
State of the Art in Logics for Verification
of Resource-Bounded Multi-Agent

Systems

Natasha Alechina1(B) and Brian Logan2

1 Utrecht University, Utrecht, The Netherlands
n.a.alechina@uu.nl

2 University of Nottingham, Nottingham, UK
bsl@cs.nott.ac.uk

Abstract. Approaches to the verification of multi-agent systems are
typically based on games or transition systems defined in terms of states
and actions. However such approaches often ignore a key aspect of multi-
agent systems, namely that the agents’ actions require (and sometimes
produce) resources. We survey previous work on the verification of multi-
agent systems that takes resources into account, extending substantially
a survey from 2016 [9].

1 Introduction

A multi-agent system (MAS) is a system that is composed of multiple interacting
agents. An agent is an autonomous entity that has the ability to collect infor-
mation, reason about it, and perform actions in pursuit of its goals or on behalf
of others. Examples of agents are controllers for satellites, non-driver transport
systems such as UAVs, smart manufacturing cells, smart energy grids, and nodes
in sensor networks.

Many distributed hardware and software systems can be naturally modelled
as multi-agent systems. Such systems are often extremely complex, and the inter-
action between the components and their environment can lead to undesired
behaviours that are difficult to predict in advance. With the increasing use of
autonomous agents in safety critical systems, there is a growing need to verify
that their behaviour conforms to the desired system specification, and over the
last decade verification of multi-agent systems has become a thriving research
area [35].

A key approach to the verification of MAS is model checking. Model checking
involves checking whether a model of the system satisfies a temporal logic formula
corresponding to some aspect of the system specification. In a model-checking
approach to the verification of multi-agent systems, a MAS is represented by
a finite state transition system.1 A state transition system consists of a set of
1 There is work on model-checking infinite state transition systems, see, for example,

[18], but in this paper we concentrate on the finite case.

c© Springer Nature Switzerland AG 2020
A. Blass et al. (Eds.): Gurevich Festschrift, LNCS 12180, pp. 9–29, 2020.
https://doi.org/10.1007/978-3-030-48006-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48006-6_2&domain=pdf
https://doi.org/10.1007/978-3-030-48006-6_2

10 N. Alechina and B. Logan

states and transitions between them. Intuitively, each state of a MAS corresponds
to a tuple of states of the agents and of the environment, and each transition
corresponds to actions performed by the agents. Each state is labelled with
atomic propositions that are true in that state. A standard assumption is that
each state in the system has at least one outgoing transition (if a state is a
deadlock state in the original MAS, we can model this by adding a transition
to itself by some null action and labelling it with a ‘deadlock’ proposition).
Properties of the system to be verified are expressed in an appropriate temporal
logic L. The model-checking problem for L is, given a state transition system
M (and possibly a state s) and an L formula φ, check whether φ is true in M
(at state s, or on all paths from s, etc.). For example, Linear Time Temporal
Logic (LTL) can express properties of infinite runs through the system using a
unary operator ‘in the next state’ © (©φ means that on this path, the next state
satisfies φ) and a binary operator ‘until’ U (φUψ means that on this path, ψ holds
after finitely many steps, and before that, φ holds in every state). Using these
operators, one can define operators such as ♦ (in some state on this path) and
� (in every state on this path) and specify properties of interest of the system,
such as deadlock never happens (�¬d) or every request is eventually answered
(�(r → ♦a)). In model checking MAS, such temporal logics are often extended
with additional modalities capturing the knowledge of agents, or the strategic
ability of groups of agents. Model checking has the advantage that it is a fully
automated technique, which facilitates its use in the MAS development process.2

A wide range of approaches to model-checking MAS have been proposed in the
literature, ranging from the adaptation of standard model-checking tools, e.g.,
[20,21] to the development of special-purpose model checkers for multi-agent
systems, e.g., [33,41].

In many multi-agent systems, agents are resource-bounded, in the sense that
they require resources in order to act. Actions require time to complete and
typically require additional resources depending on the application domain, for
example energy or money. For many applications, the availability or otherwise
of resources is critical to the properties to be verified: a multi-agent system
may have very different behaviours depending on the resource endowment of
the agents that comprise it. For example, an agent with insufficient energy may
be unable to complete a task in the time assumed by a team plan if it has to
recharge its battery before performing the task.

In this paper we survey state of the art in the emerging field of logics for
verification of resource-bounded agents, and highlight a number of challenges
that must be overcome to allow practical verification of resource-bounded MAS.
We argue that recent work on the complexity of model-checking for logics of
strategic ability with resources offers the possibility of significant progress in
the field, new verification approaches and tools, and the ability to verify the
properties of a large, important class of autonomous system that were previously
out of reach.

2 Another strand of work focusses on theorem proving, e.g., [44], but such approaches
typically require user interaction to guide the search for a proof.

State of the Art in Logics for Verification of Resource-Bounded MAS 11

The remainder of the paper is organised as follows. In Sect. 2, we intro-
duce some necessary background material on weighted games. Reachability in
weighted games can be seen as a verification technique in its own right; however,
it is included here as a source of technical results relevant for strategic resource
logics. In this section, we also introduce the syntax and semantics of strategy
logics (without resources) that are the underlying formalism for resource logics.
In Sect. 3 we briefly survey recent work in resource logics and study two log-
ics, RB ± ATL and RB± ATL∗, in greater detail. We conclude in Sect. 4 with a
summary of results and open problems.

2 Background

In this section, we recall relevant definitions and results for energy games, vector
addition systems with states, and the logics of strategic ability ATL and ATL∗.

We first introduce some notational conventions. In what follows, we use the
usual point-wise notation for vector comparison and addition. In particular,
(b1, . . . , bn) ≤ (d1, . . . , dn) iff bi ≤ di ∀i ∈ {1, . . . , n}, (b1, . . . , bn) = (d1, . . . , dn)
iff bi = di ∀ i ∈ {1, . . . , n}, and (b1, . . . , bn)+(d1, . . . , dn) = (b1 +d1, . . . , bn +dn)
and (b1, . . . , bn) − (d1, . . . , dn) = (b1 − d1, . . . , bn − dn). We define (b1, . . . , bn) <
(d1, . . . , dn) as (b1, . . . , bn) ≤ (d1, . . . , dn) and (b1, . . . , bn) �= (d1, . . . , dn). Given
a function f returning a vector, we denote by fi the function that returns the i-th
component of the vector returned by f . We use bold letters to denote vectors.

Given a set S, the set of finite sequences of elements from S is denoted by
S+. For a sequence λ = s1 . . . sk ∈ S+, we use the notation λ[i] = si for i ≤ k,
λ[i, j] = si . . . sj ∀ 1 ≤ i ≤ j ≤ k, and |λ| = k for the length of λ.

2.1 Energy Games and Vector Addition Systems with States

Distributed systems that produce and consume resources have been modelled
using a variety of approaches, including Petri nets, energy games and vector
addition systems with states. In this section, we briefly recall some results from
these areas relevant to resource logics and model checking resource-bounded
MAS. We will first briefly introduce a version of energy games before introducing
a variant of alternating vector addition systems with states (AVASS). We focus
on the reachability and non-termination problems for AVASS, as these are the
most relevant for the results on resource logics in Sect. 3.

Energy Games. Energy games [28] are games between two players, played on
multi-weighted game graphs.

Definition 1. A multi-weighted game graph of dimension r is a tuple (S, r,R)
where S is the set of vertices, R ⊆ S × Z

r × S is a finite set of edges labelled
by a vector of integers of length r called a weight. Each vertex has at least one
outgoing edge. The set of vertices is partitioned into two sets, Player 1 vertices
S1 and Player 2 vertices S2.

12 N. Alechina and B. Logan

The dimension is the number of resource types, where resource types can be, e.g.,
energy, memory or some other kind of capacity, time, money, etc. The vertices can
be thought of as states, and edges as transitions between states with associated
costs and rewards for each resource type. The weight of an edge describes how the
corresponding transition affects the resource amounts. Note that, in the graph,
there are no resource vectors associated with the vertices, so that the structure
can be finitely represented. However we can talk about configurations which are
pairs (s,v) where s is a vertex and v a vector of resources: intuitively, v is the
resource amounts available in s in this configuration. A path is a finite sequence
of configurations (s1,v1), . . . , (sn,vn), such that for each j with 1 ≤ j ≤ n there
is an edge (sj ,vj+1 − vj , sj+1). A play from vertex s is an infinite sequence of
configurations ρ = (s,v), . . . , such that every finite prefix is a path. A strategy
for a player i is a function Fi taking as input a path ρ · (s,v) ending in Player
i vertex s and returning an edge Fi(ρ · (s,v)) of the form (s,u, s′) from E. A
play ρ = (s1,v1), . . . , (sj ,vj) . . . is consistent with a strategy Fp for Player p if
whenever sj is in Sp, then Fp(ρ[1, j]) = (sj ,vj+1 − vj , sj+1).

Definition 2. Given a multi-weighted graph (S, r,R), an initial vertex s, and
a vector b ∈ N

r, a play ρ from s is winning for Player 1 in the energy game
on (S, r,R) with initial credit b if for all configurations ρ[j] = (sj ,vj), vj ≥ 0.
Otherwise, Player 2 wins the play. Player 1 wins the energy game on (S, r,R)
from s with initial credit b if there exists a winning strategy F1 for Player 1,
that is, a strategy such that for all strategies F2 of Player 2, the play consistent
with both strategies is winning for Player 1.

Intuitively, starting in state s with initial credit (resource allocation) b,
Player 1 can play forever without any resource amount dropping below 0. Clearly,
the higher the initial credit, the better for Player 1; if Player 1 has a winning
strategy for (s,b), and b ≤ b′, then Player 1 has a winning strategy from (s,b′).

Definition 3. The following problem is the existence of a winning strategy for
Player 1 with known initial credit.

Input: A multi-weighted graph (S,R, r), an initial state s ∈ S and an initial
credit b.

Question: Does Player 1 have a winning strategy in the corresponding energy
game?

An energy game with unknown initial credit starting in s is won by Player 1
iff for some initial credit, Player 1 has a winning strategy.

Definition 4. The following problem is the existence of a winning strategy for
Player 1 with unknown initial credit.

Input: A multi-weighted graph (S,R, r) and an initial state s ∈ S.
Question: Does Player 1 have a winning strategy in the corresponding energy

game for some initial credit b?

State of the Art in Logics for Verification of Resource-Bounded MAS 13

Both problems (existence of a winning strategy for known and unknown
initial credit) were first shown to be decidable in [22]. In [37] both problems
were shown to be decidable in 2EXPTIME (polynomial in the size of the graph,
double exponential in the dimension r). In [37] it was also shown that the set
of all Pareto optimal (non-dominated) initial credits for which Player 1 has a
winning strategy is computable in time doubly exponential in the dimension and
pseudo-polynomial in the number of states and edges.

There are many versions of energy games: with only unit costs, with only one
resource type, with imperfect information. A version with finite strategies was
studied in [28] and shown to be decidable and in coNP.

Alternating Vector Addition Systems with State. An alternating vector
addition system with state (AVASS) can be used as a setting for various two
player games. There are many different versions of AVASS and decision problems
for them. The game semantics for AVASS presented below was introduced in [38].

Definition 5. An alternating vector addition system with states (AVASS) is
a tuple A = (S, r,R1, R2), where S is a finite set of states, r is the dimension
(number of resource types), R1 ⊆ S × Z

r × S and R2 ⊆ S3.

Intuitively, R1 edges correspond to Player 1 moves, and R2 triples (s, s1, s2)
correspond to Player 2 choices of where to move from the state s, to s1 or to
s2. Note that unlike in energy games, the setting is asymmetric in that only
Player 1 moves change resource amounts. A path of configurations is defined
the same way as for energy games: in a configuration (s,b), if the next move
is (s,v, s′) ∈ R1, then the next configuration is (s′,b + v); if the next move
is (s, s1, s2) ∈ R2, then, depending on the choice made by Player 2, the next
configuration is either (s1,b) or (s2,b).

The following problem is essentially the same as the existence of a winning
strategy for Player 1 in an energy game with known initial credit:

Definition 6. The following problem is the known initial credit non-termination
problem for AVASS:

Input: An AVASS A = (S, r,R1, R2), an initial state s ∈ S and an initial credit
b.

Question: Does Player 1 have a strategy such that every play consistent with
this strategy is infinite and all resource amounts in configurations on the path
are non-negative?

This problem was shown to be decidable and in (r − 1)-EXPTIME in [22],
2EXPTIME hard in [30], and in 2EXPTIME in [37]. The unknown initial credit
version of the problem is also 2EXPTIME-complete [37]. The set of all Pareto
optimal initial credits for which Player 1 has a winning strategy can be computed
in 2EXPTIME [37].

Another problem which has been studied in the AVASS literature is state
reachability. The state reachability problem is whether Player 1 has a strategy to

14 N. Alechina and B. Logan

reach a particular state while ensuring resource amounts remain non-negative (as
opposed to reachability of a particular configuration (s′,v), which is undecidable,
[40]). The state reachability problem for energy games is undecidable [2].

Definition 7. The following problem is the known initial credit state reachabil-
ity problem for AVASS:

Input: An AVASS A = (S, r,R1, R2), an initial state s ∈ S, an initial credit b
and state s′ ∈ S.

Question: Does Player 1 have a strategy such that every path generated by this
strategy eventually reaches a configuration where the state is s′, and until that
configuration, all resource amounts on the path are non-negative?

This problem was shown to be decidable in [43], and to be 2EXPTIME-
complete in [30]. In the same paper, the state reachability problem with unknown
initial credit was also shown to be 2EXPTIME-complete. The set of all Pareto
optimal initial credits for which Player 1 has a winning strategy can be computed
in 2EXPTIME [37].

Parity Games on AVASS. Another kind of games on AVASS is parity games.
Let A = (S, r,R1, R2) be an AVASS. A colouring col is defined as a map S →
{0, . . . , k} for some k ≥ 1.

Definition 8. The parity game problem for AVASS is as follows:

Input: An AVASS A, an initial state s ∈ A, an initial credit b ∈ N
r and a

colouring col : S → {0, . . . , k}
Question: Does Player 1 have a strategy in (s,b) such that every play consistent

with this strategy is infinite, resource amounts in configurations on the path
are non-negative, and on every play the maximal colour that appears infinitely
often is even?

The parity game problem for alternating VASS is decidable. This was shown
in [5] to be a consequence of Corollary 2 in [1] which states the decidability of
parity games for single-sided VASS. A single-sided VASS is an AVASS where the
set of states is partitioned into S1 and S2, R1 transitions start from states in S1,
R2 transitions start from states in S2, and there is at most one R2 transition
from each S2 state.

2.2 Strategy Logics

In this section, we briefly recall some key results for the strategy logics Alter-
nating Time Temporal Logic (ATL) [16] and the more expressive ATL∗ that are
the underlying formalisms for many of the resource logics discussed in Sect. 3.

State of the Art in Logics for Verification of Resource-Bounded MAS 15

Alternating Time Temporal Logic. ATL generalises other temporal logics
such as Computation Tree Logic (CTL) [29] (which can be seen as a one-agent
ATL) by introducing a notion of strategic ability. ATL allows us to express prop-
erties relating to the strategic abilities of a coalition or set of agents regardless
of what the other agents in the system do.

ATL is interpreted over concurrent game structures. A concurrent game
structure is a transition system in which edges correspond to a tuple of actions
performed simultaneously by all the agents (see below and Fig. 1 for an example).

Definition 9. A concurrent game structure (CGS) is a tuple M = (Agt,
S,Π, π, Act, d, δ) where:

– Agt is a non-empty finite set of n agents,
– S is a non-empty finite set of states;
– Π is a finite set of propositional variables and π : Π → ℘(S) is a truth

assignment which associates each proposition in Π with a subset of states
where it is true;

– Act is a non-empty set of actions
– d : S × Agt → ℘(Act) \ {∅} is a function which assigns to each s ∈ S a

non-empty set of actions available to each agent a ∈ Agt. We denote joint
actions by all agents in Agt available at s by D(s) = d(s, a1) × · · · × d(s, an);

– δ : S × Act|Agt| → S is a partial function that maps every s ∈ S and joint
action σ ∈ D(s) to a state resulting from executing σ in s.

Given a CGS M and a state s ∈ S, a joint action by a coalition A ⊆ Agt is
a tuple σ = (σa)a∈A (where σa is the action that agent a executes as part of σ,
the ath component of σ) such that σa ∈ d(s, a). The set of all joint actions for
A at state s is denoted by DA(s).

Given a joint action by Agt σ ∈ D(s), σA (a projection of σ on A) denotes
the joint action executed by A as part of σ: σA = (σa)a∈A. The set of all possible
outcomes of a joint action σ ∈ DA(s) at state s is:

out(s, σ) = {s′ ∈ S | ∃σ′ ∈ D(s) : σ = σ′
A ∧ s′ = δ(s, σ′)}

Depending on the variant of ATL, a strategy is a choice of actions which
either only depends on the current state (memoryless strategy) or on the finite
history of the current state (perfect recall strategy). In this survey, we concen-
trate mainly on perfect recall strategies. A strategy for a coalition A ⊆ Agt
in a CGS M is a mapping FA : S+ → Act|A| such that, for every λ ∈ S+,
FA(λ) ∈ DA(λ[|λ|]). A computation (infinite path) λ is consistent with a strat-
egy FA iff, for all i, λ[i + 1] ∈ out(λ[i], FA(λ[1, i])). We denote by out(s, FA) the
set of all computations λ starting from s that are consistent with FA.

The language of ATL contains atomic propositions, boolean connectives ¬,∧,
etc. and modalities 〈〈A〉〉©, 〈〈A〉〉� and 〈〈A〉〉U for each subset A of the set of all
agents Agt (or coalition, in ATL terms), which express the strategic ability of
the coalition A. 〈〈A〉〉©φ means that the coalition of agents A has a choice of

16 N. Alechina and B. Logan

actions such that, regardless of what the other agents in the system do, φ will
hold in the next state. 〈〈A〉〉�φ means that coalition A has a strategy to keep φ
true forever, regardless of what the other agents do. Finally, 〈〈A〉〉φU ψ means
that A has a strategy to ensure that after finitely many steps ψ holds, and in all
the states before that, φ holds.

Given a CGS M and a state s of M , the truth of an ATL formula φ with
respect to M and s is defined inductively on the structure of φ as follows:

– M, s |= p iff s ∈ π(p);
– M, s |= ¬φ iff M, s �|= φ;
– M, s |= φ ∨ ψ iff M, s |= φ or M, s |= ψ;
– M, s |= 〈〈A〉〉©φ iff ∃ strategy FA such that for all λ ∈ out(s, FA), M,λ[2] |= φ;
– M, s |= 〈〈A〉〉φU ψ iff ∃ strategy FA such that for all λ ∈ out(s, FA), ∃i such

that M,λ[i] |= ψ and M,λ[j] |= φ for all j ∈ {1, . . . , i − 1};
– M, s |= 〈〈A〉〉�φ iff ∃ strategy FA such that for all λ ∈ out(s, FA), for all i,

M,λ[i] |= φ.

sI s s'

p

idle, idle

idle, idle

idle, idle

, idle

idle,

, idle

,

Fig. 1. Example of a state transition system.

Example. Figure 1 illustrates a simple ATL model of a system with two agents, 1
and 2, and actions α, β, γ and idle. Action tuples on the edges show the actions
of each agent, for example, in the transition from state sI to s, agent 1 performs
action α and agent 2 performs idle. In this system, in state sI , agent 1 has a
(memoryless) strategy to enforce that p holds eventually in the future no matter
what agent 2 does, which can be expressed in ATL as 〈〈{1}〉〉�U p. Similarly,
in sI agent 1 has a memoryless strategy to keep ¬p true forever, so 〈〈{1}〉〉�¬p
holds in sI .

Definition 10. The following problem is the model checking problem for ATL:

Input: A CGS M , a formula φ of ATL, and a state s ∈ M .
Question: Does it hold that M, s |= φ?

State of the Art in Logics for Verification of Resource-Bounded MAS 17

The model-checking problem for ATL can be solved in time polynomial in
the size of the transition system and the property [16], and there exist model-
checking tools for ATL, for example, MOCHA [17] and MCMAS [41].

ATL*. ATL∗ is strictly more expressive than ATL in allowing arbitrary com-
binations of temporal modalities and booleans after the coalition modalities.
The syntax of ATL∗ includes two kinds of formulas, state formulas φ and path
formulas γ. Formulas of ATL∗ are defined by the following syntax:

φ ::= p | ¬φ | φ ∨ φ | 〈〈A〉〉γ
γ ::= φ | ¬γ | γ ∨ γ | ©γ | γ U γ | �γ

where p ∈ Π is a proposition and A ⊆ Agt.
The language of ATL∗ is interpreted on the same CGS as ATL. However,

there are two satisfaction relations, |=s for state formulas, and |=p for path
formulas:

– M, s |=s p iff s ∈ π(p);
– M, s |=s ¬φ iff M, s �|=s φ;
– M, s |=s φ ∨ ψ iff M, s |=s φ or M, s |=s ψ;
– M, s |=s 〈〈Ab〉〉γ iff exists a strategy FA such that for all λ ∈ out(s, FA),

M,λ |=p γ; M,λ |=p φ iff M,λ[1] |=s φ (for state formulas φ)
– M,λ |=p ©γ iff M,λ[2,∞) |=p γ
– M,λ |=p γ1Uγ2 iff ∃k such that M,λ[k,∞) |= γ2 and M,λ[j,∞) |= γ1 for all

j ∈ {1, . . . , k − 1}.
– M,λ |=p �γ iff for all jM, λ[j,∞) |=p γ.

Definition 11. The following problem is the model checking problem for ATL∗:

Input: A CGS M , a state formula φ of ATL∗, and a state s in M .
Question: Does it hold that M, s |=s φ?

The complexity of the model checking problem for ATL∗ is 2EXPTIME-
complete [16].

3 Resource Logics

In order to model multi-agent systems where the actions of agents produce and
consume resources, it is necessary to modify strategy logics in two ways. The
first modification is to add resource annotations to the actions in the transition
system: for each individual action and each resource type, we need to specify
how many units of this resource type the action produces or consumes. For
example, suppose that there are two resource types, r1 and r2 (e.g., energy and
money). Then we can specify that action α in Fig. 1 produces two units of r1
and consumes one unit of r2, action β consumes one unit of r1 and produces one
unit of r2, action γ consumes five units of r1, and action idle does not produce

18 N. Alechina and B. Logan

or consume any resources. Clearly, this makes the transition system of a CGS
resemble multi-weighted graphs or AVASS introduced in Sect. 2.1.

The second modification is to extend the logical language so that we can
express properties related to resources. For example, we may want to express
a property that a group of agents A can eventually reach a state satisfying
φ or can maintain the truth of ψ forever, provided that they have available
n1 units of resource type r1 and n2 units of resource type r2. Such statements
about coalitional ability under resource bounds can be expressed in an extension
of ATL where coalitional modalities are annotated with a resource bound on
the strategies available to the coalition. We call logics where every action is
associated the resources it produces and/or consumes and where the syntax
allows the resource requirements of agents to be expressed, resource logics.

To illustrate the properties resource logics allow us to express, consider the
model in Fig. 1 with the production and consumption of resources by actions
specified above. In this setting, we can verify if agent 1 can eventually enforce p
provided that it has one unit of r2 in state sI , or whether the coalition of agents
{1, 2} can achieve p under this resource bound by working together. There are
surprisingly many different ways of measuring costs of strategies and deciding
which actions are executable by the agents given the resources available to them,
but under at least one possible semantics, the answer to the first question is no
and to the second one yes, but the latter requires a perfect recall strategy (the
two agents should loop between states sI and s until they produce a sufficient
amount of resource r1, and then execute actions corresponding to the 〈γ, idle〉
transition from s to s′).

Clearly, the model-checking problem for temporal logics is a special case of
the model-checking problem for the corresponding resource logics. The question
is, how much harder does the model-checking problem become when resources
are added?

3.1 Overview of Resource Logics

In this section, we briefly review the historical development of resource logics,
and introduce some resource logics in more detail. We focus on expressiveness
and model-checking complexity, as these features determine the suitability of a
particular logic for practical verification.

Consumption of Resources. Early work on resource logics considered only
consumption of resources (i.e., no action produces resources), and initial results
were encouraging.

One of the first logics capable of expressing resource requirements of agents
was a version of Coalition Logic (CL),3 called Resource-Bounded Coalition Logic
(RBCL), where actions only consume (and don’t produce) resources. RBCL was
introduced in [3] with the primary motivation of modelling systems of resource-
bounded reasoners (with three resource types: time, space, and communication
3 CL is a fragment of ATL with only the next time 〈〈A〉〉© modality.

State of the Art in Logics for Verification of Resource-Bounded MAS 19

cost), however the framework is sufficiently general to model any kind of action.
The model-checking problem for this logic was shown to be decidable in [11] in
polynomial time in the transition system and the property, and exponential in the
number of resource types.

A resource-bounded version of ATL, RB-ATL, where again actions only con-
sume (and not produce) resources was introduced in [4]. It was also shown that
the model-checking problem for this logic is decidable in time polynomial in
the size of the transition system and exponential in the number of resource
types. (For a single resource type, e.g., energy, the model-checking problem is
no harder than for ATL.) Its syntax is the same as RB±ATL given in Sect. 3.2
below, but in the semantics no actions produce resources. Probabilistic RB-ATL
was introduced in [42] and its model checking problem shown to be decidable in
EXPTIME.

Practical work on model-checking standard computer science transition sys-
tems (not multi-agent systems) with resources also falls in the category of
consumption-only systems, for example the probabilistic model-checking of sys-
tems with numerical resources in the PRISM model-checker [39] assumes costs
monotonically increasing with time.

Bounded Production and Undecidability in the Unbounded Setting.
However, when resource production is considered in addition to consumption, the
situation changes. In a separate strand of work, a range of different formalisms for
reasoning about resources was introduced in [23,25]. In those formalisms, both
consumption and production of resources was considered. In [24] it was shown
that the problem of halting on empty input for two-counter automata [36] can
be reduced to the model-checking problem for several of their resource logics.
Since the halting problem for two-counter automata is undecidable, the model-
checking problem for a variety of resource logic with production of resources
is undecidable. The reduction uses two resource types (to represent the values
of the two counters) and either one or two agents depending on the version of
the logic (whether the agents have perfect recall, whether the formula talking
about coalition A can also specify resource availability for remaining agents,
and whether nested operators ‘remember’ initial allocation of resources or can
be evaluated independently of such initial allocation).

The only decidable cases considered in [23] are an extension of CTL with
resources (essentially one-agent ATL) and a version where on every path only a
fixed finite amount of resources can be produced. In [23], the models satisfying
this property are called bounded, and the authors note that RBCL and RB-
ATL are logics over a special kind of bounded models (where no resources are
produced at all). Other decidability results for bounded resource logics have
also been reported in the literature. For example, [31] define a decidable logic,
PRB-ATL (Priced Resource-Bounded ATL), where the total amount of resources
in the system has a fixed bound. The model-checking algorithm for PRB-ATL
requires time polynomial in the size of the model and exponential in the number
of resource types and the resource bound on the system. In [32] an EXPTIME

20 N. Alechina and B. Logan

lower bound in the number of resource types for the PRB-ATL model-checking
problem is shown.

A general logic over systems with numerical constraints called QATL∗ was
introduced in [26]. In that paper, more undecidability results for the model-
checking problem of QATL∗ and its fragments were shown. For example, QATL
(Quantitative ATL) is undecidable even if no nestings of coalition modalities is
allowed. The main proposals for restoring decidability to the model-checking
problem for QATL in [26] are removing negative payoffs (similar to remov-
ing resource production) and also introducing memoryless strategies. Shared
resources were considered in [27]; most of the cases considered there have unde-
cidable model-checking (apart from the case of a single shared resource, which
has decidable model-checking).

In summary, one approach to decidable model checking in the presence of
resource production is to bound the amount of resources produced globally in
the model. For some systems of resource-bounded agents, this is a reasonable
restriction. For example, agents that need energy to function and are able to
charge their battery, can never ‘produce’ more energy than the capacity of their
battery. This is a typical bounded system. A special case of bounded systems,
where model checking is even more tractable, are systems where one of the
resources is always consumed by any action. A typical example of such a resource
is time. Several resource logics with diminishing resource were investigated in [10]
and shown to have a PSPACE or EXPSPACE model checking procedure (while
the corresponding logic without diminishing resource sometimes has undecidable
model checking).

In the next couple of sections, we report results for resource logics with
unbounded production of resources and a decidable model checking problem.

3.2 RB±ATL

In [12] a version of ATL, RB± ATL, was introduced where actions both produce
and consume resources. The models of the logic do not impose bounds on the
overall production of resources, and the agents have perfect recall. The syntax of
RB ± ATL is very similar to that ofATL, but coalitionmodalities have superscripts
which represent resource allocation to agents. Instead of stating the existence of
some strategy, they state the existence of a strategy such that every computa-
tion generated by following this strategy consumes at most the given amount of
resources. Coming back to the example, the property that agent 1 can eventually
enforce p provided that it has one unit of r2 can be expressed as 〈〈{1}(0,1)〉〉�U p.
Here, (0, 1) is the allocation of 0 units of r1 and 1 unit of r2 to coalition {1}. In
RB ± ATL, resource allocation is only shown for the proponent agents, {1} in this
case. Versions of resource logic where opponents are also resource-bounded all
have an undecidable model-checking problem, see [23]. It is also possible to con-
sider individual allocations of resources to agents in the proponent coalition, which
would affect complexity results below for one resource type.

Formally, the syntax of RB± ATL is defined relative to the following sets:
Agt = {a1, . . . , an} is a set of n agents, Res = {res1, . . . , resr} is a set of

State of the Art in Logics for Verification of Resource-Bounded MAS 21

r resource types, Π is a set of propositions, and B = N
r is a set of resource

bounds. Formulas of RB±ATL are defined by the following syntax:

φ, ψ ::= p | ¬φ | φ ∨ ψ | 〈〈Ab〉〉©φ | 〈〈Ab〉〉φU ψ | 〈〈Ab〉〉�φ

where p ∈ Π is a proposition, A ⊆ Agt, and b ∈ B is a resource bound. Here,
〈〈Ab〉〉©φ means that a coalition A can ensure that the next state satisfies φ
under resource bound b. 〈〈Ab〉〉φU ψ means that A has a strategy to enforce ψ
while maintaining the truth of φ, and the cost of this strategy is at most b.
Finally, 〈〈Ab〉〉�φ means that A has a strategy to maintain ψ forever, and the
cost of this strategy is at most b.

The language is interpreted on resource-bounded concurrent game structures.

Definition 12. A resource-bounded concurrent game structure (RB-CGS) is a
tuple M = (Agt, Res, S,Π, π, Act, d, c, δ) where:

– Agt, S,Π, π, Act, d, δ are as in Definition 9;
– Res is a non-empty finite set of r resource types,
– c : S × Act → Z

r is a partial function which maps a state s and an action σ
to a vector of integers, where the integer in position i indicates consumption
or production of resource ri by the action (here, we assume negative value for
consumption and positive value for production for consistency with AVASS,
unlike in [12]).

A strategy for a set of agents A is a function FA : S+ → ActA such that
FA(λ) ∈ DA([λ[|λ|]). Given a bound b ∈ B, a computation λ ∈ out(s, FA) is
b-consistent iff for every i,

b + Σic(FA(λ[1, i])) ≥ 0

In other words, if agents start with allocation b, the amount of resources any of
the agents have on the computation is never negative for any resource type.

A strategy FA is b-consistent in s, if all computations in out(s, FA) are b-
consistent.

Given a RB-CGS M and a state s of M , the truth of an RB±ATL formula
φ with respect to M and s is defined inductively on the structure of φ as follows:

– M, s |= p iff s ∈ π(p);
– M, s |= ¬φ iff M, s �|= φ;
– M, s |= φ ∨ ψ iff M, s |= φ or M, s |= ψ;
– M, s |= 〈〈Ab〉〉©φ iff ∃ b-consistent strategy FA such that for all λ ∈ out(s, FA),

M,λ[2] |= φ;
– M, s |= 〈〈Ab〉〉φU ψ iff ∃ b-consistent strategy FA such that for all λ ∈

out(s, FA), ∃i such that M,λ[i] |= ψ and M,λ[j] |= φ for all j ∈ {1, . . . , i−1}.
– M, s |= 〈〈Ab〉〉�φ iff ∃ b-conststent strategy FA such that for all λ ∈

out(s, FA), for all i,M, λ[i] |= φ.

Definition 13. The following problem is the model checking problem for
RB±ATL:

22 N. Alechina and B. Logan

Input: A RB-CGS M , a formula φ of RB±ATL, and a state s ∈ M .
Question: Does it hold that M, s |= φ?

The model-checking problem for RB ±ATL is decidable. The existence of a
decidable resource logic with unbounded production was surprising, as it was
the first indication that it is possible to automatically verify properties of this
important class of resource-bounded multi-agent systems. In [12], decidability of
the model-checking problem was shown by producing a direct model checking
algorithm and arguing that it terminates due to the fact that in any sequence
of elements from N

r, eventually two elements are comparable in ≤ (well-quasi
ordering of Nr).

3.3 Correspondence Between Games on AVASS and RB±ATL
Semantics

There are clear similarities between RB ±ATL semantics and decidable problems
for AVASS and energy games. In [5] these similarities were made precise, and the
model checking problem for RB±ATL was shown to be polynomial in the size
of the model and the formula, and double exponential in the number of resource
types, by reducing the model checking to decision problems on AVASS. We will
briefly recapitulate the correspondence here.

For the purposes of making the correspondence easier to state, the definitions
of AVASS and the state reachability problem were generalised as follows, without
affecting the complexity of decision problems ([5], Lemma 7):

– instead of R2 ⊆ S3, elements in R2 can be tuples of any length n ≥ 2 (but
R2 is finite);

– the input to the reachability problem is a set of goal states S′ ⊆ S (instead
of a singleton set {s′}).

This generalisation of AVASS makes it easier to transfer complexity results from
AVASS to resource logics, since the transition systems that form the models of
resource logics may have more than binary branching, and reachability refers
to properties (sets of states) rather singleton states. Here, we will refer to this
generalisation as generalised AVASS.

Next we briefly elaborate on the concrete reduction of RB ±ATL model-
checking problem to decision problems on generalised AVASS. Assume that we
are designing a state labelling model checking algorithm for RB± ATL, where
given a formula φ and a model, we label each state with subformulas of φ true
in that state, in the increasing order of complexity of subformulas. Clearly, there
is no problem with doing this for propositional variables and for boolean com-
binations of earlier encountered formulas, and in fact also for the next state
operators. The only difficulty is formulas of the form 〈〈Ab〉〉ψ1 U ψ2 or 〈〈Ab〉〉�ψ.
Intuitively, we need to build a different AVASS for every state in the model and
every subformula of this form, and then solve a reachability or non-termination
problem for them. We describe next how we build this generalised AVASS.

State of the Art in Logics for Verification of Resource-Bounded MAS 23

Given an RB-CGS M = (Agt, Res, S,Π, π, Act, d, c, δ), a distinguished state
s∗ (where we want to evaluate the formula) and a coalition A ⊆ Agt (from the
main coalition modality in the formula), the corresponding generalised AVASS
G = (SG, rG, RG

1 , RG
2) is constructed as follows. The set of states of G is defined

as follows:

SG = {s∗} ∪ {(s′, α) | s′ ∈ S, α ∈ DA(s′)} ∪ {(σ, s′′) | s′′ ∈ S, σ ∈ D(s′′)}.

Obviously, rG = Res. Transitions are defined as follows:

RG
1 = {(s∗, cost(s∗, α), (s∗, α)) | α ∈ DA(s∗)} ∪ {((σ, s′), costA(s′, σ),

(s′, α)) | (σ, s′) ∈ SG, α ∈ DA(s′)}
RG

2 = {((s′, α), (σ1, s1), . . . , (σk, sk)) | σi ∈ D(s′), α = σi
A, si = δ(s′, σi)}

Note that the size of G is polynomial in M . When evaluating a subformula of
the form 〈〈Ab〉〉�ψ, the strategy witnessing the truth of the formula has to visit
only states satisfying ψ. Since the complexity of ψ is less than the complexity of
〈〈Ab〉〉�ψ, we can assume that we know which states in M satisfy ψ. To compute
the generalised AVASS where a winning strategy for non-termination exists iff
〈〈Ab〉〉�ψ is true, we remove from SG all states where the state component of
the pair does not satisfy ψ. We denote the resulting generalised AVASS Gψ.
Similarly, to make sure that a strategy to reach a ψ2 state always goes only
through ψ1 states before reaching ψ2, we remove from G all states that satisfy
neither ψ1 nor ψ2. We denote the resulting generalised AVASS Gψ1,ψ2 .

In [5], Lemmas 2–6 and Theorem 1 demonstrate that M, s∗ |= 〈〈Ab〉〉ψ1 U ψ2

if, and only if, there is a winning strategy for Player 1 in a reachability game in
the corresponding generalised AVASS Gψ1,ψ2 with initial credit b and target the
set of ψ2 states, and M, s∗ |= 〈〈Ab〉〉�ψ if, and only if, there is a winning strategy
for Player 1 in a non-termination game in the corresponding generalised AVASS
Gψ with initial credit b.

3.4 RB±ATL∗

RB ± ATL∗ is a more expressive logic than RB ± ATL, and was introduced in [5].
As is the case with ATL∗, the syntax of RB±ATL∗ includes state formulas

φ and path formulas γ. Formulas of RB ±ATL∗ are defined by the following
syntax

φ ::= p | ¬φ | φ ∨ φ | 〈〈Ab〉〉γ
γ ::= φ | ¬γ | γ ∨ γ | ©γ | γ U γ | �γ |

where p ∈ Π is a proposition, A ⊆ Agt, and b ∈ B is a resource bound.
The language of RB±ATL∗ is interpreted on the same RB-CGS as

RB ± ATL. The truth definition is identical to that of ATL∗, apart from the
following clause:

– M, s |=s 〈〈Ab〉〉γ iff ∃ b-consistent strategy FA such that for all λ ∈ out(s, FA),
M,λ |=p γ;

24 N. Alechina and B. Logan

Definition 14. The following problem is the model checking problem for
RB±ATL∗:

Input: A RB-CGS M , a state formula φ of RB±ATL∗, and a state s ∈ M .
Question: Does it hold that M, s |=s φ?

Surprisingly, even without idle actions, which seem to make the difference
between decidable and undecidable model-checking for some resource logics (see
Sect. 3.2), the model checking problem for RB± ATL∗ is decidable [5] by reduc-
tion to parity games on single sided VASS [1]. Moreover, it is decidable in 2EXP-
TIME, that is, has the same complexity as RB± ATL.

In [19], several fragments of RB± ATL and RB± ATL∗ of the form
RB ± ATL (n, r) and RB ±ATL∗ (n, r), where the logic is parameterised by
the number n of agents and the number r of resource types were studied.4 In
particular, RB±ATL (1, 1) was shown to be PTIME-complete, and RB ± ATL∗

(1, 1) PSPACE-complete (see Table 1).

3.5 Other Resource Logics with Decidable Model-Checking

RAL is a very expressive resource logic with undecidable model-checking problem
introduced in [23]. In [6], a new syntactic fragment FRAL of RAL with a decid-
able model-checking problem was identified. FRAL restricts the occurrences of
coalitional modalities on the left of Until formulas. On the other hand, it allows
nested modalities to refer to resource allocation at the time of evaluation, rather
than always considering a fresh resource allocation, as in RB± ATL. For exam-
ple, the formula 〈〈Ab〉〉φU 〈〈A↓〉〉ψ1 U ψ2 says that, given resource allocation b,
coalition A can always reach a state (maintaining φ) where, with the remaining
resources, it can reach ψ2 while maintaining ψ1. In [6] the boundary between
decidability and undecidability was also investigated, and the availability of an
‘idle’ action (i.e., if the semantics requires that in every state each agent has an
action that does not produce or consume resources) was shown to be critical:
model checking FRAL is decidable in the presence of idle actions, and is not
decidable otherwise.

Although model-checking of ATL with perfect recall and uniform strategies
is undecidable, if uniformity is replaced with a weaker notion, for example, if it
is defined in terms of distributed knowledge, model checking becomes decidable
[34]. A similar result hold for RB ±ATSEL, a version of RB ±ATL with syntactic
epistemic knowledge and a weaker notion of uniformity [8].

4 Summary and Future Challenges

In Table 1 we summarise the complexity results for the resource logics with a
decidable model checking problem discussed in Sect. 3. In the table, the ‘Idle’
column indicates whether the semantics for a logic requires that in every state

4 Note that RB ± ATL (n, 1) was referred to in [14] as 1-RB ± ATL.

State of the Art in Logics for Verification of Resource-Bounded MAS 25

each agent has an action that produces and consumes no resources. New results
not appearing in the previous survey [9] are highlighted in bold.

Table 1. Resource logics with decidable model-checking problem

Logic Resource production Idle Complexity of model-checking

RBCL no yes in EXPTIME (PTIME in model) [3]

RB-ATL no yes in EXPTIME (PTIME in model) [4]

PRB-ATL bounded yes EXPTIME-c [32]

RB ± ATL yes yes 2EXPTIME-c [5]

RB ± ATL (n, 1) yes yes in PSPACE [14]

RB ± ATL (1, 1) yes yes PTIME-c [19]

FRAL yes yes ?

RB ± ATSEL yes yes ?

RB ± ATL∗ yes no 2EXPTIME-c [5]

RB ± ATL∗ (n, 1) yes no EXPSPACE-c [5]

RB ± ATL∗ (1, 1) yes yes PSPACE-c [5,19]

The results for (fragments of) RB± ATL and RB± ATL∗ offer the possibility
of significant progress in the verification of resource-bounded multi-agent sys-
tems. However many challenges remain for future research. Below we list three
of the most important.

Understanding the Sources of Undecidability. Developing a better under-
standing of the sources of decidability and undecidability (beyond boundedness)
will be critical to future progress. As observed in [23], subtle differences in truth
conditions for resource logics result in the difference between decidability and
undecidability of the model checking problem. Some work in this direction is
reported in [5–7].

Logics with Lower Complexity. It is useful to discover sources of unde-
cidability and how to construct expressive logics for which the model-checking
problem is decidable. However, it is even more important to be able to develop
logics, or fragments of existing logics such as RB± ATL, that are sufficiently
expressive for practical problems, and where the model-checking problem has
tractable complexity. Only then will we be able to implement practical model-
checking tools for systems of resource-bounded agents.

Practical Tools. Although model checking algorithms have been proposed for
several of the logics surveyed, work on implementation is only beginning. We aim
to develop practical model-checking tools for verifying resource-bounded MAS

26 N. Alechina and B. Logan

by extending the MCMAS model checker [41] to allow the modelling of multi-
agent systems in which agents can both consume and produce resources. Work
on symbolic encoding of RB-ATL model-checking is reported in [15] and work
on symbolic encoding of RB± ATL model-checking is reported in [13].

Addressing these challenges will allow practical model-checking of resource
logics and significant advances in multi-agent system verification.

Acknowledgements. The authors thank Stéphane Demri for helpful discussions.

References

1. Abdulla, P.A., Mayr, R., Sangnier, A., Sproston, J.: Solving parity games on inte-
ger vectors. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013. LNCS, vol.
8052, pp. 106–120. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-40184-8 9

2. Abdulla, P.A., Bouajjani, A., d’Orso, J.: Deciding monotonic games. In: Baaz, M.,
Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 1–14. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45220-1 1

3. Alechina, N., Logan, B., Nguyen, H.N., Rakib, A.: A logic for coalitions with
bounded resources. In: Proceedings of the 21st International Joint Conference on
Artificial Intelligence, IJCAI 2009, vol. 2, pp. 659–664. IJCAI/AAAI, AAAI Press
(2009)

4. Alechina, N., Logan, B., Nguyen, H.N., Rakib, A.: Resource-bounded alternating-
time temporal logic. In: Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems, AAMAS 2010, pp. 481–488. IFAA-
MAS (2010)

5. Alechina, N., Bulling, N., Demri, S., Logan, B.: On the complexity of resource-
bounded logics. Theor. Comput. Sci. 750, 69–100 (2018). https://doi.org/10.1016/
j.tcs.2018.01.019

6. Alechina, N., Bulling, N., Logan, B., Nguyen, H.N.: On the boundary of
(un)decidability: decidable model-checking for a fragment of resource agent logic.
In: Yang, Q. (ed.) Proceedings of the 24th International Joint Conference on Arti-
ficial Intelligence, IJCAI 2015. IJCAI, AAAI Press, Buenos Aires, Argentina, July
2015

7. Alechina, N., Bulling, N., Logan, B., Nguyen, H.N.: The virtues of idleness: a
decidable fragment of resource agent logic. Artif. Intell. 245, 56–85 (2017). https://
doi.org/10.1016/j.artint.2016.12.005

8. Alechina, N., Dastani, M., Logan, B.: Verifying existence of resource-bounded coali-
tion uniform strategies. In: Rossi, F. (ed.) IJCAI 2016, Proceedings of the 25th
International Joint Conference on Artificial Intelligence. IJCAI/AAAI (2016)

9. Alechina, N., Logan, B.: Verifying systems of resource-bounded agents. In: Beck-
mann, A., Bienvenu, L., Jonoska, N. (eds.) CiE 2016. LNCS, vol. 9709, pp. 3–12.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40189-8 1

10. Alechina, N., Logan, B.: Resource logics with a diminishing resource (extended
abstract). In: Dastani, M., Sukthankar, G., Andre, E., Koenig, S. (eds.) Proceed-
ings of the 17th International Conference on Autonomous Agents and Multiagent
Systems, AAMAS 2018, pp. 1847–1849. IFAAMAS (2018)

11. Alechina, N., Logan, B., Nga, N.H., Rakib, A.: Logic for coalitions with bounded
resources. J. Logic Comput. 21(6), 907–937 (2011)

https://doi.org/10.1007/978-3-642-40184-8_9
https://doi.org/10.1007/978-3-642-40184-8_9
https://doi.org/10.1007/978-3-540-45220-1_1
https://doi.org/10.1016/j.tcs.2018.01.019
https://doi.org/10.1016/j.tcs.2018.01.019
https://doi.org/10.1016/j.artint.2016.12.005
https://doi.org/10.1016/j.artint.2016.12.005
https://doi.org/10.1007/978-3-319-40189-8_1

State of the Art in Logics for Verification of Resource-Bounded MAS 27

12. Alechina, N., Logan, B., Nguyen, H.N., Raimondi, F.: Decidable model-checking for
a resource logic with production of resources. In: Proceedings of the 21st European
Conference on Artificial Intelligence, ECAI-2014, pp. 9–14. ECCAI, IOS Press,
Prague, Czech Republic, August 2014

13. Alechina, N., Logan, B., Nguyen, H.N., Raimondi, F.: Symbolic model-checking for
one-resource RB+-ATL. In: Yang, Q. (ed.) Proceedings of the 24th International
Joint Conference on Artificial Intelligence, IJCAI 2015. IJCAI, AAAI Press, Buenos
Aires, Argentina, July 2015

14. Alechina, N., Logan, B., Nguyen, H.N., Raimondi, F.: Model-checking for resource-
bounded ATL with production and consumption of resources. J. Comput. Syst. Sci.
88, 126–144 (2017)

15. Alechina, N., Logan, B., Nguyen, H.N., Raimondi, F., Mostarda, L.: Symbolic
model-checking for resource-bounded ATL. In: Proceedings of the 2015 Interna-
tional Conference on Autonomous Agents and Multiagent Systems, AAMAS 2015,
pp. 1809–1810. ACM (2015)

16. Alur, R., Henzinger, T., Kupferman, O.: Alternating-time temporal logic. J. ACM
49(5), 672–713 (2002)

17. Alur, R., Henzinger, T.A., Mang, F.Y.C., Qadeer, S., Rajamani, S.K., Tasiran,
S.: MOCHA: modularity in model checking. In: Hu, A.J., Vardi, M.Y. (eds.) CAV
1998. LNCS, vol. 1427, pp. 521–525. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0028774

18. Belardinelli, F.: Verification of non-uniform and unbounded artifact-centric sys-
tems: decidability through abstraction. In: Bazzan, A.L.C., Huhns, M.N., Lomus-
cio, A., Scerri, P. (eds.) International Conference on Autonomous Agents and
Multi-Agent Systems, AAMAS 2014, pp. 717–724. IFAAMAS/ACM (2014)

19. Belardinelli, F., Demri, S.: Resource-bounded ATL: the quest for tractable frag-
ments. In: Elkind, E., Veloso, M., Agmon, N., Taylor, M.E. (eds.) Proceedings of the
18th International Conference on Autonomous Agents and MultiAgent Systems,
AAMAS 2019, pp. 206–214. International Foundation for Autonomous Agents and
MultiAgent Systems (2019)

20. Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Model checking rational
agents. IEEE Intell. Syst. 19(5), 46–52 (2004)

21. Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Verifying multi-agent pro-
grams by model checking. J. Auton. Agents Multi-Agent Syst. 12(2), 239–256
(2006). http://dro.dur.ac.uk/622/

22. Brázdil, T., Jančar, P., Kučera, A.: Reachability games on extended vector addi-
tion systems with states. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf
der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 478–489.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14162-1 40

23. Bulling, N., Farwer, B.: On the (un-)decidability of model checking resource-
bounded agents. In: Proceedings of the 19th European Conference on Artificial
Intelligence, ECAI 2010. Frontiers in Artificial Intelligence and Applications, vol.
215, pp. 567–572. IOS Press (2010)

24. Bulling, N., Farwer, B.: On the (un-)decidability of model checking resource-
bounded agents. Technical report IfI-10-05. Clausthal University of Technology
(2010)

25. Bulling, N., Farwer, B.: Expressing properties of resource-bounded systems: the
logics RTL* and RTL. In: Dix, J., Fisher, M., Novák, P. (eds.) CLIMA 2009.
LNCS (LNAI), vol. 6214, pp. 22–45. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-16867-3 2

https://doi.org/10.1007/BFb0028774
https://doi.org/10.1007/BFb0028774
http://dro.dur.ac.uk/622/
https://doi.org/10.1007/978-3-642-14162-1_40
https://doi.org/10.1007/978-3-642-16867-3_2
https://doi.org/10.1007/978-3-642-16867-3_2

28 N. Alechina and B. Logan

26. Bulling, N., Goranko, V.: How to be both rich and happy: combining quantitative
and qualitative strategic reasoning about multi-player games (extended abstract).
In: Mogavero, F., Murano, A., Vardi, M.Y. (eds.) Proceedings 1st International
Workshop on Strategic Reasoning, SR 2013. EPTCS, vol. 112, pp. 33–41 (2013)

27. Bulling, N., Nguyen, H.N.: Model checking resource bounded systems with shared
resources via alternating Büchi pushdown systems. In: Chen, Q., Torroni, P., Vil-
lata, S., Hsu, J., Omicini, A. (eds.) PRIMA 2015. LNCS (LNAI), vol. 9387, pp.
640–649. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25524-8 47

28. Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.: Generalized mean-payoff
and energy games. In: Lodaya, K., Mahajan, M. (eds.) IARCS Annual Confer-
ence on Foundations of Software Technology and Theoretical Computer Science,
FSTTCS 2010, 15–18 December 2010, Chennai, India. LIPIcs, vol. 8, pp. 505–516.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2010)

29. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst. 8(2), 244–263 (1986)

30. Courtois, J.-B., Schmitz, S.: Alternating vector addition systems with states. In:
Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014. LNCS, vol.
8634, pp. 220–231. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-44522-8 19

31. Della Monica, D., Napoli, M., Parente, M.: On a logic for coalitional games with
priced-resource agents. Electron. Notes Theor. Comput. Sci. 278, 215–228 (2011)

32. Della Monica, D., Napoli, M., Parente, M.: Model checking coalitional games in
shortage resource scenarios. In: Proceedings of the 4th International Symposium
on Games, Automata, Logics and Formal Verification, GandALF 2013. EPTCS,
vol. 119, pp. 240–255 (2013)

33. Dennis, L.A., Fisher, M., Webster, M.P., Bordini, R.H.: Model checking agent
programming languages. Autom. Softw. Eng. 19(1), 5–63 (2012)

34. Dima, C., Tiplea, F.L.: Model-checking ATL under imperfect information and per-
fect recall semantics is undecidable. CoRR abs/1102.4225 (2011). http://arxiv.org/
abs/1102.4225

35. Fisher, M., Dennis, L.A., Webster, M.P.: Verifying autonomous systems. Commun.
ACM 56(9), 84–93 (2013)

36. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Boston (1979)

37. Jurdziński, M., Lazić, R., Schmitz, S.: Fixed-dimensional energy games are in
pseudo-polynomial time. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speck-
mann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 260–272. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-47666-6 21

38. Kanovich, M.I.: Petri nets, horn programs, linear logic and vector games. Ann.
Pure Appl. Logic 75(1–2), 107–135 (1995)

39. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

40. Lincoln, P., Mitchell, J.C., Scedrov, A., Shankar, N.: Decision problems for propo-
sitional linear logic. Ann. Pure Appl. Logic 56(1–3), 239–311 (1992)

41. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: a model checker for the verification
of multi-agent systems. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol.
5643, pp. 682–688. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-02658-4 55

https://doi.org/10.1007/978-3-319-25524-8_47
https://doi.org/10.1007/978-3-662-44522-8_19
https://doi.org/10.1007/978-3-662-44522-8_19
http://arxiv.org/abs/1102.4225
http://arxiv.org/abs/1102.4225
https://doi.org/10.1007/978-3-662-47666-6_21
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-02658-4_55
https://doi.org/10.1007/978-3-642-02658-4_55

State of the Art in Logics for Verification of Resource-Bounded MAS 29

42. Nguyen, H.N., Rakib, A.: A probabilistic logic for resource-bounded multi-agent
systems. In: Kraus, S. (ed.) Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI 2019, Macao, China, 10–16 August
2019, pp. 521–527. ijcai.org (2019)

43. Raskin, J., Samuelides, M., Begin, L.V.: Games for counting abstractions. Electron.
Notes Theor. Comput. Sci. 128(6), 69–85 (2005)

44. Shapiro, S., Lespérance, Y., Levesque, H.J.: The cognitive agents specification lan-
guage and verification environment for multiagent systems. In: Proceedings of the
First International Joint Conference on Autonomous Agents and Multiagent Sys-
tems, AAMAS 2002, pp. 19–26. ACM Press, New York (2002)

	State of the Art in Logics for Verification of Resource-Bounded Multi-Agent Systems
	1 Introduction
	2 Background
	2.1 Energy Games and Vector Addition Systems with States
	2.2 Strategy Logics

	3 Resource Logics
	3.1 Overview of Resource Logics
	3.2 RBATL
	3.3 Correspondence Between Games on AVASS and RBATL Semantics
	3.4 RBATL*
	3.5 Other Resource Logics with Decidable Model-Checking

	4 Summary and Future Challenges
	References

