Skip to main content

The Expressive Power of Temporal and First-Order Metric Logics

  • Conference paper
  • First Online:
Book cover Fields of Logic and Computation III

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12180))

  • 365 Accesses

Abstract

The First-Order Monadic Logic of Order (\(\textit{FO}[<] \)) is a prominent logic for the specification of properties of systems evolving in time. The celebrated result of Kamp [14] states that a temporal logic with just two modalities Until and Since has the same expressive power as \(\textit{FO}[<] \) over the standard discrete time of naturals and continuous time of reals. An influential consequence of Kamp’s theorem is that this temporal logic has emerged as the canonical Linear Time Temporal Logic (\( LTL )\). Neither \( LTL \) nor \(\textit{FO}[<] \) can express over the reals properties like P holds exactly after one unit of time. Such local metric properties are easily expressible in \(\textit{FO}[<,+1] \) - the extension of \(\textit{FO}[<] \) by +1 function. Hirshfeld and Rabinovich [10] proved that no temporal logic with a finite set of modalities has the same expressive power as \(\textit{FO}[<,+1] \).

\(\textit{FO}[<,+1] \) lacks expressive power to specify a natural global metric property “the current moment is an integer.” Surprisingly, we show that the extension of \(\textit{FO}[<,+1] \) by a monadic predicate “x is an integer” is equivalent to a temporal logic with a finite set of modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the sake of simplicity these propositions were stated for \(\mathcal {L}:= LTL \). However, their proofs are sound for any \(\mathcal {L} \succeq _{ exp } LTL \).

  2. 2.

    Formally, \(\textit{FO}[<,+1] \) over bounded intervals uses a binary relation “x at distance one from y” instead of \(+1\) function.

References

  1. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. JACM 43(1), 116–146 (1996)

    Article  MathSciNet  Google Scholar 

  2. Alur, R., Henzinger, T.A.: Logics and models of real time: a survey. In: de Bakker, J.W., Huizing, C., de Roever, W.P., Rozenberg, G. (eds.) REX 1991. LNCS, vol. 600, pp. 74–106. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0031988

    Chapter  Google Scholar 

  3. Barringer, H., Kuiper, R., Pnueli, A.: A really abstract concurrent model and its temporal logic. In: Proceedings of the 13th Annual Symposium on Principles of Programing Languages, pp. 173–183 (1986)

    Google Scholar 

  4. Burgess, J.P., Gurevich, Y.: The decision problem for linear temporal logic. Notre Dame J. Formal logic 26(2), 115–128 (1985)

    Article  MathSciNet  Google Scholar 

  5. Gabbay, D., Hodkinson, I., Reynolds, M.: Temporal Logic: Mathematical Foundations and Computational Aspects. Oxford University Press, Oxford (1994)

    Google Scholar 

  6. Gabbay, D., Pnueli, A., Shelah, S., Stavi, J.: On the temporal analysis of fairness. In: POPL 1980, pp. 163–173 (1980)

    Google Scholar 

  7. Henzinger, T.A.: It’s about time: real-time logics reviewed. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 439–454. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055640

    Chapter  Google Scholar 

  8. Henzinger, T.A., Raskin, J.-F., Schobbens, P.-Y.: The regular real-time languages. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 580–591. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055086

    Chapter  Google Scholar 

  9. Hirshfeld, Y., Rabinovich, A.: Logics for real time: decidability and complexity. Fundam. Inform. 62(1), 1–28 (2004)

    Google Scholar 

  10. Hirshfeld, Y., Rabinovich, A.: Expressiveness of metric modalities for continuous time. Logical Methods Comput. Sci. 3(1) (2007)

    Google Scholar 

  11. Hirshfeld, Y., Rabinovich, A.: Decidable metric logics. Inf. Comput. 206(12), 1425–1442 (2008)

    Article  MathSciNet  Google Scholar 

  12. Hunter, P.: When is metric temporal logic expressively complete? In: CSL 2013, pp. 380–394 (2013)

    Google Scholar 

  13. Hunter, P., Ouaknine, J., Worrell, J.: Expressive completeness for metric temporal logic. In: LICS 2013, pp. 349–357 (2013)

    Google Scholar 

  14. Kamp, H.: Tense logic and the theory of linear order. Ph.D. thesis, University of California, Los Angeles (1968)

    Google Scholar 

  15. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Syst. 2(4), 255–299 (1990)

    Article  Google Scholar 

  16. Manna, Z., Pnueli, A.: Models for reactivity. Acta informatica 30, 609–678 (1993)

    Article  MathSciNet  Google Scholar 

  17. Ouaknine, J., Rabinovich, A., Worrell, J.: Time-bounded verification. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 496–510. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04081-8_33

    Chapter  Google Scholar 

  18. Pnueli, A.: The temporal logic of programs. In: Proceedings of IEEE 18th Annual Symposium on Foundations of Computer Science, New York, pp. 46–57 (1977)

    Google Scholar 

  19. Rabinovich, A.: Complexity of metric temporal logics with counting and the Pnueli modalities. Theor. Comput. Sci. 411(22–24), 2331–2342 (2010)

    Article  MathSciNet  Google Scholar 

  20. Rabinovich, A.: A proof of Kamp’s theorem. Logical Methods Comput. Sci. 10(1) (2014)

    Google Scholar 

  21. Wilke, T.: Specifying timed state sequences in powerful decidable logics and timed automata. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994. LNCS, vol. 863, pp. 694–715. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58468-4_191

    Chapter  Google Scholar 

Download references

Acknowledgment

I would like to thank an anonymous referee for the insightful comments about related works.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Rabinovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rabinovich, A. (2020). The Expressive Power of Temporal and First-Order Metric Logics. In: Blass, A., Cégielski, P., Dershowitz, N., Droste, M., Finkbeiner, B. (eds) Fields of Logic and Computation III. Lecture Notes in Computer Science(), vol 12180. Springer, Cham. https://doi.org/10.1007/978-3-030-48006-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48006-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48005-9

  • Online ISBN: 978-3-030-48006-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics