is integrated over α.
Since α depends on the load step, this also holds for the failure criterion W and the
stress σ . In general, in FE2, αk is not known explicitly but can be approximated by
the volumetric average4 α̃k := 〈α(tk)〉 from the microscopic level at load step k.

The value of W is computed at each Gauß point and is accumulated throughout
the loading process until at least one Gauß point exceeds a critical value Wc at
which failure initializes, i.e., W ≥ Wc is fulfilled. Tarigopula et al. provide the
value Wc = 590 − 610 MPa for DP800 grade of steel; see [93]. Since we consider
DP600 grade of steel, the critical value should be smaller in our case.

Equation (3) is approximated by numerical integration and using α̃

Wk ≈ W(̃αk) =
∫ α̃k

0
max (σ I (̃α), 0) dα̃ ≈

k∑

i=1

max (σ I (̃αi), 0) · (̃αi − α̃i−1)

= Wk−1 + max (σ I (̃αk), 0) · (̃αk − α̃k−1). (4)

where (̃αi − α̃i−1) is nothing else than the increment of the equivalent plastic strain
from load step i − 1 to load step i and W 0 = α̃0 = 0. Hence, we can sum up the
failure criterion W over all load steps and summation is performed whenever a load
step reached convergence. See Fig. 9 for an example of the evolution of the failure
criterion W during a Nakajima simulation.

Let us note that the failure criterion is formulated such that ductile failure takes
place due to tensile stresses and shear stresses, where the effect of tensile stresses is
considered by usage of the maximum positive principal value of Cauchy stress and
the effect of shear stresses and work-hardening is considered through the equivalent
plastic strain increment.

4.4 Numerical Realization of the Experimental Cross Section
Method

In the experiment, major and minor strains ε1 and ε2 are evaluated at the top surface
of the sample sheets along cross sections. However, the simulation only provides

4Note that here and in the following, all volumetric averages obtained from microscopic level are
in brackets 〈 〉.
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exact macroscopic values in the integration points, which generally do not coincide
with the finite element nodes. Therefore, the simulations do not provide any exact
macroscopic values on the sample sheets surface, and we decided to consider cross
sections along those Gauß points closest to the upper surface.

For the computation of major and minor strains ε1 and ε2 we transform our
resulting 3D strain tensor to the 2D plane strain tensor and then follow the strategy
as described in [97]. For further details, we refer to [95].

In this article, we show results for computations using the symmetric test setup
of the experiment; see Sect. 4.2. This automatically implies that we assume that the
failure zone evolves along the vertical center line and the center of the failure zone
is identical to the center of the upper surface of the sample. For the computations
using symmetry, all discretizations have finite element nodes at the center of the
probe. Keeping in mind that we choose cross sections along Gauß points, no cross
section cuts through the center of the failure zone. To keep the distance between
the first cross section and the center of the failure zone as small as possible, we
consider integration points with the smallest distance to the horizontal center line as
first cross section. For simplicity, the other cross sections are along the remaining
Gauß points of the same finite elements which were used for the first cross section.
Hence, the distance between the cross sections depends on the diameter of those
finite elements and is smaller than 2 mm in our computations.

Due to the symmetric computations, we only have one side of the cross sections
at hand but the other side can be simply generated by mirroring; see Fig. 2 and the
upper pictures in Fig. 8.

Note that the cross section method can only be used for specimens with a single
failure zone. Unfortunately, in our simulations the failure zone does not always
evolve along the vertical center line but parallel to it for sample sheets with a parallel
shaft width of 100 mm or more. Hence, mirroring leads to the occurrence of a
second failure zone; see Figs. 11 (left) and 12. For these specimens, first simulations
using the upper half or the complete domain of the sample sheet also lead to two
failure zones parallel to the vertical center line. For simulations obtaining two failure
zones, we assume that the maximum major strain along the cross section defines the
position of the failure zone. Neglecting all values between the vertical center line
and the maximum major strain and shifting the failure zone to the vertical center
line, we can proceed as before; see Fig. 8.

So far it is not clear, whether the symmetry assumptions hold for specimens with
failure zones parallel to the vertical center line. In future work, we have to perform
a comparison with the full geometry.
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5 The Virtual Forming Limit Diagram Computed with
FE2TI

Since we use the symmetry assumptions for the numerical simulation of an FLC, we
perform our simulations on a quarter of the full specimen and rebuild the solution by
mirroring; see also Sect. 4.2. The computational domain is discretized by structured
Q2 finite elements, where the number of finite elements depends on the width of the
parallel shaft as well as on the chosen boundary conditions; see Sect. 4.1 as well as
Table 2. Note that we use (only) two Q2 finite elements in the direction of thickness
for all specimens.

For the microscopic problems, we consider an SSRVE with two ellipsoidal
inclusions discretized by 1470 P2 finite elements and 7152 d.o.f. in an unstructured
manner. As mentioned before, the resulting tangent problems on the microscopic
level are solved by using the direct solver package PARDISO [81] and each problem
is solved on an individual MPI rank. Hence, the number of macroscopic finite
elements automatically determines the number of required MPI ranks, which is
27 times the number of finite elements. We have performed all our simulations on
JUWELS [45] using 2 MPI ranks per core and a penalty parameter of 500. For the
specifications of the rigid tools, we refer to Sect. 4.1.

As an initial load increment, we choose 0.1 mm and define l
max = 0.2 mm

as maximum allowed load increment. Our stopping criterion is either based on
reaching a predefined covered distance of the forming tool of 40 mm or on the
load increment and not on the failure criterion, since we have only little experience
how to choose the critical value Wc to detect failure. Simulation stops if the
load increment of 10 successive load steps is smaller than a predefined allowed
minimum, which is the initial load increment multiplied by 10−4, or, if the load
increment has to be reduced 7 times within a single load step. This is motivated
by the fact that small load increments indicate hard numerical problems which are
expected in case of material failure.

We have summarized some data on our Nakajima simulations including the
number of restarts in Table 2. Note that most restarts are caused by reaching the
requested wall time and only in few cases, if any, by hardware errors.

For all specimens with a parallel shaft, we obtain comparable results, which are
characterized in the following. After a certain covered distance of the tool, a local
increase in the failure value W , the major strains ε1, the equivalent plastic strain α̃,
the thinning rate, and the von Mises stress can be detected almost simultaneously
along an area parallel to the vertical center line. Later, the values continue to rise,
especially in this area, so that the degree of localization increases; see Fig. 9. Finally,
some microscopic problems within the aforementioned localized area cause the
simulation to end. At this point, however, a pronounced change in thickness can be
observed within the localized area, which can be associated with material failure;
see cross sections in Figs. 12 and 10 (top right) as well as the upper right picture in
Fig. 11 (left).
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Fig. 9 Evolution of failure criterion W during the simulation for the specimen with a width of the
parallel shaft of 50 mm

Fig. 10 Final solution of the simulation with a specimen with a width of the parallel shaft of
70 mm; z-direction (top left), thickness (top right), von Mises stress (bottom left), major strain
(bottom center), and thinning rate (bottom right). The grey area is not simulated since material is
totally clamped between die and blank holder

For the completely circular specimen we do not observe any localized effects
along an area parallel to the vertical center line, even if we reach the predefined
distance of 40 mm. Instead, we obtain a similar behavior over nearly the complete
contact area; see Fig. 11 (right).

The results for specimens with a parallel shaft can be divided into two groups.
The first group contains all samples with a parallel shaft width of at most 90 mm. For
these specimens material failure occurs along the vertical center line; see Fig. 10.
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Fig. 11 Final solution of the simulation with a specimen with a width of the parallel shaft of
100 mm (left) and the completely circular specimen (right); variables and color bars as in Fig. 10.
Left: Material between blank holder and die is simulated since material movement is allowed.
Right: Material between blank holder and die is assumed to be clamped (dark grey) and hence is
not simulated

Fig. 12 Final results of distribution of Cockcroft and Latham failure value W for all Nakajima
simulations and associated Forming Limit Diagram (FLD) with FLC (black curve) for Wc = 450.
In the cross section, one can identify local necking in thickness for all but the completely circular
specimen

All specimens with a wider parallel shaft belong to the second group, which can
be characterized by material failure parallel to the vertical center line. For these
samples, mirroring of the computed solution leads to the occurrence of a second
failure zone; see Figs. 11 (left) and 12. As mentioned before, first numerical tests
indicate that this also holds when simulating the complete specimen or the upper
half of it. Hence, we decided to use the results to determine an FLC. The adaptions
to evaluate major and minor strains for failure zones parallel to the vertical center
line are mentioned in Sect. 4.4; see also Fig. 8. Without manipulating the values
along the cross sections, we would obtain unphysically high values in the FLD.
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Based on all available results we have subsequently defined a critical value of
Wc = 450 for the failure criterion. Hence, we have to find for all simulations the
corresponding load step for which the failure value in at least one point exceeds the
critical value Wc = 450 for the first time; see Table 3.

When we have found the corresponding load steps, we have to compute the major
and minor strain values along the cross sections perpendicular to the failure zone
and generate for each cross section one point in the FLD. So, we come up with
30 different pairs of major and minor strains wherein each three belong to one
specimen; see Fig. 12. The final FLC is derived by regression; see black curve in
Fig. 12 and [95] for details.

6 Linear and Nonlinear Parallel Solvers

For large scale computations using FE2TI, scalable parallel implicit solver algo-
rithms are needed for the problems on the microscale as well as the macroscale [64].
Another focus of the EXASTEEL project therefore was on solver algorithms,
i.e., efficient and highly parallel scalable implicit solvers for linear and nonlinear
problems arising from a finite element discretization of linear and nonlinear partial
differential equations; see, e.g., [5, 54–57, 59–61, 63].

Here, nonlinear domain decomposition (DD) approaches, namely nonlinear
FETI-DP (Finite Element Tearing and Interconnecting-Dual Primal) and nonlinear
BDDC (Balancing Domain Decomposition by Constraints) methods, have been
introduced in the first phase of EXASTEEL and improved during the second phase,
where also new variants were introduced.

In [64], our new nonlinear FETI-DP solver algorithms were then applied within
large FE2TI simulations for the first time: We have used Nonlinear-FETI-DP-1 as
a parallel implicit solver for the microscopic problems using 114,688 KNL cores
of the Theta many-core supercomputer (Argonne National Laboratory) [64, section
4.9]. However, the nonlinear DD methods developed in the project have a broad
range of applications, e.g., in hyperelasticity, elasto-plasticity, or nonlinear diffusion
problems.

To further improve the performance of the nonlinear solvers, also the efficiency
and parallel scalability of all building blocks was in the focus of the EXASTEEL
project [5, 54–56, 60, 61].

In this section, we describe very briefly our nonlinear domain decomposition
approaches and sum up the achievements and highlights obtained within the past 6
years.
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6.1 Nonlinear FETI-DP Framework

Classical domain decomposition methods are robust and highly scalable divide-and-
conquer algorithms for the iterative solution of discretized linear partial differential
equations. In the case of FETI-DP methods [27, 28, 47–50], the computational
domain is decomposed into nonoverlapping subdomains which are distributed to
the available compute cores. FETI-DP methods are well established in structural
mechanics and have been awarded a Gordon Bell price [10].

The robustness and scalability originates from the sparse direct solvers applied
on the subdomains, combined with a carefully designed coarse problem. The coarse
problem, though necessary for robustness, is a potential scaling bottleneck, since
its size grows with the number of subdomains, i.e., with the number of parallel
cores. In order to retain scalability, the coarse solution can be approximated, e.g.,
by algebraic multigrid methods; see [46, 48]. Finally, to solve nonlinear problems,
a linearization with Newton’s method is usually applied first, and the linearized
tangential systems are then solved, e.g., by FETI-DP. We refer to the latter approach
as Newton-Krylov-FETI-DP.

In contrast, in nonlinear FETI-DP or BDDC methods, first introduced in [51],
the discretized nonlinear partial differential equation is decomposed into small and
independent nonlinear problems before linearization. In the case of nonlinear FETI-
DP, a nonlinear coarse problem is added by strongly coupling the local nonlinear
problems in few variables on the interface of the domain decomposition, as, e.g.,
vertices or averages over edges or faces. This leads to a nonlinear FETI-DP saddle
point system; see, e.g., [51, eq. (3.2)], [54, eq. (3.4)], or [59, eq. (1)]. Also, a
partially nonlinear elimination process of sets of variables from the nonlinear FETI-
DP saddle point system is possible before linearization. The nonlinear elimination
process can be interpreted as a nonlinear right-preconditioner, which we described
in [59, Section 2.5] in detail. There we also introduced a unified framework
to describe different nonlinear FETI-DP and BDDC methods. The selection of
the elimination set finally defines the nonlinear FETI-DP method precisely. We
discussed four canonical choices in [59], but other choices are feasible and possibly
beneficial. Let us briefly repeat the four variants from [59]. In FETI-DP, all degrees
of freedom or variables are divided into three classes. First, all variables belonging
to the interior of the subdomains are grouped into the set I (marked as circles
in Fig. 13), second, all variables of the global coarse problem are grouped into
the set � of so-called primal variables (marked as squares in Fig. 13), and third,
all local degrees of freedom on the interface are grouped into the set � of so-
called dual variables (marked as dots in Fig. 13). Let us remark that continuity of
the solution in the dual degrees of freedom is enforced iteratively by enforcing
zero jump constraints with a Lagrangian approach; see [27] for details. Finally,
Nonlinear-FETI-DP-1 is defined by eliminating nothing, Nonlinear-FETI-DP-2 by
eliminating everything, Nonlinear-FETI-DP-3 by eliminating the interior and dual
variables, and finally Nonlinear-FETI-DP-4 by eliminating the interior variables;
see Fig. 13 for a visualization of the different variants.
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Fig. 13 The coarse problem is marked with squares, the interior degrees of freedom by circles, and
the dual degrees of freedom by dots. The colored degrees of freedom are eliminated nonlinearly
before linearization in the different variants. From left to right: Nonlinear-FETI-DP-1, Nonlinear-
FETI-DP-4, Nonlinear-FETI-DP-3, Nonlinear-FETI-DP-2

Fig. 14 Comparison of classical Newton-Krylov-FETI-DP (NK), Nonlinear-FETI-DP-1 (NL1),
Nonlinear-FETI-DP-2 (NL2), Nonlinear-FETI-DP-3 (NL3), and Nonlinear-FETI-DP-4 (NL4)
using the JUQUEEN supercomputer. Left: Nonlinear p-Laplace inclusions not touching the
interface; 40k d.o.f. per subdomain; Right: Nonlinear p-Laplace channels crossing the interface;
160k d.o.f. per subdomain. For a detailed discussion of the results see also [59, Fig. 10 and 12] and
corresponding descriptions. If an appropriate nonlinear elimination set is chosen for the problem
(as is the case here in NL3) then the nonlinear method outperforms the classical Newton-Krylov
approach significantly

If the elimination set is chosen appropriately, nonlinear FETI-DP methods can
outperform classical methods, i.e., Newton-Krylov-FETI-DP. In [42], a heuristic
approach is suggested to eliminate the areas with strong nonlinear effects. For
illustration let us consider combinations of the nonlinear p-Laplace equation and
the linear Laplace equation, where the nonlinearities either touch the subdomain
interface or are at a distance. In the latter case, we choose nonlinear inclusions
of p-Laplace enclosed in the subdomains and in the first case nonlinear channels
of p-Laplace cutting certain edges. For a detailed description of the chosen
model problem, see [59, Section 5.1, Fig. 7]. Considering the inclusions, all
nonlinear FETI-DP methods work well. Considering the example with channels,
it is necessary to at least eliminate the dual interface variables; see Fig. 14 or [59].
Let us note that Nonlinear-FETI-DP-1 performs well in both cases, which is a result
of a careful choice of the initial value; see [51, Section 3.3] for details.
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Fig. 15 Weak scalability of Nonlinear-FETI-DP-1 for a p-Laplace problem computed on the Mira
supercomputer; largest problem has 62.9 billion d.o.f.; results from [57]; see also [57, Fig. 4 (left)]

Another benefit of nonlinear domain decomposition approaches is the localiza-
tion of work, which increases the scalability of these methods. This can be verified
either in Fig. 14 or in our larger weak scaling experiments on Mira published
in [57] and presented in Fig. 15, where an algebraic multigrid preconditioner from
the BoomerAMG package [38] is used to approximate the coarse solve to obtain
scalability without losing robustness.

We have also considered approaches to improve the convergence of nonlinear
FETI-DP methods. We have introduced heuristics to determine if a nonlinear
elimination is useful in a certain Newton step or not. Additionally, the elimination
process is approximated up to a necessary tolerance to save computational cost.
This approach is called NL-ane (approximate nonlinear elimination) and is also
discussed in [59, 62]. We recently also considered a globalization strategy using
the SQP approach; see Sect. 6.1.2.

Finally, we successfully investigated a hybrid parallelization of FETI-DP using
PARDISO in [55], and also considered nonlinear FETI-DP and BDDC methods
where the sparse direct solvers are replaced by preconditioners; see [56, 60, 61].

6.1.1 Improving Energy Efficiency

In classical Newton-Krylov methods, global synchronization occurs in every Krylov
iteration. Global synchronization can be significantly more coarse-grained in our
nonlinear domain decomposition methods since the Krylov iteration can be asyn-
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Fig. 16 Power per core for Newton-Krylov-FETI-DP (NK) and Nonlinear-FETI-DP-3 (NL3) with
normal barrier (b) and test-sleep approach (b-ts) on Meggie cluster. Each subdomain problem
has 160k d.o.f. Left: Nonlinearity in each of the subdomains; Right: Nonlinearity in a single
subdomain. See also [63, Fig. 10] and corresponding descriptions for details

chronous between subdomains. In this section, we describe how this can be
exploited to save energy when load imbalances occur.

If the nonlinear elimination set in nonlinear FETI-DP is completely local to the
subdomains as, e.g., in Nonlinear-FETI-DP-3, the nonlinear subdomain problems
can be solved in parallel and asynchronously. This solution process using Newton’s
method can introduce a load imbalance, even for perfectly balanced meshes, if the
number of Newton iterations is different between subdomains; see [63, Fig. 7].
Note that even for these cases, Nonlinear-FETI-DP-3 typically has a shorter time
to solution compared with classical approaches; see Fig. 14.

In [63], we have suggested to use a nonblocking barrier in combination with
a sleep statement to set idling cores in deep sleep states, to reduce energy
consumption. This is feasible in nonlinear parallel domain decomposition since
the synchronization between the cores is coarse grained (typically larger than 1 s).
During these phases sleeping cores wake up every 10 ms. The wake-up latency itself
for current Intel processors is significantly below 1 ms. Therefore, the overhead of
the sleep and wake up approach is insignificant compared to the time spawn of
global synchronization and does not impact overall performance or scalability. We
call this method test-sleep approach. To investigate the energy saving potential, we
measured the energy consumption of Nonlinear-FETI-DP-3 in [63] reading out the
RAPL hardware counters with LIKWID [94] on the Meggie5 cluster at Erlangen
Regional Computing Center (RRZE). In Fig. 16, we present the power consumption
per core for two different scenarios, i.e., a single nonlinear inclusion in a single
subdomain or a single nonlinear inclusion in each subdomain. The total energy

5Standard Cluster with Intel Omnipath Interconnect and two Intel Xeon E5-2630 v4 chips per
node.
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Fig. 17 Total energy to solution for Newton-Krylov-FETI-DP (NK) and Nonlinear-FETI-DP-3
(NL3) with normal barrier (b) and test-sleep approach (b-ts). Computation on 5120 Meggie cores.
See also [63, Fig. 9] for a complete weak scaling study

consumed by the nodes during the solution procedure on 5120 cores is shown
in Fig. 17. The test-sleep approach also works for alternative nonlinear domain
decomposition methods, as, e.g., ASPIN [17]; see [63] for a brief discussion using
the ASPIN implementation described in [15] which is provided in PETSc.

6.1.2 Globalization

We consider different globalization strategies for our nonlinear domain decompo-
sition methods. For the different nonlinear FETI-DP methods, we consider trust
region methods and also an approach based on the SQP (sequential quadratic
programming) method using the exact penalty function P 1

β (ũ) = J (ũ) + β||Bũ||1,
where J denotes the mechanical energy and Bũ are the FETI-DP equality con-
straints; see Table 4 for some results.

Table 4 Number of global iterations for a snap through buckling problem for compressible Neo-
Hookean energy with material parameters E = 210, ν = 0.3 in 2D; 100 subdomains, 20,402
degrees of freedom; − : failed

SQP Trust region Without globalization

Volume force NL-1 NL-4 NL-1 NL-4 NL-1 NL-4
[
0,−20

]T

6 6 321 343 − −
[
0,−40

]T

6 6 298 469 − −
[
0,−80

]T

7 7 258 662 − −
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Fig. 18 Left: Weak scaling experiment on the JUQUEEN supercomputer; deformation of a
hyperelastic cube with 0.7 billion d.o.f. for the largest computation (heterogeneous Neo-Hooke
material model); using Newton-Krylov-BDDC or Nonlinear-BDDC; see [60, Section 4.4, Fig. 15]
for details. For 262,144 subdomains Newton-Krylov-BDDC did not converge within 20 Newton
iterations. Right: Weak scaling of linear BDDC solver with approximate coarse solve (using AMG)
on JUQUEEN (BG/Q) and Theta (KNL) supercomputers for a heterogeneous linear elastic model
problem in two dimensions with 14k d.o.f. per subdomain; see [60, Fig. 7] for details

6.2 Nonlinear BDDC Methods

Using the same elimination set as in Nonlinear-FETI-DP-4, the nonlinear BDDC
method [51] can be derived, which is based on its linear version; see [20, 24, 71–
73]. We presented an efficient and scalable implementation of linear and nonlinear
BDDC avoiding the computation of Schur-complements in [60]. This approach
proved to be faster, more scalable, and more robust for nonlinear hyperelasticity
problems (see Fig. 18 (left)) as well as for elasto-plasticity problems using realistic
RVE microstructures obtained from EBSD measurements; see [60, Table 4.7].
We also studied the scalability of the embedded linear BDDC solver on different
architectures; see Fig. 18 (right).

7 Multicore Performance Engineering of Sparse Triangular
Solves in PARDISO Using the Roofline Performance Model

The PARDISO [12, 23, 69, 96] parallel sparse direct solver is a building block in
FE2TI. As long as the macroscopic problem is small enough, it can be solved
directly by PARDISO; if the microscopic problems are of reasonable size, it is
efficient to use PARDISO concurrently on the microscale problems. For large micro
and macro problems, the direct solver has to be replaced by linear or nonlinear FETI-
DP or BDDC domain decomposition solvers. Here, PARDISO is typically applied
as the subdomain and coarse solver.
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The PARDISO solver has two phases: factorization and forward/backward
substitution, with factorization being more time consuming than substitution.
However, the former is only performed once in a FETI-DP or BDDC domain
decomposition iterative process, whereas the latter is repeated many times. We
are in particular interested in the forward and backward solution process of sparse
direct solvers since they build the computational kernel, e.g., in FETI-DP or BDDC
methods. FETI-DP and BDDC are known to be highly parallelizable, but most
implementations are using sparse direct solvers as building blocks. More precisely,
most domain decomposition implementations use sparse direct solves for the local
subdomain problems to obtain the necessary robustness. Additionally, the coarse
problem is usually solved directly up to a certain size, but for larger problems the
coarse solve is often approximated by, e.g., AMG or recursive applications of the
domain decomposition approach itself. Therefore, we investigate and analyze the
performance of the forward/backward solution process of PARDISO for the local
subdomain solves in FETI-DP and BDDC and present not only numerical results,
but also a detailed performance analysis for a representative sparse solver kernel
based on the roofline model. The goal is to create an analysis of this part of the
algorithm and to establish a roofline performance model [98], which considers
performance bounds given by the memory bandwidth and the processor peak
performance. We modeled both the serial and parallel execution phases. Despite
the fact that the roofline model prediction can be inaccurate in the serial case,
when the in-core execution or in-cache transfers become dominant, it still provides
an easily obtainable upper bound. The simple roofline model brings together the
computational capabilities of the processor and the available memory bandwidth
with the requirements of an algorithm. In our case the relevant quantities are
the number of FLOPs performed and the data transferred between processor and
memory, which we determined by an analysis of the forward/backward substitution.

The performance of the forward and backward substitution process is analyzed
and benchmarked for a representative set of sparse matrices on modern x86-type
multicore architectures. The characteristic quantities of these systems are shown in
Table 5 along with the required machine specific input parameters (lower part of
Table 5) for the roofline model. The measurement approach, its validation, as well
as limitations are discussed in [98]. Our modeling approach covered both the serial
and parallel execution phases, allowing for in-socket performance predictions. The
performance modeling results for a discretized Laplacian matrix (‘lapl2’) and a local
subdomain matrix (‘BDDC’) from the EXASTEEL project are shown in Fig. 19; see
also Table 6 for dimensions and numbers of nonzeros for the considered matrices.
The latter matrix is used in FETI-DP as well as BDDC methods to compute
the discrete harmonic extension from the domain decomposition interface to the
interior of a certain subdomain. The specific problem represents a typical RVE
using the J2 elasto-plasticity model including the material parameters also used in
the computations of the FLD. We verified that the considered subdomain already
showed a plastic behavior.

As opposed to the original roofline model, the modified roofline model covers
also the performance impact of limited scalability imposed by the algorithm, i.e.,
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Table 5 Details of the Intel and AMD hardware systems evaluated

Name IVB BDW SKX ZEN-S

Processor name Intel Xeon Intel Xeon Intel Xeon AMD EPYC

E5-2660 v2 E5-2630 v4 Gold 6148 745

Micro architecture Ivy Bridge Broadwell Skylake Zen

Frequency [GHz] 2.2 2.2 2.4 2.3

Number of cores 10 10 20 24

Vector instruction set AVX AVX2 AVX-512 AVX2

NUMA LDs 1 1 1 4

Scalar read bandwidth

1 core [GB/s] 9.5 11.5 14.5 19.3

NUMA LD [GB/s] 44.4 56.3 108.0 37.6

Scalar ADD+MUL/FMA

1 core [F/cy] 2 4 4 4

NUMA LD [F/cy] 20 40 80 24

Scalar machine balance Bm

1 core [B/F] 2.2 1.3 1.5 2.1

NUMA LD [B/F] 1.0 0.6 0.6 0.7

The NUMA Locality Domain (LD) refers to a number of cores sharing a physical or logical
memory controller

Fig. 19 Performance on
IVB, BDW, SKX, and ZEN-S
(left to right) for two matrices
(upper and lower panel) from
EXASTEEL. (a–d) lapl2.
(e–h) BDDC. Copyright
2019, IEEE, [98]
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Table 6 Dimension (n) and
number of nonzeros (nnz) for
A and L for benchmark
matrices

Matrix n nnz(A) nnz(L)

lapl2 343 × 103 1 × 106 166 × 106

BDDC 750 × 103 31 × 106 1590 × 106

both serial and parallel execution phases of the forward and backward substitution
are considered in the model; see [98] for details. It captures the behavior of the
measured performance quite well compared to the original roofline model.

For Intel Ivy Bridge systems the modified roofline model error is only up to
5%. Further details are given in [98]. During the second phase of EXASTEEL
the close collaboration with ESSEX-II in the context of performance engineering
was also extended to iterative solvers, leading to a new promising recursive
algebraic coloring scheme [1]. The benefits of the recursive algebraic coloring
were demonstrated by applying it to the kernel operation of a symmetric sparse
matrix-vector multiplication (SymmSpMV) on various multicore architectures.
The performance was compared against standard multicoloring and various other
algebraic block multicoloring methods. The coloring implementation resulted in an
average and maximum speedup of 1.4 and 2, respectively. Our entire experimental
and performance analysis process was also backed by the roofline performance
model, corroborating the optimality of the approach in terms of resource utilization
of the SymmSpMV kernel on modern hardware; see the ESSEX-II report in this
book for details.

8 Improvement of the Mechanical Model for Forming
Simulations

In this section, we describe improvements to the modeling developed in the project.
Not all of the techniques described here are currently used in our FE2TI production
simulations, mainly to reduce computational cost.

As mentioned earlier, the favorable macroscopic properties are to a large extent
due to the heterogeneous microstructural features of the DP steels. A sophisti-
cated heat treatment process is used to produce a heterogeneous microstructure
with ferritic matrix and martensitic inclusions. This process is also accompanied
by several effects which then in conjunction with the difference in mechanical
properties of ferrite (soft phase) and martensite (hard phase) generate advantageous
macroscopic properties. In this project, an initial volumetric strains approach, c.f.
[14], was developed to mimic the micromechanical features resulting from the phase
transformations during the production process.

The high yield and work-hardening properties of DP steels, on the other hand,
pose a problem in terms of forming complex geometries and designing the metal
working tools. One of the major issues associated with the forming of DP steels, is
the large springback observed at the end of the forming process, which results in
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undesirable geometries of the formed parts. Here, simulating the forming process
with an accurate material behavior can help to predict springback precisely and
further save valuable resources while optimizing the tooling parameters for the
process. The springback behavior is found to be very closely associated to the
Bauschinger factor of the material. Therefore, within this project a multiscale
modeling strategy to effectively model the DP steel response under cyclic loading
was developed. In this context, an efficient neural network based algorithm is
employed to identify the associated microstructural material parameters, leading
to a reduction in the required computational resources. In order to obtain further
understanding of the correlation of the model parameters on the macroscopic
behavior of DP steels during cyclic loading, uncertainty quantification studies have
been carried out using the developed mechanical models.

Due to their higher accuracy and physical interpretability, crystal plasticity
formulations may be used at the RVE level to directly describe plasticity in a
polycrystal such as multiphase steels. Due to the fact that such formulations are
computationally highly expensive, they may be primarily applied to computationally
identify macroscopic yield surfaces. FE2 simulations of metal forming processes
based on such formulations at the small scale will however hardly be feasible. There-
fore, as part of this project one goal was to improve the quality of micromechanical
models to be used efficiently in the context of FE2. The associated micromechanical
simulations are mainly making use of a classical finite J2 elasto-plasticity material
model, c.f. [79, 87, 89, 90], which is used to model the micro-constituents (ferrite
and martensite) by defining the hardening law

β iso = y iso∞ + (y iso
0 − y iso∞ )exp(−ηisoα) + hisoα. (5)

Herein, y iso
0 is the initial yield stress, y iso∞ is the saturation yield stress, ηiso is the

exponent, hiso is the linear hardening at saturation yield stress and α is the equivalent
plastic strain variable. The material parameters of the models are calibrated based on
uniaxial tests performed on the pure individual constituents martensite and ferrite.
As representative microstructure a so-called statistically similar RVE was identified;
see [14]. More information on SSRVEs can be obtained in [7, 8], and [83]. Although
the individual phases can be represented accurately and the microstructure is
reflected with high accuracy, still the experimental stress-strain response cannot be
obtained. The main reason is that distributed properties in the ferritic matrix phase,
which however result from the production process, were not yet taken into account.
In addition to that, when focusing on cyclic loading protocols, the macroscopic
kinematic hardening of the real sheet metal cannot be represented. As a suitable
quantitative measure for the kinematic hardening, the so-called Bauschinger factor
can be computed as f B = (|P I| − P II)/|P I|. Herein, P I = P x(�lx/lx,0 = −0.05)

and P II = P x(�lx/lx,0(P x = 0)+ 0.002), where P is the 1st Piola-Kirchoff stress
tensor. Although the Bauschinger factor of the FE2 simulation with f

comp
B = 0.47 is

interestingly high considering that for the individual phases no kinematic hardening
is taken into account up to here, it does not agree well with the experimental value
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f
exp
B = 0.66. Therefore, in this project three major improvements were developed to

enhance the model quality for FE2 simulations of sheet metal forming problems: (i)
A mixed isotropic-kinematic hardening model was implemented at the microscale
for the ferrite phase, (ii) an initial volumetric strains approach was developed to
model the locally distributed plastic properties in the ferrite phase, and (iii) an
implicit fit procedure was constructed based on a neural network to identify the
kinematic hardening parameters.

A mixed hardening model was implemented for the ferritic phase, which consists
of an exponential isotropic hardening law, see Eq. (5) and a linear kinematic
hardening law, c.f. [89]. The yield criterion and the evolution of the back stress ξ

are then given by

φmix = ||devσ − ξ || −
√

2

3
β iso and ξ̇ = 2

3
λ̇H kin devσ − ξ

||devσ − ξ || . (6)

Here, H kin is an additional material parameter, signifying the linear kinematic
hardening. Thus, the material parameters associated with the ferritic phase should be
newly identified for the mixed hardening material model. An appropriate multiscale
approach has been developed which is described in Sect. 8.2.

8.1 Initial Volumetric Strains (IVS) Approach

The IVS approach proposed in [14] allows the modeling of heterogeneous yield
stress distribution in ferrite and results in a good agreement of the predicted stress
values with the experiments. Here, the ferritic yield curve is locally modified using
modification factor γ (X) ∈ [1, 1.6], quantified based on physical and experimental
observations. As a result of this continuous procedure, where the microstructure is
subjected to first IVS, followed by subsequent mechanical loading, for, e.g., uniaxial
tension, not only the distributed properties are obtained but also the eigenstresses
related with the volume expansion of the inclusion phase can be modeled. However,
in the context of FE2 simulations this procedure is rather expensive since the
application of the volumetric strains has to be simulated at each point before the
actual loading can be applied. Due to the fact that the above-mentioned eigenstresses
are not significant to the macroscopic stresses under loading, here a separated
approach is proposed: the first step of applying IVS is considered only to generate
the local ferritic yield modification factors which are saved independently of any
potential subsequent loading. Then, in the second step of mechanical loading these
modification factors are applied to the undeformed microstructure. The main benefit
is the reduction of computing time since the IVS has to be performed only once to
one microstructure. On the other hand, the eigenstresses obtained from the volume
expansion are not included anymore. Note that these eigenstresses are usually
removed from the DP steel sheet by a special heat treatment procedure which is why
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Fig. 20 (a) Illustrations of
the steps involved in the
(modified) initial volumetric
strains approach, (b)
comparison of macroscopic
stress-strain curves for FE2

uniaxial tension calculations
for simplified microstructure
with spherical inclusion: (i)
modified IVS approach, (ii)
IVS approach [14], (iii) no
IVS approach and (iv)
experiment
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the absence of these eigenstresses in the numerical simulation may even be more
realistic. The scheme is illustrated in Fig. 20a. Furthermore, the macroscopic stress
strain curves obtained under uniaxial tension for various IVS considerations are
compared against the experiment in Fig. 20b. Here, it can be seen that the proposed
modified (separated) IVS scheme performs equivalently to the continuous IVS as
given in [14]. However, as seen in Fig. 20b, not using the IVS approach yields a
poor accuracy in representing the experimental curve.

Additionally, it is observed that the choice and extent of ferritic hardening has no
effect on the resulting factors γ and that the same set can be applied in mechanical
loading computations as long as (i) the microstructure, (ii) the amount of martensitic
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volume jump considered (i.e. 4%) and (3) the initial yield stress of ferrite (y iso
0 ),

remain unchanged.
The IVS approach has been implemented in FE2TI but has not been applied in

the production runs in Sect. 5.

8.2 Parameter Identification Approach for Ferritic Mixed
Hardening

The incorporation of the mixed hardening in ferrite along with the initial volumetric
strains approach necessitates the identification of a new set of material parameters
for ferrite, i.e. y iso∞ , ηiso and H kin. Here, y iso

0 and hiso are assumed to be constant.
Since no cyclic stress-strain data is available for the pure ferrite, the ferrite properties
need to be adjusted such that the macroscopic response matches well the experiment.
Due to the micro-macro nature of the computations required for the resulting
inverse problem, this parameter identification problem becomes highly time and
computation intensive. Therefore, to accelerate the process a neural network based
algorithm is proposed.

As illustrated in Fig. 21, a sufficiently trained neural network takes in eight input
values from DP steel experiments and outputs the values for the three parameters to
be identified. These input values are as illustrated in Fig. 21b, i.e. seven macroscopic
stress values and the Bauschinger factor. The neural network consists of one hidden

Input

Hidden Output

Output

3

38

20 a)

-0.05 -0.04 -0.03 -0.02 -0.01  0 b)

str
es
s

Δl x / l x , 0 Δ l x / l x , 0

+
0.002

s x , 1

s x , 2

Fig. 21 (a) Schematic representation of the neural network with the respective activation functions
at various layers, (b) the input values for the neural network—7 macroscopic stress-strain values
and 1 macroscopic Bauschinger factor
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Table 7 Neural network
training data range for the
identification of ferritic
material parameters

H kin ηiso yiso∞
Range 0.9–2.1 GPa 15.0–25.0 0.35–0.80 GPa

Nos. 5 4 4

Table 8 (a) Target material parameters for the ferritic phase identified with the trained neural
network and (b) Bauschinger factor computed with mixed hardening in ferrite (Sim-mix)

(a) H kin ηiso yiso∞ (b) Exp Sim-mix
1.71 GPa 25.6 0.375 GPa fB 0.66 0.62
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Fig. 22 Stress response comparison between simulation model with mixed hardening for ferrite
and the experiment

layer with tanh type activation functions and one output layer with linear activation
functions. Results from 80 simulations with the choice of target parameters in the
ranges mentioned in Table 7 using the simplified microstructure (spherical inclusion
in a cuboidal matrix) are used as training data. These simulations with different
target parameter combinations can all be executed at once on many core machines
to accelerate the process of gathering training data.

Additionally, a good choice of training range helps to ensure a robust prediction
of the target parameters. The parameters identified by evaluating this algorithm
are given in Table 8a. The macroscopic stresses achieved during compression and
the overall Bauschinger factor obtained with these parameters are in Fig. 22 and
Table 8b, respectively. These indicate a good match with the experimental obser-
vations. Additionally, it is found that the identified material parameters predict a
higher pure ferritic yield curve than observed in experiments on the lab-synthesized
pure ferrite. It is emphasized that it is in principle challenging to synthesize a pure
ferrite which corresponds to the ferrite in the DP steel with respect to similarity in
chemical composition and grain size distribution. Therefore, the experimental data
regarding the pure ferritic behavior should generally be only considered carefully.

8.3 Quantification of Uncertain Material Properties

The material parameters for the micro-constituents of the DP steel are usually
obtained based on experiments on limited numbers of samples. Since the material
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behavior of the constituents depends on the production process parameters, which
may be non-uniform due to the nature of the process over large batch sizes, the
measurements might not accurately represent the complete reality. This holds in
particular for specialized laboratory productions of samples only consisting of the
pure ferrite phase, which matches the microstructure and chemical composition as
closely as possible compared to the ferrite in the DP steel. Due to the fact that
these ferrite properties are however believed to strongly influence the properties
of the overall DP steel behavior an associated uncertainty quantification analysis
was conducted as part of the project. Based on such analysis the sensitivity of the
macroscopic stress-strain response of DP steel for modified ferritic properties can
be investigated. For the analysis employed here, known probability distributions are
assumed for selected ferritic parameters which are (i) y iso

0 and y iso∞ and (ii) H kin. It
should be noted that varying y iso

0 and y iso∞ together for ferrite leads to a change in the
height of the ferritic yield curve. For each of the cases, 15,000 samples are randomly
constructed to generate Gaussian distributions as input uncertainty distributions for
the ferrite parameters y iso

0 and H kin; see Fig. 23.
Based on these assumed input distributions of the ferrite parameters the resulting

distributions of macroscopic properties are to be computed. Trained neural networks
are used here again to evaluate each of these samples and to compute the macro-
scopic DP steel responses for (i) the yield stress in compression (Rp0.25), (ii) the
Bauschinger factor (f B) and (iii) the hardening modulus around 5% compression
(H end).

The output uncertainties in the above mentioned macroscopic measures are
then plotted in the sense of their co-relation with the ferritic yield curve and the
prescribed kinematic hardening parameter in Figs. 24 and 25 respectively. The
correlation between the output macroscopic initial yield stress (Rp0.25) and the
ferritic yield curve as seen in Fig. 24a for the prescribed input, turns out to be a linear
relationship. As evident in Fig. 24b the macroscopic Bauschinger factor, changes
non-linearly with the ferritic yield curve. However, the overall small variations in
the values of the Bauschinger factor suggest that the height of the ferritic yield curve

y iso0 [GPa]

N
sa
m
pl
es

(a) H kin [GPa]

N
sa
m
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es

(b)

Fig. 23 Input uncertainty distributions for (a) variation in yiso
0 and (b) H kin ferritic material

parameters
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Fig. 24 (a) Output uncertainty of (a) Rp0.25 stress, (b) f B and (c) H end based on the variation of
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Fig. 25 (a) Output uncertainty of (a) Rp0.25 stress, (b) f B and (c) H end based on the variation of
H kin

only negligibly influences the macroscopic Bauschinger factor. Thus, it appears that
it is the overall large difference in yield stress between the ferrite and the martensite
rather than moderate changes within the ferrite itself, which is responsible for
the relatively large kinematic hardening of DP steel. Fig. 24c indicates a linear
relationship of H end with the ferritic yield curve height. Again, the values of
macroscopic moduli change only insignificantly, which indicates a small sensitivity
of macroscopic response due to modifications of the ferrite yield stress.

Now, the influence of the kinematic hardening is investigated. The variation in
the above mentioned macroscopic quantities has been considered for a prescribed
uncertainty in the linear kinematic hardening modulus H kin of the pure ferrite phase.
The results for the macroscopic initial yield stress Rp0.25 are plotted in Fig. 25a,
where a linearly reducing correlation is observed with increasing ferritic H kin. As
before, the values indicate a negligible change in Rp0.25 with modifications of H kin.
This changes significantly for the macroscopic Bauschinger factor, see the results in
Fig. 25b, which indicate a strong influence of the macroscopic Bauschinger factor
due to modifications of the ferritic kinematic hardening modulus. The relationship
is a linearly increasing one. Likewise, an also rather significant, linearly increasing
correlation is observed between H end and H kin, which has been plotted in Fig. 25c.
The results indicate that while the variation in the height of the ferritic yield curve
results in a considerable effect on the macroscopic initial yield stress and hardening
modulus, it only negligibly influences the Bauschinger factor. Whereas, the ferritic
kinematic hardening has a strong influence on the macroscopic response of the DP
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steel, especially the macroscopic Bauschinger factor. This further highlights the
necessity of employing a mixed hardening based ferritic material model for the
micro-macro simulation of relevant DP steel forming problems where effects such
as spring-back are of major importance.

Especially for uncertainty quantification problems, where the variation in the
microstructure’s morphology is considered as source of uncertainty, a high number
of different statistically similar volume elements (SSVEs) needs to be simulated.
For this purpose, an optimal decomposition approach in the context of a finite cell
integration scheme was developed in this project, see [26]. This approach allows for
an automated calculation without the necessity to construct a new mesh for each
SSVE while keeping the overall computing time even lower than for a conforming
(standard) mesh.

8.4 Crystal Plasticity

A better description of certain phenomena, e.g., localization, in crystalline materials
can be achieved by explicitly modeling the polycrystalline structure of the material.

Such materials consist of various single crystals with different orientations
which interact through the granular interfaces. By directly modeling the plastic
behavior of these single crystals, anisotropic yield and complex flow behavior can
be captured directly. As pointed out in Sect. 8, this would lead to computationally
highly expensive simulations, which can be overcome using approximations of the
response of the underlying polycrystal. However, to illustrate the procedure and
complexity of incorporating polycrystalline microstructures directly into multiscale
simulations, a single crystal plasticity model for face-centered cubic (fcc) crystals at
small strains has been implemented, considering an additive decomposition of the
small strain tensor into elastic and plastic part ε = εe + εp where ε̇p = ∑

δ γ̇ δP δ

directly connects the inelastic behavior in the individual grains to the inherent
crystallographic structure through the dependency of the rate of plastic strain on the
projected rate of plastic slip γ̇ δ summed over all systems δ. Therein, the projection
tensor P δ = sym

(
sδ ⊗ nδ

)
is defined based on the orthonormal vectors sδ ⊥ nδ ,

describing the slip system δ. Single crystal plasticity models can be distinguished
into rate-independent and rate-dependent models. Algorithms of the former type
are typically governed by the issue of non-uniqueness of choice of active slip
systems among all possible ones, [3, 16], which adds to the complexity of the
material model. Different approaches exist to handle this intrinsic problem by e.g.
simple perturbation techniques [74], augmented Lagrangian methods [85] or penalty
approaches. Recently, an alternative approach to handle the issue of non-uniqueness
among the activity of slip systems has been proposed in [84], which uses Infeasible
Primal-Dual Interior Point methods for solving the constraint optimization problem.
This method uses barrier functions combined with the given constraints of the
problem in order to penalize the approach of the boundary of the feasible domain. In
contrast to that, rate-dependent algorithms consider all slip systems to be active and
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link the rate of slip γ̇ δ on each system δ directly to the Schmid stress τ δ = σ : P δ .
The kinetic law reads

γ̇ δ = γ̇0

∣
∣
∣
∣
τ δ

gδ

∣
∣
∣
∣

p−1 (
τ δ

gδ

)
with ġδ =

∑

β

hδβ
∣
∣γ̇ β

∣
∣ , (7)

as, e.g., proposed by [39], where the hardening moduli hδβ depends on the strain-
like internal variable A with Ȧ = ∑

δ

∣
∣γ̇ δ

∣
∣.

8.5 Macroscopic Yield Surface Based on Polycrystalline RVEs

In this section, we use two-scale simulations using crystal plasticity to compute
macroscopic yield surfaces. These yield surfaces can then be used in FE2TI
simulations without directly incorporating crystal plasticity.

The influence of the microscopic polycrystalline material can be considered
to compute the resulting macroscopic anisotropic yield surfaces, as mentioned
in Sect. 8 and included in a hierarchical multiscale approach, see [32]. In the
following, a microstructure consisting of a polycrystal with multiple grains is
considered to model its macroscopic yield behavior. Here, for the computation of
macroscopic yield surfaces based on the microscopic behavior of polycrystalline
unit cells, the software Neper is used to generate a periodic unit cell with 15 grains.
The geometry is meshed using 10-noded tetrahedral finite elements. In order to
account for an isotropic orientation distribution of the polycrystalline unit cell, each
grain is assigned to a specific orientation following from a geodesic dome. For
details, we refer to [82]. With these unit cells, macroscopic yield curves based on
macroscopic biaxial loading paths, i.e. σ 1 : σ 2, σ 3 = 0, are computed in an FE2

scheme. The stress-driven simulation requires small time steps, which is amplified
by the small time step size required for the rate-dependent formulation of single
crystal plasticity. Figure 26 shows the initial yield surface at 〈α〉 = 3.3 ·10−8 as well
as the distribution of α inside the unit cell. Since the rate-dependent formulation
does not have a distinct yield point and the rate-independent behavior is here
modeled with p = 200, see Eq. (7), this value of equivalent plastic strains has been
arbitrarily chosen by the authors. The evolved macroscopic yield surface based on
a polycrystalline unit cell at 〈α〉 = 4.7 · 10−4 and a respective distribution of α is
shown in Fig. 26. As pointed out in [11], the initial yield surface forms the shape of
a Tresca-type yield criterion, whereas the further evolved yield surface is of typical
elliptical Mises-type.



394 A. Klawonn et al.

-200

-150

-100

-50

0

50

100

150

200

-200 -150 -100 -50 0 50 100 150 200

σ
2
[M

Pa
]

σ 1 [MPa]

α α

1

1

2
2

Fig. 26 Polycrystal with 15 grains. Distribution of equivalent plastic strains α for loading path
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8.6 One-Way Coupled Simulation of Deep-Drawing Using
Polycrystalline Unit Cells

Finally, in this section, we demonstrate a two-scale simulation directly incorporating
crystal plasticity on the micro scale. Such simulations are computationally expen-
sive. Only a one-way coupling is used here, and J2 elasto-plasticity is applied on the
macroscale.

In the following, a sheet metal forming process of deep-drawing of a hat-profile,
adopted from [7], using an Al-Cu alloy is simulated under consideration of the
polycrystalline microstructure in a one-way coupled FE scheme. In Fig. 27, the
finite element mesh (165 linear quadrilateral elements) is shown. The interaction
between the sheet and the tools is realized with a frictionless penalty contact
formulation. The macroscale simulation is carried out using a finite J2 elasto-
plasticity model with isotropic von Mises yield behavior based on an algorithmic
setting by [65]. The material parameters, cf. Eq. (5), were fitted to a macroscopic
uniaxial tension test with the polycrystalline unit cell used on the microscale leading
to κAl-Cu = 50,754 N/mm2, μAl-Cu = 23,425 N/mm2, yAl-Cu

0 = 125 N/mm2,

yAl-Cu∞ = 160 N/mm2, ηAl-Cu = 750 and h
Al-Cu = 1 N/mm2. The final state of

the sheet forming simulation is depicted in Fig. 28 and the distribution of equivalent
plastic strain is shown. Throughout the simulation, the deformation gradient F is
captured at three different positions, marked by �, � and © therein, at the top,
center and bottom of the sheet, respectively, leading to nine evaluation points in
total.

The recorded deformation is applied to a polycrystalline unit cell in a one-way FE
coupling. The single crystal plasticity computation is performed at small strains, as
described in Sect. 8.4. Thereby, the applied material parameters are taken from [92]
with Lamé constant λ = 35,104.88 N/mm2, shear modulus μ = 23,427.25 N/mm2,
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Fig. 27 Discretization of the macroscopic BVP of the deep-drawing of a hat profile under plane
strain conditions. 1: drawing die, 2: blank holder, 3: sheet metal (discretized with 5×33 elements),
4: punch, 5: punch radius of 7 mm, and 6: die radius of 6 mm are used. The contact definitions
between punch, drawing die, blank holder, and sheet metal are realized using a frictionless penalty
formulation. The analyzed RVEs in the macroscopic BVP are located near the punch radius, 7©,
in the vertical section, 8©, and near the die radius, 9©, according to the final deformation, cf. 28
(left). The drawing depth of the hat profile is 45.7 mm with a sheet half width of 100 mm and a
thickness of 1.4 mm

Fig. 28 Distribution of α in sheet metal at final deformed state (t = 50) and strain-like internal
variable A in polycrystalline unit cells at different points
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initial slip resistance τ0 = 60.84 N/mm2, saturation stress τ∞ = 109.51 N/mm2,
initial hardening modulus h0 = 541.48 N/mm2, material rate sensitivity parameter
p = 200, and reference slip rate γ̇0 = 1 · 10−3. The small strain tensor ε is used to
transfer the deformation state from the macroscale to the microscale, however, no
coupling back from micro- to macroscale is considered.

In Fig. 28, the distribution of equivalent plastic strain α in the hat-profile and
the distribution of the strain-like internal variable A as a result of the evaluation
of the one-way coupled polycrystalline unit cells is shown. Differences between the
positions of the polycrystals in the sheet are obvious as well as the nonhomogeneous
distribution of A.

9 Conclusion

The vision of the EXASTEEL project is to develop a virtual HPC laboratory
allowing for predictive virtual material testing of modern steels. On this path, we
have moved forward in several directions: Since the properties of modern dual-phase
steels largely stem from their microstructure, homogenization is indispensable to
achieve our goals. We therefore have developed and implemented the FE2TI library,
a highly scalable software for computational homogenization based on the FE2

approach (Sects. 2–4). This approach was then used, for the first time, to compute a
forming limit diagram for DP600 steel using the JUWELS supercomputer (Sect. 5).
Let us remark that the computation of an FLD is already a step beyond the
achievements envisaged in the original EXASTEEL-2 proposal. We have also
shown scalability of the FE2TI package up to the largest supercomputers currently
available, e.g., using more than one million MPI ranks for nonlinear production
problems, i.e., using unstructured meshes, elasto-plasticity, and full parallel I/O [64]
(Sect. 3). These latter simulations use parallel FETI-DP solvers for the RVE
problems and made use of the full JUQUEEN supercomputer.

To move towards full use of the future exascale supercomputers, we have worked
on extending the parallel scalability of implicit nonlinear FETI-DP and BDDC
domain decomposition solvers (Sect. 6). Scalability to 800,000 parallel tasks was
achieved for our nonlinear solvers [54], outside of our parallel FE2 multiscale
context; see Fig. 15. These simulations used the full Mira supercomputer. We have
also considered techniques to improve the energy efficiency of our nonlinear domain
decomposition solvers (Sect. 6.1.1). Careful performance analysis and engineering
was applied to the FE2TI software building blocks, e.g., for the performance
engineering of the sparse triangular solves of the PARDISO sparse direct solver
(Sect. 7).

For the modeling, considering initial volumetric strains, resulting from the
complex steel production process, has shown to be of interest; therefore, an
efficient algorithmic approach to IVS was proposed (Sects. 8.1 and 8.2). This IVS
approach has been implemented in FE2TI. Further improvements in our modeling
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may be achieved by incorporating effects from crystal plasticity (Sect. 8.4). An
approach to fit macroscopic yield surfaces to crystal plasticity simulations was
presented (Sect. 8.5). The resulting yield surfaces can be used in FE2TI without
using an explicit coupling with crystal plasticity simulations. However, we have
also demonstrated a two-scale simulation using a one-way coupling with crystal
plasticity (Sect. 8.6).

For the quantitatively predictive simulations envisaged in this project, several
improvements are planned for the future. First, realistic material models reproducing
the physics on the microscale are important. Different advanced approaches beyond
the ones considered so far may be of interest, e.g., based on the techniques described
in Sect. 8. Second, for the computation of the FLD, the exploitation of the symmetry
of the Nakajima specimen has to be reviewed and, especially for strongly anisotropic
microstructures, simulations using the full geometry have to be performed for all
specimen. Third, a validation with experiments for steels other than DP600 will be
necessary. Finally, once exascale supercomputers will be available, predictive virtual
steel simulations at the exascale will leverage the combined parallelism of the FE2

algorithm and of the parallel nonlinear domain decomposition solvers.
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