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Abstract. Kauffman monoids Kn and Jones monoids Jn, n = 2, 3, . . . ,
are two families of monoids relevant in knot theory. We prove a somewhat
counterintuitive result that the Kauffman monoids K3 and K4 satisfy
exactly the same identities. This leads to a polynomial time algorithm
to check whether a given identity holds in K4 . As a byproduct, we also
find a polynomial time algorithm for checking identities in the Jones
monoid J4.

1 Background I: Identities and identity checking

The present paper deals with the computational complexity of a combina-
torial decision problem (identity checking problem) related to certain alge-
braic structures originated in knot theory (Kauffman and Jones monoids).
Since our results and their proofs involve concepts from several different
areas, the list of necessary prerequisites is relatively long. We assume the
reader’s familiarity with basic notions of computational complexity and
semigroup theory; see, e.g., the early chapters of [Papadimitriou, 1994]
and [Clifford and Preston, 1961], respectively. Modulo these basics, we
tried to make the paper self-contained, to a reasonable extent. In particu-
lar, in this section we give a quick introduction into semigroup identities
and their checking while the next section provides detailed geometric def-
initions of Kauffman and Jones monoids.

We fix a countably infinite set X which we call an alphabet and which
elements we refer to as letters. The set X+ of finite sequences of letters
forms a semigroup under concatenation which is called the free semigroup
over X . Elements of X+ are called words over X . If w = x1 · · · xℓ with
x1, . . . , xℓ ∈ X is a word over X , the set {x1, . . . , xℓ} is called the content
of w and is denoted alph(w) while the number ℓ is referred to as the
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length of w and is denoted |w|. We say that a letter x ∈ X occurs in a
word w ∈ X+ or, alternatively, w involves x whenever x ∈ alph(w).

An identity is an expression of the form w ≏ w′ with w,w′ ∈ X+. If S
is a semigroup, we say that the identity w ≏ w′ holds in S or, alternatively,
S satisfies w ≏ w′ if wϕ = w′ϕ for every homomorphism ϕ : X+ → S. If
w ≏ w′ does not holds in S, we say that it fails in S.

The following observations are immediate: if a semigroup S satisfies
an identity w ≏ w′, so do each subsemigroup and each quotient of S; if
semigroups S1 and S2 satisfy w ≏ w′, so does their direct product S1×S2.

It is well known and easy to see that the free semigroup X+ possesses
the following universal property: for every semigroup S, every mapping
X → S uniquely extends to a homomorphism X+ → S. Thus, the ho-
momorphisms X+ → S are in a 1-1 correspondence with the mappings
X → S, which we call substitutions. Therefore we can restate the fact of
w ≏ w′ holding in S also in the following terms: every substitution of
elements in S for letters in X yields equal values to w and w′.

Given a semigroup S, its identity checking problem1 Check-Id(S)
is the following decision problem. The instance of Check-Id(S) is an
arbitrary identity w ≏ w′. The answer to the instance w ≏ w′ is ‘YES’
whenever the identity w ≏ w′ holds in S; otherwise, the answer is ‘NO’.

We stress that here S is fixed and it is the identity w ≏ w′ that serves
as the input so that the time/space complexity of Check-Id(S) should
be measured in terms of the size of the identity, that is, in |ww′|.

Studying computational complexity of identity checking in semigroups
(and other ‘classical’ algebras such as groups and rings) was proposed
by Sapir in the influential survey [Kharlampovich and Sapir, 1995], see
Problem 2.4 therein. For a finite semigroup S, the problem Check-Id(S)
is always decidable. Indeed, given an identity w ≏ w′, there are only
finitely many substitutions of elements in S for letters in alph(ww′), and
one can check whether or not each of these substitutions yields equal
values to w and w′. Moreover, Check-Id(S) with S being finite belongs to
the complexity class coNP: if for some words w,w′ that involvem letters in
total, the identity w ≏ w′ fails in the semigroup S, then a nondeterministic
algorithm can guess an m-tuple of elements in S witnessing the failure
and then verify the guess by computing the values of the words w and w′

under the substitution that sends the letters occurring in w ≏ w′ to the
entries of the guessed m-tuple. With multiplication in S assumed to be
performed in unit time, the algorithm takes linear in |ww′| time.

1 Also called the ‘term equivalence problem’ in the literature.



In the literature, there exists many examples of finite semigroups
whose identity checking problem is coNP-complete; see, e.g., [Almeida et al.,
2008; Horváth et al., 2007; Jackson and McKenzie, 2006; Kisielewicz, 2004;
Kĺıma, 2009, 2012; Plescheva and Vértesi, 2006; Seif, 2005; Seif and Szabó,
2006] and the references therein. However, the task of classifying finite
semigroups according to the computational complexity of identity check-
ing appears to be far from being feasible. In particular, it is not yet
accomplished even in the case when a semigroup under consideration is
a finite group. Just to give a hint of difficulties that one encounters when
approaching this task, we mention the following result by Kĺıma [2009]: a
finite semigroup S with Check-Id(S) in P may have both a subsemigroup
and a quotient whose identity checking problems are coNP-complete.

Studying the identity checking problem for infinite semigroups can-
not rely on the ‘finite’ methods outlined above. Clearly, the brute-force
approach of checking through all possible substitutions fails since the set
of such substitutions becomes infinite if their range is an infinite semi-
group. The nondeterministic guessing algorithm also fails in general be-
cause an infinite semigroup S may have undecidable word problem so that
it might be impossible to decide whether or not the values of two words
under a substitution are equal in S. Murskǐı [1968] had constructed an
infinite semigroup S such that the problem Check-Id(S) is undecidable.
On the other hand, for many ‘natural’ infinite semigroups such as semi-
groups of transformations of an infinite set, or semigroups of relations on
an infinite domain, or semigroups of matrices over an infinite ring, the
identity checking problem trivializes since such ‘big’ semigroups satisfy
only trivial identities, that is, identities of the form w ≏ w. Yet another
class of ‘natural’ infinite semigroups with easy identity checking is formed
by various commutative structures in arithmetics and algebra such as in-
teger numbers or real polynomials, say, under addition or multiplication.
It is folklore that these commutative semigroups satisfy exactly so-called
balanced identities. (An identity w ≏ w′ is said to be balanced if every let-
ter occurs in w and w′ the same number of times. Clearly, this condition
can be verified in linear in |ww′| time.)

For a long time, there were no results on the computational com-
plexity of identity checking for infinite semigroups, except for the two
aforementioned extremes—undecidability and trivial or easy decidability
in linear time. Only recently, the situation has started to change, and a
few examples of infinite semigroups with identity checking decidable in
a nontrivial way have appeared. An interesting instance here is the so-
called bicyclic monoid B generated by two elements a and b subject to



the relation ba = 1; this monoid is known to play a distinguished role in
the structure theory of semigroups. The fact that B satisfies a nontrivial
identity was first discovered by Adian [1962]. After that, various combi-
natorial, computational, and geometric aspects of identities holding in B

were examined in the literature, see, e.g., [Shneerson, 1989; Shleifer, 1990;
Pastijn, 2006], but only short while ago Daviaud et al. [2018] have shown
that checking identities in B can be done in polynomial time via quite a
tricky algorithm based on linear programming. Another example is the
Kauffman monoid K3 generated by three elements h1, h2, and c subject
to the relations hih3−ihi = hi and h2i = chi = hic, i = 1, 2; a recent
paper by Chen et al. [2020] provides an algorithm for checking identities
in K3 in quasilinear time. The main result of the present paper extends
this algorithm to the Kauffman monoid K4, which we define next.

2 Background II: Kauffman and Jones monoids

Let n be an integer greater than 1. The Kauffman monoid2 Kn can be
defined as the monoid with n generators c, h1, . . . , hn−1 subject to the
following relations:

hihj = hjhi if |i− j| ≥ 2, i, j = 1, . . . , n− 1; (1)

hihjhi = hi if |i− j| = 1, i, j = 1, . . . , n− 1; (2)

h2i = chi = hic for each i = 1, . . . , n − 1. (3)

Kauffman monoids play an important role in knot theory, low-dimensional
topology, topological quantum field theory, quantum groups, etc. As al-
gebraic objects, these monoids belong to the family of so-called diagram
or Brauer-type monoids that originally arose in representation theory
[Brauer, 1937] and have been intensively studied from various viewpoints
over the last two decades; see, e.g., [Auinger, 2012, 2014; Auinger et al.,
2012, 2015; Dolinka and East, 2017, 2018; Dolinka et al., 2015, 2017, 2019;
East, 2011a,b, 2014a,b, 2018, 2019a,b; East and FitzGerald, 2012; East and Gray,
2017; East et al., 2018; FitzGerald and Lau, 2011; Kudryavtseva et al.,
2006; Kudryavtseva and Mazorchuk, 2006, 2007; Lau and FitzGerald, 2006;
Maltcev and Mazorchuk, 2007; Mazorchuk, 1998, 2002] and references
therein.

It is convenient to use, along with the above definition of the monoids
Kn in terms of generators and relations, their more geometric defini-

2 The name comes from [Borisavljević et al., 2002]; in the literature one also meets
the name Temperley–Lieb–Kauffman monoids [see, e.g., Bokut’ and Lee, 2005].



tion due to Kauffman [1990]. We present the latter definition, follow-
ing [Auinger et al., 2015], where the monoids Kn arise as ‘planar’ sub-
monoids in monoids from a more general (but easier to define) family.

Let [n] := {1, . . . , n}, [n]′ := {1′, . . . , n′} be two disjoint copies of the
set of the first n positive integers. Consider the set Wn of all pairs (π; s)
where π is a partition of the 2n-element set [n]∪ [n]′ into 2-element blocks
and s is a nonnegative integer referred to as the number of circles. Such a
pair is represented by a wire diagram as shown in Fig. 1. We represent the
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Fig. 1. Wire diagram representing an element of W9

elements of [n] by points on the left hand side of the diagram (left points)
while the elements of [n]′ are represented by points on the right hand side
of the diagram (right points). We will omit the labels 1, 2, . . . , 1′, 2′, . . . in
our further illustrations. Now, for (π; s) ∈ Wn, we represent the number
s by s closed curves (‘circles’) drawn somewhere within the diagram and
each block of the partition π is represented by a line referred to as a wire.
Thus, each wire connects two points; it is called an ℓ-wire if it connects
two left points, an r-wire if it connects two right points, and a t-wire if it
connects a left point with a right point. The wire diagram in Fig. 1 has
three wires of each type and corresponds to the pair

({
{1, 5′}, {2, 4}, {3, 5}, {6, 9′}, {7, 9}, {8, 8′}, {1′, 2′}, {3′, 4′}, {6′, 7′}

}
; 3

)
.

Now we define a multiplication in Wn. Pictorially, in order to multiply
two diagrams, we glue their wires together by identifying each right point
u′ of the first diagram with the corresponding left point u of the second di-
agram. This way we obtain a new diagram whose left (respectively, right)
points are the left (respectively, right) points of the first (respectively,



second) diagram. Two points of this new diagram are connected in it if
one can reach one of them from the other by walking along a sequence of
consecutive wires of the factors, see Fig. 2. All circles of the factors are
inherited by the product; in addition, some extra circles may arise from
r-wires of the first diagram combined with ℓ-wires of the second diagram.

In more precise terms, if ξ = (π1; s1), η = (π2; s2), then a left point
p and a right point q′ of the product ξη are connected by a t-wire if and
only if one of the following conditions holds:

• p u′ is a t-wire in ξ and u q′ is a t-wire in η for some u ∈ [n];

• for some s > 1 and some u1, v1, u2, . . . , vs−1, us ∈ [n] (all pairwise dis-
tinct), p u′1 is a t-wire in ξ and us q′ is a t-wire in η, while ui vi
is an ℓ-wire in η and v′i u′i+1 is an r-wire in ξ for each i = 1, . . . , s− 1.
(The reader may trace an application of the second rule in Fig. 2, in which
such a ‘composite’ t-wire connects 1 and 3′ in the product diagram.)
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Fig. 2. Multiplication of wire diagrams

Analogous characterizations hold for the ℓ-wires and r-wires of ξη.
Here we include only the rules for forming ℓ-wires as the r-wires of the
product are obtained in a perfectly symmetric way.

Two left points p and q of ξη are connected by an ℓ-wire if and only
if one of the following conditions holds:

• p q is an ℓ-wire in ξ;

• for some s ≥ 1 and some u1, v1, u2, . . . , vs ∈ [n] (all pairwise distinct),
p u′1 and q v′s are t-wires in ξ, while ui vi is an ℓ-wire in η for
each i = 1, . . . , s and if s > 1, then v′i u′i+1 is an r-wire in ξ for each
i = 1, . . . , s− 1.



(Again, Fig. 2 provides an instance of the second rule: look at the ℓ-wire
that connects 6 and 8 in the product diagram.)

Finally, each circle of the product ξη corresponds to either a circle
in ξ or η or a sequence u1, v1, . . . , us, vs ∈ [n] with s ≥ 1 and pairwise
distinct u1, v1, . . . , us, vs such that all ui vi are ℓ-wires in η, while all
v′i u′i+1 and v

′

s u′1 are r-wires in ξ.
It easy to see that the above defined multiplication inWn is associative

and that the diagram with 0 circles and the n horizontal t-wires 1 1′,
. . . , n n′ is the identity element with respect to the multiplication.
Thus, Wn is a monoid that we term the wire monoid.

Kauffman [1990] has defined the connection monoid Cn as the sub-
monoid of Wn consisting of all elements of Wn that have a representation
as a diagram whose wires do not cross. (Thus, the left factor and the prod-
uct in the multiplication example in Fig. 2 are not elements of Cn, while
the right factor lies in Cn.) Kauffman has shown that Cn is generated by
the hooks h1, . . . , hn−1, where

hi :=
({

{i, i + 1}, {i′, (i+ 1)′}, {j, j′} | for all j 6= i, i+ 1
}
; 0

)
,

and the circle c :=
({

{j, j′} | for all j = 1, . . . , n
}
; 1

)
, see Fig. 3 for an

illustration. It is easy to check that the generators h1, . . . , hn−1, c sat-
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Fig. 3. The hooks h1, . . . , h8 and the circle c in C9

isfy the relations (1)–(3), whence there exists a homomorphism from the
Kauffman monoid Kn onto the connection monoid Cn. In fact, this homo-
morphism is an isomorphism between Kn and Cn; see [Kauffman, 1990]
for a proof outline and [Borisavljević et al., 2002] for a very detailed ar-
gument. Thus, we may (and will) identify Kn with Cn in what follows.



Denote by Jn the set of all diagrams in Kn without circles. Observe
that this set is finite; in fact, it is known that the cardinality of Jn is

the n-th Catalan number
1

n+ 1

(
2n

n

)
. We define the multiplication of

two diagrams in Jn as follows: we multiply the diagrams as elements
of Kn and then reduce the product to a diagram in Jn by removing
all circles. This multiplication makes Jn a monoid known as the Jones
monoid3. Observe that Jn is not a submonoid of Kn; at the same time,
the ‘erasing’ map ξ 7→ ξ̄ that forgets the circles of each diagram ξ ∈ Kn

is easily seen to be a surjective homomorphism of Kn onto Jn. The hooks
h1, . . . , hn−1 clearly satisfy h̄i = hi while c̄ is the identity element of
Jn. This implies that the monoid Jn is generated by h̄1, . . . , h̄n−1 and
that h̄2i = h̄i for each i = 1, . . . , n − 1. Moreover, if ‖ξ‖ stands for the
number of circles of the diagram ξ ∈ Kn, then the map ξ 7→

(
ξ̄, ‖ξ‖

)
is a

bijection between Kn and the cartesian product of Jn with the set N0 of
nonnegative integers. Here is a simple formula for multiplying diagrams
from Kn in these ‘coordinates’:

(
ξ̄, ‖ξ‖

)
·
(
η̄, ‖η‖

)
=

(
ξ̄η̄, ‖ξ‖+ ‖η‖ + 〈ξ̄, η̄〉

)
, (4)

where the term 〈ξ̄, η̄〉 denotes the number of circles removed when the
product ξ̄η̄ in Jn is formed.

Now, following an idea by Auinger (personal communication), we em-

bed the monoid Kn into a larger monoid K̂n which is easier to deal with.
In terms of generators and relations, the extended Kauffman monoid K̂n

can be defined as the monoid with n + 1 generators c, d, h1, . . . , hn−1

subject to the relations (1)–(3) and the additional relations

cd = dc = 1. (5)

Observe that the relations (3) and (5) imply that dhi = hid for each
i = 1, . . . , n− 1. Indeed,

dhi = d2chi since dc = 1

= d2hic since chi = hic

= d2hic
2d since cd = 1

= d2c2hid since c2hi = hic
2

= hid since d2c2 = 1.

3 The name was suggested by Lau and FitzGerald [2006] to honor the contribution of
V.F.R. Jones to the theory [see, e.g., Jones, 1983, Section 4].



It is easy to see that the submonoid of K̂n generated by c, h1, . . . , hn−1 is
isomorphic to Kn.

The interpretation of the extended Kauffman monoid in terms of di-
agrams is a bit less natural as it requires introducing two sorts of circles:
positive and negative. Each diagram may contain only circles of one sort.
When two diagrams are multiplied, the following two rules are obeyed: all
newly created circles (which arise when the diagrams are glued together)
are positive; in addition, if the product diagram inherits some negative
circles from its factors, then pairs of ‘opposite’ circles are consecutively
removed until only circles of a single sort (or no circles at all) remain. The
Kauffman monoid Kn is then nothing but the submonoid of all diagrams
having only positive circles or no circles at all.

Clearly, the ‘erasing’ homomorphism of Kn onto Jn extends to the
monoid K̂n. If we extend also the circle-counting map Kn → N0 to K̂n,
letting ‖ξ‖ = −n for each diagram ξ with n negative circles, we get that

K̂n can be identified with Jn×Z, the cartesian product of the correspond-
ing Jones monoid with the set of all integers, the multiplication on Jn×Z

being defined by the formula (4).

3 Rees matrix semigroups and their identities

We briefly recall the Rees matrix construction; see [Clifford and Preston,
1961, Chapter 3] for details and the explanation of the distinguished role
played by this construction in the structure theory of semigroups. Let
G be a group, 0 a symbol beyond G, and I, Λ non-empty sets. Given a
Λ × I -matrix P = (pλi) over G ∪ {0}, we define a multiplication on the
set (I × G× Λ) ∪ {0} by the following rules:

a · 0 = 0 · a := 0 for all a ∈ (I × G× Λ) ∪ {0},

(i, g, λ) · (j, h, µ) :=

{
(i, gpλjh, µ) if pλj 6= 0,

0 if pλj = 0.

(6)

The multiplication is easily seen to be associative so that (I×G×Λ)∪{0}
becomes a semigroup. We denoted it by M0(I,G, Λ;P ) and call the Rees
matrix semigroup over G with the sandwich matrix P . If the matrix P has
no zero entries, the set I×G×Λ forms a subsemigroup in M0(I,G, Λ;P ).
We denote this subsemigroup by M(I,G, Λ;P ) and apply the name ‘Rees
matrix semigroup’ also to it.

We need a combinatorial characterization of identities holding in every
Rees matrix semigroup over an abelian group. In order to formulate it,
we recall a few definitions.



For a semigroup S, the notation S1 stands for the least monoid con-
taining S, that is, S1 := S if S has an identity element and S1 := S ∪ {1}
if S has no identity element. In the latter case the multiplication in S is
extended to S1 in a unique way such that the fresh symbol 1 becomes the
identity element in S1. We adopt the following notational convention: for
s ∈ S, the expression s0 stands for the identity element of S1.

Recall that we have fixed a countably infinite alphabet X . The monoid
X∗ := (X+)1 is called the free monoid over X . We say that a word v ∈ X+

occurs in a word w ∈ X+ if w = u1vu2 for some words u1, u2 ∈ X∗.
Clearly, v may have several occurrences in w; we denote the number of
occurrences of v in w by occv(w).

Proposition 1. An identity w ≏ w′ holds in every Rees matrix semi-
group over an abelian group if and only if the words w and w′ satisfy the
following three conditions:

(a) the first letter of w is the same as the first letter of w′;

(b) the last letter of w is the same as the last letter of w′;

(c) for each word v of length 2, occv(w) = occv(w
′).

Proof. The result is basically known. For the special case of Rees matrix
semigroups of the formM(I,G, Λ;P ), it had been proven by Kim and Roush
[1979]; some other special cases were considered in a preprint by Mashevitzky
[1980]. For the reader’s convenience, we provide a self-contained proof
(which is not difficult at all).

For the ‘only if’ part, let C∞ stand for the infinite cyclic group. We
fix a generator c for C∞ and consider the Rees matrix semigroup S :=

M ({1, 2},C∞, {1, 2};P ) where P :=

(
e c
e e

)
, with e := c0. The identity

w ≏ w′ holds in S. Define a substitution α : X → S by

xα =

{
(1, e, 1) if x is the first letter of w,

(2, e, 2) otherwise.

By (6), the first entry of the triple wα is 1, and since wα = w′α, so is the
first entry of the triple w′α. This is only possible provided that w′ starts
with x. We have thus shown that the condition (a) is satisfied. Similarly,
by using the substitution ω : X → S such that

xω =

{
(1, e, 1) if x is the last letter of w,

(2, e, 2) otherwise,



one verifies that (b) holds as well.
In order to verify (c), take a word v of length 2 that occurs in w. First

consider the case of v = yz, with y and z being distinct. Here we invoke
the substitution ϑ : X → S such that

xϑ =





(1, e, 1) if x = y,

(2, e, 2) if x = z,

(1, e, 2) otherwise.

Using the rule (6) and the structure of the sandwich matrix P , we see
that the middle entries of the triples wϑ and w′ϑ are equal to coccyz(w)

and respectively coccyz(w
′). Since wϑ = w′ϑ, we get occyz(w) = occyz(w

′).
It remains to analyze the case of v = y2. In this case the substitution

ψ : X → S defined by

xψ =

{
(2, e, 1) if x = y,

(1, e, 2) otherwise

has the property that the middle entries of the triples wψ and w′φ are
equal to coccy2(w) and respectively coccy2(w

′). The equality wψ = w′ψ
yields occy2(w) = occy2(w

′). Thus, (c) holds for every word of length 2.
For the ‘if’ part, we isolate an observation that will be re-used later.

Lemma 1. If two words w and w′ satisfy the conditions (a)–(c), then
each letter occurs in w and w′ the same number of times.

Proof. For each letter x ∈ alph(w), we have

occx(w) =
∑

y∈alph(w)

occxy(w) +

{
1 if the last letter of w is x,

0 otherwise.

The same formula holds for w′ and since, by (c), occxy(w) = occxy(w
′)

for every letter y and, by (b), w′ ends with x if and only if so does w, we
conclude that occx(w) = occx(w

′). ⊓⊔

Now consider an arbitrary abelian group G and an arbitrary Rees
matrix semigroup M0(I,G, Λ;P ) over G. Take any substitution

ϕ : X → M0(I,G, Λ;P ).

If xϕ = 0 for some x ∈ alph(w), then clearly wϕ = 0 and, by Lemma 1,
w′ϕ = 0, too. Thus, assume that xϕ ∈ I×G×Λ for every x ∈ alph(w). Let



xϕ = (i(x), g(x), λ(x)). The multiplication rule (6) then ensures that the
equality wϕ = 0 is only possible if pλ(x)i(y) = 0 for some (not necessarily
distinct) letters x, y such that the word xy occurs in w. By (c), xy occurs
also in w′ whence w′ϕ = 0. By symmetry, w′ϕ = 0 implies wϕ = 0.

It remains to analyze the situation with both wϕ 6= 0 and w′ϕ 6= 0,
in which case pλ(x)i(y) ∈ G whenever the word xy occurs in w. Let xfirst
and xlast be the first and respectively the last letter of w. Using the
rule (6) and the fact that the group G is abelian, one readily computes
that wϕ = (i(xfirst), g, λ(xlast)), with the middle entry g given by the
following expression:

g =
∏

x∈alph(w)

g(x)occx(w) ×
∏

x,y∈alph(w)
xy occurs in w

p
occxy(w)
λ(x)i(y) .

In view of (a)–(c) and Lemma 1, we get w′ϕ = (i(xfirst), g, λ(xlast)), with
the same group entry g. Hence, the equality wϕ = w′ϕ holds. ⊓⊔

4 Structure and identities of J4

The main aim of the present paper is the identity checking problem for the
Kauffman monoid K4. In view of the bijection between K4 and J4×N0, it
is handy to have a closer look at the Jones monoid J4. The latter monoid

consists of
1

5

(
8

4

)
= 14 diagrams: the identity diagram with four t-wires,

nine diagrams with two t-wires, and four diagrams without t-wires. Fig. 4
shows the nonidentity diagrams in J4.

As a warm-up for our core results, we prove here a structure prop-
erty of the monoid J4. This property quickly leads to a polynomial time
algorithm for Check-Id(J4).

Let J♭4 be the ideal of J4 consisting of its nonidentity diagrams, that
is, of the 13 diagrams shown in Fig. 4. We consider the following ‘cutting’
map c : J♭4 → J♭4: if a diagram has no t-wires, c fixes it; if a diagram has
two t-wires, c cuts the t-wires and then connects the loose ends, forming
one new ℓ-wire and one new r-wire, see Fig. 5 for an illustration. More
formally, the action of c on a diagram with two t-wires amounts to:

– connecting the left points of the t-wires with an ℓ-wire;
– connecting the right points of the t-wires with an r-wire;
– removing the t-wires.

Observe that the above operations make sense for diagrams with two
t-wires in the Jones monoid Jn for every even n ≥ 4.



h̄3 h̄3h̄2 h̄3h̄2h̄1

h̄2h̄3 h̄2 h̄2h̄1

h̄1h̄2h̄3 h̄1h̄2 h̄1

h̄1h̄3 h̄1h̄3h̄2

h̄2h̄1h̄3 h̄2h̄1h̄3h̄2

Fig. 4. The nonidentity diagrams in J4



For the nine diagrams with two t-wires in the 3 × 3-matrix in the
upper half of Fig. 4, the effect of the map c can be described as follows:

– each of the four corner diagrams is sent to h̄1h̄3;
– each of the two extreme diagrams in the middle row (column) is sent

to h̄2h̄1h̄3 (respectively, h̄1h̄3h̄2);
– the central diagram is sent to h̄2h̄1h̄3h̄2.

Fig. 5. The cutting map c on J
♭
4

Lemma 2. The map c : J♭4 → J♭4 is an endomorphism of J♭4.

Proof. The lemma can be verified by a direct computation. We prefer a
more geometric argument since it also works in a more general situation.

Let ξ ∈ J♭4 have two t-wires. Then the ℓ-wires of ξc are:

the ℓ-wire of ξ, and

the ℓ-wire that connects the left points of the t-wires of ξ.
(7)

Now consider an arbitrary diagram η ∈ J♭4. The product ξc · ηc has the
same ℓ-wires (7). The product ξη has either two or no t-wires. In the
latter case its ℓ-wires coincide with those in (7). If ξη has two t-wires,
their left points are the same as the left points of the t-wires of ξ whence
the ℓ-wires of (ξη)c are those in (7) again.

We see that the ℓ-wires of ξc · ηc and (ξη)c are equal. By symmetry,
ξc · ηc and (ξη)c have the same r-wires as well. Hence, ξc · ηc = (ξη)c. ⊓⊔

Remark 1. Let n ≥ 4 be an even number. The set J♭n of all diagrams with
at most two t-wires forms a subsemigroup in the Jones monoid Jn. The
proof of Lemma 2 shows that the cutting map is an endomorphism of J♭n.

An endomorphism that fixes each element in its image is called a
retraction. We need the following folklore result of semigroup theory.



Lemma 3. If ϕ is a retraction of a semigroup S such that Sϕ is an ideal
of S, then S is isomorphic to a subdirect product of the ideal Sϕ with the
Rees quotient S/Sϕ. ⊓⊔

Proposition 2. The semigroup J♭4 is isomorphic to a subdirect prod-
uct of a 2 × 2 rectangular band with the Rees matrix semigroup M3 :=

M0
(
{1, 2, 3},E, {1, 2, 3};

(
e e 0
e e e
0 e e

))
over the one-element group E = {e}.

Proof. By the definition of the map c : J♭4 → J♭4, its image is the set I4

consisting of the four diagrams in J♭4 that have no t-wires. Since c fixes
each diagram in I4 and is an endomorphism by Lemma 2, c is a retraction.
Clearly, I4 is an ideal of J♭4. We are in a position to apply Lemma 3, which
yields that J♭4 is isomorphic to a subdirect product of the ideal I4 with
the Rees quotient J♭4/I4.

Obviously, I4 is a 2 × 2 rectangular band. As for the Rees quotient
J♭4/I4, it can be mapped onto the Rees matrix semigroup M3 as follows:
the zero of J♭4/I4 is sent to 0 and the diagram in the i-th row and j-th
column of the 3× 3-matrix in the upper half of Fig. 4 is sent to the triple
(i, e, j). One can directly verify that the bijection defined this way is an
isomorphism between J♭4/I4 and M3. ⊓⊔

Clearly, an identity holds in a subdirect product if and only if it holds
in every factor of the product. Thus, Proposition 2 implies that an identity
holds in the semigroup J♭4 if and only if it holds in both I4 and M3.
Observe that the triples (i, e, j) ∈ M3 with i, j ∈ {1, 2} form a 2 × 2
rectangular band. We see that I4 is isomorphic to a subsemigroup in
M3, and thus, satisfies all identities of the latter semigroup. Hence, the
semigroups J♭4 and M3 are equationally equivalent, that is, they satisfy
the same identities.

A combinatorial characterization of the identities of M3 is known.
Namely, it easily follows from a result by Trahtman [1981] that an identity
w ≏ w′ holds inM3 if and only if the words w and w′ satisfy the conditions
(a) and (b) of Proposition 1 along with the following condition:

(c’) each word of length 2 occurs in w if and only if it occurs in w′.

It is easy to characterize identities of a semigroup S that are inherited
by the monoid S1. Namely, for a word w ∈ X+ and a proper subset Y
of alph(w), denote by wY the word obtained from w by removing all
occurrences of the letters in Y . The following observation is another part
of semigroup folklore.



Lemma 4. Let S be a semigroup. The monoid S1 satisfies an identity
w ≏ w′ with alph(w) = alph(w′) if and only if the identity wY ≏ w′

Y

holds in S for each Y ⊂ alph(w). ⊓⊔

The restriction alph(w) = alph(w′) in Lemma 4 is not essential for what
follows because a monoid satisfying a semigroup identity w ≏ w′ with
alph(w) 6= alph(w′) is easily seen to be a group while monoids we consider
are very far from being groups.

Lemma 4 readily implies that if two semigroups S1 and S2 are equa-
tionally equivalent, so are the monoids S11 and S12. Hence, the Jones
monoid J4 is equationally equivalent to the monoid M1

3. Summing up,
we get the following characterization of the identities of the monoid J4.

Theorem 1. An identity w ≏ w′ holds in the Jones monoid J4 if and
only if alph(w) = alph(w′) and, for each Y ⊂ alph(w), the words u := wY

and u′ := w′

Y satisfy the following three conditions:

(a) the first letter of u is the same as the first letter of u′;
(b) the last letter of u is the same as the last letter of u′;
(c’) each word of length 2 occurs in u if and only if it occurs in u′. ⊓⊔

Remark 2. It is not immediately clear whether Theorem 1 provides a
polynomial time algorithm for Check-Id(J4) since a brute force ver-
ification of the conditions (a)–(c’) for every proper subset of the set
alph(w) requires exponential in | alph(w)| time. In fact, there exist exam-
ples of finite semigroups S such that Check-Id(S) is in P while Check-

Id(S1) is coNP-complete, see, e.g., [Seif, 2005; Kĺıma, 2009]. However,
Seif and Szabó [2006] have proved that one can verify the conditions (a)–
(c’) in polynomial in |ww′| time. Thus, Check-Id(J4) lies in P. Moreover,
using methods developed in [Chen et al., 2020], one can check whether or
nor the monoid J4 satisfies an identity w ≏ w′ with | alph(w)| = k and
|ww′| = n in O(kn log(kn)) time.

5 Structure of K̂4 and identities of K4

We are ready to attack the identity checking problem for the Kauffman
monoid K4. We approach the problem via a structure property as we did
in Section 4 for Check-Id(J4). We start with lifting the cutting map c

from Jones to Kauffman monoids; technically, it is more convenient to lift
the map to the extended Kauffman monoid K̂4.

Let K̂♭
4 be the ideal of K̂4 consisting of all diagrams with at most two

t-wires; in other words, K̂♭
4 is nothing but the preimage of J♭4 under the



erasing map ξ 7→ ξ̄. We define a map C : K̂♭
4 → K̂♭

4 as follows: C fixes each
diagram that has no t-wires; if a diagram has two t-wires, C cuts out the
middle of each t-wire and then connects the loose ends, forming one new
ℓ-wire, one new r-wire, and a new negative circle, which then annihilates
with a positive circle provided the initial diagram had positive circles. See
Fig. 5 for an illustration.

Fig. 6. The cutting map C on K̂
♭
4 ; solid/dashed circles are positive/negative

Formally, if a diagram ξ ∈ K̂♭
4 corresponds to the pair

(
ξ̄, ‖ξ‖

)
∈ J♭4×Z,

then ξC is the diagram corresponding to the pair
(
ξ̄c, ‖ξ‖−1

)
if ξ has two

t-wires and ξC = ξ otherwise. Observe that ξC = ξ̄c for every ξ ∈ K̂♭
4.

Lemma 5. The map C : K̂♭
4 → K̂♭

4 is an endomorphism of K̂♭
4.

Proof. We have to show that ξC · ηC = (ξη)C for arbitrary diagrams

ξ, η ∈ K̂♭
4. If both ξ and η have no t-wires, so does ξη, and the required

equality clearly holds. Thus, we may assume that at least one of the
diagrams has two t-wires. Due to the symmetry, it is sufficient to analyze
the situation when ξ has two t-wires.

In terms of the coordinatization of K̂4, the diagram ξC·ηC corresponds
to the pair

(
ξC · ηC, ‖ξC · ηC‖

)
while the pair corresponding to (ξη)C is(

(ξη)C, ‖(ξη)C‖
)
. The equality of the first entries of these pairs easily

follows from Lemma 2. Indeed,

ξC · ηC = ξC · ηC = ξ̄c · η̄c since ξ 7→ ξ̄ is a homomorphism

= (ξ̄η̄)c by Lemma 2

= (ξη)c = (ξη)C since ξ 7→ ξ̄ is a homomorphism.

Thus, it remains to compute the numbers of circles in ξC ·ηC and in (ξη)C
and to verify that these numbers are equal, that is, ‖ξC · ηC‖ = ‖(ξη)C‖.
The following aims to present the computation in a compact way.

From (4), we see that ‖ξC·ηC‖ = ‖ξC‖+‖ηC‖+〈ξC, ηC〉. Since ξC = ξ̄c
and ηC = η̄c, the desired equality can be rewritten as



‖ξC‖+ ‖ηC‖+ 〈ξ̄c, η̄c〉 = ‖(ξη)C‖. (8)

We say that a diagram γ ∈ J♭4 matches a diagram δ ∈ J♭4 if for every
r-wire {i′, j′} of γ, the set {i, j} occurs as an ℓ-wire in δ. (Observe that
we do not require the opposite: δ may have an ℓ-wire {s, t}, say, such that
{s′, t′} is not an r-wire in γ.) Clearly, gluing {i′, j′} with {i, j} creates a
circle when the product γδ is being formed.

We split the verification of (8) into three cases. Each of these cases
covers a certain number of pairs (ξ̄, η̄) amongst 9 × 13 = 117 pairs that
are subject to checking. (The assumption that ξ has two t-wires restricts
the choice of ξ̄ to the nine diagrams in the upper half of Fig. 4 while η̄
can be any of the 13 diagrams from J♭4.) The reader may find it helpful
to trace how the argument of each case works on a typical example; for
this, we indicate such examples, after stating the conditions of the cases.

Case 1 : ξ̄ matches η̄.
Here typical representatives are the pairs (h̄1, h̄1h̄2) and (h̄1, h̄1h̄3).

The condition that ξ̄ matches η̄ means that 〈ξ̄, η̄〉 = 1. Further, it is
easy to see that ξ̄cmatches η̄c whence 〈ξ̄c, η̄c〉 = 2. We have ‖ξC‖ = ‖ξ‖−1
as ξ has two t-wires. If η also has two t-wires, then ‖ηC‖ = ‖η|−1. Thus,
computing the left hand side of (8) yields

‖ξC‖+ ‖ηC‖+ 〈ξ̄c, η̄c〉 = (‖ξ‖ − 1) + (‖η‖ − 1) + 2 = ‖ξ‖+ ‖η‖.

Besides that, the condition that ξ̄ matches η̄ implies that the t-wires of ξ
and η combine and provide two t-wires in ξη. Using this and (4), we get

‖(ξη)C‖ = ‖ξη‖−1 = ‖ξ‖+‖η‖+〈ξ̄, η̄〉−1 = ‖ξ‖+‖η‖+1−1 = ‖ξ‖+‖η‖.

We conclude that the equality (8) holds.
Now assume that η has no t-wires. Then ‖ηC‖ = ‖η|, whence the left

hand side of (8) is equal to ‖ξ‖ + ‖η‖ + 1. However, in this subcase, the
product ξη also omits t-wires and ‖(ξη)C‖ = ‖ξη‖ = ‖ξ‖ + ‖η‖ + 1, too.
Thus, the equality (8) persists.

Case 2 : ξ̄ does not match η̄ but ξ̄c matches η̄c.
Here a typical representative is the pair (h̄1, h̄3).

Case 2 is only possible if η has two t-wires whence ‖ηC‖ = ‖η| − 1.
We have 〈ξ̄, η̄〉 = 0 but 〈ξ̄c, η̄c〉 = 2. Thus, the left hand side of (8) is

‖ξC‖+ ‖ηC‖+ 〈ξ̄c, η̄c〉 = (‖ξ‖ − 1) + (‖η‖ − 1) + 2 = ‖ξ‖+ ‖η‖.

Further, under the conditions of Case 2, ξη cannot possess t-wires. There-
fore, ‖(ξη)C‖ = ‖ξη‖ = ‖ξ‖+ ‖η‖, and the equality (8) holds.



Case 3 : ξ̄c does not match η̄c.
Here typical representatives are the pairs (h̄1, h̄2) and (h̄1, h̄2h̄1h̄3).

Since ξ̄c does not match η̄c, we have 〈ξ̄c, η̄c〉 = 1. In addition, ξ̄ cannot
match η̄ whence 〈ξ̄, η̄〉 = 0. If η has two t-wires, ‖ηC‖ = ‖η| − 1 and the
left hand side of (8) becomes

‖ξC‖+ ‖ηC‖+ 〈ξ̄c, η̄c〉 = (‖ξ‖ − 1) + (‖η‖ − 1) + 1 = ‖ξ‖+ ‖η‖ − 1.

If the r-wire of ξ is {i′, j′}, the ℓ-wire of η must be {j, k} for some k 6= i.
The set {1, 2, 3, 4}\{i, j, k} consists of a unique number h, say. Then one
of the t-wires of ξ has h′ as its right point while one of the t-wires of η
has h as its left point, and we see that ξη has got a t-wire. From this
and (4), we compute

‖(ξη)C‖ = ‖ξη‖ − 1 = ‖ξ‖+ ‖η‖+ 〈ξ̄, η̄〉 − 1 = ‖ξ‖+ ‖η‖ − 1,

whence the equality (8) holds.
Finally, consider the subcase when η has no t-wires. Then ‖ηC‖ = ‖η‖

and the left hand side of (8) becomes ‖ξC‖+‖ηC‖+ 〈ξ̄c, η̄c〉 = (‖ξ‖−1)+
‖η‖ + 1 = ‖ξ‖ + ‖η‖. Of course, if η omits t-wires, so does ξη, whence
‖(ξη)C‖ = ‖ξη‖ = ‖ξ‖+ ‖η‖, and the equality (8) holds again. ⊓⊔

Remark 3. When we introduced the extended Kauffman monoids K̂n,
we said that they are easier to deal with, compared with the ‘standard’
Kauffman monoids Kn. Lemma 5 provides a supporting evidence for this
claim. Indeed, it is not clear if the semigroup K♭

4 consisting of diagrams
with at most two t-wires from K4 admits any ‘nice’ endomorphism similar
to the cutting map C : K̂♭

4 → K̂♭
4. We mention in passing that working with

the monoid K̂3 rather than K3 would have somewhat simplified also the
proofs of the main results in [Chen et al., 2020].

We proceed with an analogue of Proposition 2. Recall that C∞ stands
for the infinite cyclic group. As above, we fix a generator c of C∞ and
denote by e the identity element of the group. Now consider two Rees
matrix semigroups over C∞:

– RC2 := M

(
{1, 2},C∞, {1, 2};

(
c2 c
c c2

))
,

– MC3 := M0
(
{1, 2, 3},C∞, {1, 2, 3};

(
c e 0
e c e
0 e c

))
.

Proposition 3. The semigroup K̂♭
4 is isomorphic to a subdirect product

of the Rees matrix semigroups RC2 and MC3.



Proof. By the definition of the map C : K̂♭
4 → K̂♭

4, its image is the set Î4

consisting of the diagrams in K̂♭
4 that have no t-wires. Since C fixes each

diagram in Î4 and is an endomorphism by Lemma 5, C is a retraction.
Since Î4 is an ideal of K̂♭

4, Lemma 3 applies, providing a decomposition

of K̂♭
4 into a subdirect product of Î4 with the Rees quotient K̂♭

4/Î4.

It remains to show that Î4 is isomorphic to RC2 and K̂♭
4/Î4 is iso-

morphic to MC3. Both isomorphisms are easy to describe in terms of the
coordinatization of diagrams from K̂4 by pairs from J4×Z. If η ∈ Î4 cor-
responds to the pair (η̄,m) ∈ J4×Z and the diagram η̄ occurs in the i-th
row and j-th column of the 2×2-matrix in the lower half of Fig. 4, then η
is sent to the triple (i, cm, j) ∈ RC2. Similarly, if ξ ∈ K̂♭

4 \ Î4 corresponds
to the pair (ξ̄, n) ∈ J4 × Z and the diagram ξ̄ occurs in the k-th row and
ℓ-th column of the of the 3× 3-matrix in the upper half of Fig. 4, then ξ
is sent to the triple (k, cn, ℓ) ∈ MC3. Finally, the zero of the Rees quotient

K̂♭
4/Î4 is sent to 0 ∈ MC3. Thus, we have got a bijection between Î4 and

RC2, as well as a bijection between K̂♭
4/Î4 and MC3. The verification that

these bijections constitute semigroup isomorphisms is immediate. ⊓⊔

Recall the description of the identities of K3 from [Chen et al., 2020].

Theorem 2. An identity w ≏ w′ holds in the Kauffman monoid K3 if
and only if alph(w) = alph(w′) and, for each Y ⊂ alph(w), the words
u := wY and u′ := w′

Y satisfy the following three conditions:

(a) the first letter of u is the same as the first letter of u′;

(b) the last letter of u is the same as the last letter of u′;

(c) for each word of length 2, the number of its occurrences in u is the
same as the number of its occurrences in u′. ⊓⊔

We are ready to state and to prove our main result.

Theorem 3. The Kauffman monoids K3 and K4 are equationally equiv-
alent.

Proof. The monoid K3 naturally embeds into K4: the submonoid of K4

generated by the hooks h1, h2 and the circle c is isomorphic to K3. There-
fore, every identity that holds in K4 must hold in K3. In order to show
the converse, we employ Theorem 2. Namely, we are going to verify that
every identity w ≏ w′ that satisfies the conditions of Theorem 2 holds in
the extended Kauffman monoid K̂4. Since K4 embeds into K̂4, this will
prove the equational equivalence of K3 with K4, and moreover, with K̂4.



We have to check that wϕ = w′ϕ for an arbitrary homomorphism
ϕ : X+ → K̂4. Clearly, K̂4 is the disjoint union of its group of units
H generated (as a semigroup) by c and d and the ideal K̂♭

4. Let Y :=
{y ∈ alph(w) | yϕ ∈ H}. Since cd = dc = 1, we write c−1 for d, and
for each y ∈ Y , we let ky ∈ Z be such that yϕ = cky . Denote the
sum

∑
y∈Y occy(w)ky by NY . By Lemma 1 we have occy(w) = occy(w

′),
whence the sum

∑
y∈Y occy(w

′)ky is also equal to NY . If Y = alph(w),

we have wϕ = cNY = w′ϕ, and we are done.
Consider the situation where Y ⊂ alph(w). Using the fact that the

generators c and d commute with the hooks h1, h2, h3, we can represent
wϕ and w′ϕ as cNY wY ϕ and cNY w′

Y ϕ respectively. Therefore it remains
to verify that wY ϕ = w′

Y ϕ, and for this, it suffices to show that the
identity u ≏ u′ with u := wY and u′ := w′

Y holds in the semigroup

K̂♭
4. Since the words u and u′ satisfy the conditions (a)–(c), the identity

u ≏ u′ holds in every Rees matrix semigroup over an abelian group by
Proposition 1. In particular, u ≏ u′ holds in the semigroups RC2 and
MC3, and by Proposition 3 it holds also in K̂♭

4, as required. ⊓⊔

Remark 4. The result of Theorem 3 was unexpected for us since, infor-
mally speaking, the monoid K4 appeared to be much more complicated
than its submonoid K3 and it was rather hard to believe that the K4 could
inherit all identities of the submonoid. Observe that the Jones monoids
J3 and J4 are not equationally equivalent: J3 satisfies the identity x2 ≏ x
that clearly fails in J4. Moreover, it follows from a result by Trahtman
[1988] that the identities of J3 and J4 are very different in a sense: there
are uncountably many pairwise equationally non-equivalent semigroups
whose identity sets strictly contain the identity set of J4 and are strictly
contained in that of J3. Theorem 3 makes a strong contrast to these facts.

Using a suitable reformulation of Theorem 2, Chen et al. [2020, Sec-
tion 2] have developed an algorithm that, given an identity w ≏ w′ with
| alph(w)| = k and |ww′| = n, verifies whether or nor the identity holds
in the monoid K3 in O(kn log(kn)) time. Theorem 3 implies that this al-
gorithm can be used to check identities in the monoid K4. In particular,
we have the following fact.

Corollary 1. The problem Check-Id(K4) lies in P. ⊓⊔

It has been shown in [Chen et al., 2020, Proposition 6] that the equa-
tional equivalence of K3 and K4 does not extend to the monoid K5. For
instance, the identity x2yx ≏ xyx2, which holds in K3 and K4 by The-
orems 2 and 3, fails in K5 under the substitution x 7→ h1h2h3, y 7→ h4.



The proof in [Chen et al., 2020] relies on a normal form for the elements
of the monoid Kn suggested by Jones [1983]. Fig. 7 illustrates this ex-
ample; in fact, Fig. 7 can be treated as an alternative argument showing
that the identity x2yx ≏ xyx2 fails in K5 in a way that complies with the
geometric approach of the present paper.

x 7→ h1h2h3 y 7→ h4 x2yx xyx2

Fig. 7. The identity x2yx ≏ xyx2 fails in K5

At the moment, we possess no characterization of the identities of the
monoid Kn for any n > 4, neither we know whether there are other pairs
of equationally equivalent Kauffman monoids besides K3 and K4.
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