Skip to main content

Computing on Lattice-Ordered Abelian Groups

  • Conference paper
  • First Online:
Book cover Fields of Logic and Computation III

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12180))

  • 363 Accesses

Abstract

Starting from a classical theorem of Gurevich and Kokorin we survey recent diverging developments of the theories of lattice-ordered abelian groups and their counterparts equipped with a distinguished order unit. We will focus on decision and recognition problems. As an application of Elliott’s classification, we will touch on word problems of AF C*-algebras.

Honoring Yuri Gurevich on his 80th birthday.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Like its equivalent reformulation known as Farkas’ lemma, this is one of the many “Theorems of the Alternative” in Linear Programming and Convex Analysis. See [8, Theorem 2.2.1, Lemma 2.2.7, Exercise 4, p. 25], [19, 16.10 (i), (ii)], [51, §7.3, and §7.8 (31)].

  2. 2.

    This result goes back to Weinberg [54] who proved that every free \(\ell \)-group is a subdirect product of copies of the integers.

  3. 3.

    P need not be convex, nor connected. The simplexes \(S_i\) need not have the same dimension. This is the terminology of [53]. Polyhedra are called “compact polyhedra” in [50].

  4. 4.

    \(\mathcal M_{\mathbb R}(Q)\) is denoted \(\mathcal M(Q)\) in [10].

  5. 5.

    See [10, Theorem 2.2] for details.

  6. 6.

    “Unimodular” in [22] and [42].

  7. 7.

    Note that our present \(\mathcal M_{\mathbb R}(Q)\) agrees with (5) above.

  8. 8.

    Also see Baker’s analysis of finitely generated projective vector lattices in [2, Theorem 5.1].

  9. 9.

    In this way one can describe, for instance, phase transitions as singularities in the thermodynamic potentials.

References

  1. Adámek, J., Rosicky, J.: Locally Presentable and Accessible Categories. London Mathematical Society Lecture Note Series, vol. 189. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

  2. Baker, K.A.: Free vector lattices. Can. J. Math. 20, 58–66 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  3. Behncke, K.A., Leptin, H.: C*-algebras with a two-point dual. J. Funct. Anal. 10, 330–335 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beynon, W.M.: On rational subdivisions of polyhedra with rational vertices. Can. J. Math. 29, 238–242 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beynon, W.M.: Applications of duality in the theory of finitely generated lattice-ordered abelian groups. Can. J. Math. 29, 243–254 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bigard, A., Keimel, K., Wolfenstein, S.: Groupes etAnneaux Réticulés. Lecture Notes in Mathematics, vol. 608. Springer, Berlin (1971). https://doi.org/10.1007/BFb0067004

    Book  MATH  Google Scholar 

  7. Blackadar, B.: K-Theory for Operator Algebras. Springer, New York (1986). https://doi.org/10.1007/978-1-4613-9572-0. Second revised edn., vol. 5. MSRI Publications, Cambridge University Press (1998)

    Book  MATH  Google Scholar 

  8. Borwein, J.M., Lewis, A.S.: Convex Analysis and Nonlinear Optimization. Theory and Examples. Springer, New York (2006). https://doi.org/10.1007/978-0-387-31256-9

    Book  MATH  Google Scholar 

  9. Bratteli, O.: Inductive limits of finite dimensional C*-algebras. Trans. Am. Math. Soc. 171, 195–234 (1972)

    MathSciNet  MATH  Google Scholar 

  10. Cabrer, L.: Simplicial geometry of unital lattice-ordered abelian groups. Forum Math. 27(3), 1309–1344 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cabrer, L.: Rational simplicial geometry and projective lattice-ordered abelian groups. arXiv:1405.7118v1

  12. Cabrer, L., Mundici, D.: Projective MV-algebras and rational polyhedra. Algebra Univers. 62, 63–74 (2009). Special issue in memoriam P. Conrad, (J.Martínez, Ed.)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cabrer, L., Mundici, D.: Rational polyhedra and projective lattice-ordered abelian groups with order unit. Commun. Contemp. Math. 14(3), 1250017 (2012). https://doi.org/10.1142/S0219199712500174. 20 pages

    Article  MathSciNet  MATH  Google Scholar 

  14. Cabrer, L., Mundici, D.: Idempotent endomorphisms of free MV-algebras and unital \(\ell \)-groups. J. Pure Appl. Algebra 221, 908–934 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chang, C.C.: Algebraic analysis of many-valued logics. Trans. Am. Math. Soc. 88, 467–490 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chang, C.C.: A new proof of the completeness of the Łukasiewicz axioms. Trans. Am. Math. Soc. 93, 74–90 (1959)

    MATH  Google Scholar 

  17. Chang, C.C.: The writing of the MV-algebras. Stud. Logica 61, 3–6 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chernavsky, A.V., Leksine, V.P.: Unrecognizability of manifolds. Ann. Pure Appl. Logic 141, 325–335 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chvatal, V.: Linear Programming. W.H. Freeman and Company, New York (1980)

    MATH  Google Scholar 

  20. Cignoli, R., Mundici, D.: An invitation to Chang’s MV-algebras. In: Droste, M., Göbel, R. (eds.) Advances in Algebra and Model Theory. Algebra, Logic and Applications Series, vol. 9, pp. 171–197. Gordon and Breach Publishing Group, Readings (1997)

    Google Scholar 

  21. Cignoli, R., Mundici, D.: Partial isomorphisms on totally ordered abelian groups and Hájek’s completeness theorem for basic logic. Multiple Valued Logic (Special issue dedicated to the memory of Grigore Moisil) 6, 89–94 (2001)

    MATH  Google Scholar 

  22. Cignoli, R., D’Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of Many-valued Reasoning. Trends in Logic, vol. 7. Kluwer, Dordrecht (2000)

    Book  MATH  Google Scholar 

  23. Davidson, K.R.: C*-Algebras by Example. Fields Institute Monographs, vol. 6. American Mathematical Society, Providence (1996)

    Google Scholar 

  24. Effros, E.G.: Dimensions and C*-Algebras. CBMS Regional Conference Series in Mathematics, vol. 46. American Mathematical Society, Providence (1981)

    Book  MATH  Google Scholar 

  25. Elliott, G.A.: On the classification of inductive limits of sequences of semisimple finite-dimensional algebras. J. Algebra 38, 29–44 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ewald, G.: Combinatorial Convexity and Algebraic Geometry. Springer, New York (1996). https://doi.org/10.1007/978-1-4612-4044-0

    Book  MATH  Google Scholar 

  27. Gabriel, P., Ulmer, F.: Lokal präsentierbare Kategorien. Lecture Notes in Mathematics, vol. 221. Springer, Heidelberg (1971). https://doi.org/10.1007/BFb0059396

    Book  MATH  Google Scholar 

  28. Glass, A.M.W., Yuri Gurevich, Y.: The word problem for lattice-ordered groups. Trans. Am. Math. Soc. 280, 127–138 (1983)

    MathSciNet  MATH  Google Scholar 

  29. Glass, A.M.W., Madden, J.J.: The word problem versus the isomorphism problem. J. Lond. Math. Soc. 30, 53–61 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gurevich, Y.: Elementary properties of ordered abelian groups (Ph.D. Thesis, in Russian). Algebra and Logic 3(1), 5–39 (1964)

    Google Scholar 

  31. Gurevich, Y.: Elementary properties of ordered abelian groups. AMS Transl. 46, 165–192 (1965)

    MATH  Google Scholar 

  32. Gurevich, Y.: Hereditary undecidability of the theory of lattice-ordered abelian groups. Algebra Logic 6(1), 45–62 (1967). (Russian)

    Google Scholar 

  33. Gurevich, Y.: Monadic second-order theories (Chap. XIII). In: Barwise, J., Feferman, S.(eds.) Model-Theoretic Logics. Springer, New York, (1985)

    Google Scholar 

  34. Gurevich, Y., Kokorin, A.I.: Universal equivalence of ordered abelian groups. Algebra i Logica 2(1), 37–39 (1963). (Russian)

    MathSciNet  Google Scholar 

  35. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)

    Book  MATH  Google Scholar 

  36. Marra, V., Mundici, D.: MV-algebras and abelian \(\ell \)-groups: a fruitful interaction. In: Martínez, J. (ed.) Ordered Algebraic Structures. Honoring Paul Conrad on his 80th birthday, pp. 57–88. Kluwer, Dordrecht (2002)

    Google Scholar 

  37. Marra, V., Spada, L.: Duality, projectivity, and unification in Łukasiewicz logic and MV-algebras. Ann. Pure Appl. Logic 164, 192–210 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Massey, W.S.: Algebraic Topology: An Introduction. Springer, New York (1977). Originally published by Harcourt, Brace & World Inc. (1967)

    MATH  Google Scholar 

  39. McNaughton, R.: A theorem about infinite-valued sentential logic. J. Symbolic Logic 16(1), 1–13 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  40. Morelli, R.: The birational geometry of toric varieties. J. Algebraic Geometry 5, 751–782 (1996)

    MathSciNet  MATH  Google Scholar 

  41. Mundici, D.: Interpretation of AF C*-algebras in Łukasiewicz sentential calculus. J. Funct. Anal. 65, 15–63 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  42. Mundici, D.: The Haar theorem for lattice-ordered abelian groups with order-unit. Discrete Contin. Dyn. Syst. 21, 537–549 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. Mundici, D.: Advanced Łukasiewicz Calculus and MV-Algebras. Trends in Logic, vol. 35. Springer, Berlin (2011). https://doi.org/10.1007/978-94-007-0840-2

    Book  MATH  Google Scholar 

  44. Mundici, D.: Fans, decision problems and generators of free abelian \(\ell \)-groups. Forum Math. 29(6), 1429–1439 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  45. Mundici, D.: Recognizing free generating sets of \(\ell \)-groups. Algebra Universalis 79, 24 (2018). https://doi.org/10.1007/s00012-018-0511-2

    Article  MathSciNet  MATH  Google Scholar 

  46. Mundici, D.: Word problems in Elliott monoids. Adv. Math. 335, 343–371 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  47. Mundici, D., Panti, G.: Extending addition in Elliott’s local semigroup. J. Funct. Anal. 117, 461–471 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  48. Oda, T.: Convex Bodies and Algebraic Geometry. Springer, Berlin (1988)

    MATH  Google Scholar 

  49. Rose, A., Rosser, J.B.: Fragments of many-valued sentential calculus. Trans. Am. Math. Soc. 87, 1–53 (1958)

    Article  MATH  Google Scholar 

  50. Rourke, C.P., Sanderson, B.J.: Introduction to Piecewise-Linear Topology. Springer, New York (1972). https://doi.org/10.1007/978-3-642-81735-9

    Book  MATH  Google Scholar 

  51. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986). Reprinted (1999)

    MATH  Google Scholar 

  52. Shtan’ko, M.A.: Markov’s theorem and algorithmically non-recognizable combinatorial manifolds. Izvestiya RAN Ser. Math. 68, 207–224 (2004)

    Article  Google Scholar 

  53. Stallings, J.R.: Lectures on Polyhedral Topology. Tata Institute of Fundamental Research, Mumbay (1967)

    MATH  Google Scholar 

  54. Weinberg, E.C.: Free lattice-ordered abelian groups. II. Math. Ann. 159, 217–222 (1965). https://doi.org/10.1007/BF01362439

    Article  MathSciNet  MATH  Google Scholar 

  55. Whitehead, J.H.C.: Simplicial spaces, nuclei and \(m\)-groups. Proc. Lond. Math. Soc. 45, 243–327 (1939)

    Article  MathSciNet  MATH  Google Scholar 

  56. Włodarczyk, J.: Decompositions of birational toric maps in blow-ups and blow-downs. Trans. Am. Math. Soc. 349, 373–411 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

The author is grateful to the reviewer for her/his valuable remarks and for providing a short proof of Proposition 4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Mundici .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mundici, D. (2020). Computing on Lattice-Ordered Abelian Groups. In: Blass, A., Cégielski, P., Dershowitz, N., Droste, M., Finkbeiner, B. (eds) Fields of Logic and Computation III. Lecture Notes in Computer Science(), vol 12180. Springer, Cham. https://doi.org/10.1007/978-3-030-48006-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48006-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48005-9

  • Online ISBN: 978-3-030-48006-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics