
Formally Verified Architecture Patterns
of Hybrid Systems Using Proof and

Refinement with Event-B

Guillaume Dupont(B), Yamine Aït-Ameur, Marc Pantel, and Neeraj K. Singh

INPT-ENSEEIHT/IRIT, University of Toulouse, Toulouse, France
{guillaume.dupont,yamine,marc.pantel,nsingh}@enseeiht.fr

Abstract. Cyber-Physical Systems (CPS) play a central role in modern
days technology. From simple thermostat controllers to more advanced
autonomous cars, their versatility makes them perfect candidates for
many applications, in particular for safety critical ones. Thus, their cer-
tification is a key issue and formal methods are good candidates to
assess safety and produce associated certificates. Hybrid systems show
continuous-time dynamics depending on mode that is required in several
stages of the architecture of Cyber-Physical Systems. Our work addresses
the problem of formally verifying hybrid systems using refinement and
proof with Event-B. Our previous work [14] presented formally verified
generic architecture patterns for designing centralised hybrid systems,
based on our generic approach [15]. We extend this work and give a for-
mally verified architecture pattern aimed at modelling distributed hybrid
systems, featuring multiple plants and multiple controllers. We validate
the approach and illustrate the use of the defined pattern on an extension
of a very common case study, borrowed from literature.

Keywords: Hybrid systems · Cyber-physical systems · Architecture
design patterns · Event-B · Refinement · Proof

1 Introduction

Cyber-Physical Systems (CPS) can be described as complex systems that inte-
grate both discrete and continuous features [19]. Such system generally consists
of a discrete algorithm or controller that interacts with a continuous process or
plant in order to control its behaviour. The controller can retrieve information
from the plant through sensors and may alter its behaviour with actuators.

Because of this hybridation, CPS are often regarded as quite hard to trust.
However, their versatility, adaptability and price made them unavoidable in our
everyday life, from Internet of Things (IoT) to smart systems (e.g. home automa-
tion, smart factories and so on), including, of course, critical systems such as
transportation and medical devices. Being able to formally model and certify
CPS is thus a major challenge nowadays.

This work was supported by grant ANR-17-CE25-0005 (The DISCONT Project
https://discont.loria.fr) from the Agence Nationale de la Recherche (ANR).
c© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 169–185, 2020.
https://doi.org/10.1007/978-3-030-48077-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_12&domain=pdf
https://discont.loria.fr
https://doi.org/10.1007/978-3-030-48077-6_12

170 G. Dupont et al.

The design of formal modelling approaches for CPS development and/or
certification has been addressed in various ways. In [4], Alur defines the hybrid
automata formalism to model hybrid systems. Hybrid model-checkers such as
HyTech, d/dt, PHaVer or SpaceEx can then be used to establish properties such
as reachability.

In terms of modelling techniques, [18] have proposed HybridCSP as a hybrid
extension of CSP [17]. [7] proposes a continuous extension of Action System. In
the same manner, [8] proposes an hybrid extension to the Event-B method.

Proof-based approaches have also been used to try and formally prove CPS.
[9] use Coq to that extent, starting from an annotated C program. [21] uses a
special formalism (hybrid programs) to model and to prove hybrid systems using
KeYmaera. Event-B has been used for modelling similar systems in [23] and [10].

However, all these approaches still require formal modelling expertise, where
the developer needs to establish correctness using complex proof systems involv-
ing discrete and continuous mathematics features and proof rules. As a con-
sequence, the use of these methods on a large scale is hindered, in particular
in formal system engineering. So, easing CPS formal modelling and verifica-
tion activities in presence of both discrete and continuous behaviours is still a
challenge.

To address this challenge, we propose a systematic correct-by-construction
approach to design hybrid systems based on the definition of architecture pat-
terns. Indeed, one commonly used method in formal system engineering is to
provide formalised generic patterns where relevant generic properties are estab-
lished. Furthermore, those patterns can be instantiated for specific systems. In
such a setting, the system developer selects the most adapted pattern and instan-
tiates it. Proof obligations, in particular regarding well-definedness, may need to
be discharged in order to inherit all the properties of the generic pattern.

In our previous work [14], we used Event-B to design and formalise com-
monly used architecture patterns (AP) for centralised hybrid systems. We based
those patterns on our generic approach [15], allowing to model both discrete and
continuous behaviours. In this paper, we extend these architecture patterns to
model distributed hybrid systems i.e. systems that manage multiple autonomous
subsystems, linked together by a communication network. A case study is given
as a possible instantiation of this pattern, involving independent liquid tanks
enforcing a global invariant that expresses safety properties.

This paper is organised as follows: Sect. 2 gives an overview of Event-B and
Sect. 3 presents hybrid modelling features needed for hybrid system development.
Section 4 introduces the architecture patterns identified when modelling hybrid
systems. Section 5 recalls our generic method for designing hybrid systems in
Event-B. Section 6 introduces a case study to support our work, which is solved
in Sect. 7. Finally, Sect. 8 provides an assessment of the approach, and Sect. 9
concludes the paper and discusses possible future research directions.

2 Modelling Hybrid Systems with Event-B

Event-B method [2] supports the development of correct-by-construction com-
plex systems. First order logic and set theory are used as core modeling language.

Formally Verified Design Patterns of Hybrid Systems 171

The design process consists of a series of refinements of an abstract model leading
to the final concrete model. Refinement progressively contributes to add design
decisions to the system.

Event-B machines formalize models described as state-transitions systems
and a set of proof obligations are automatically generated for each model.

Notation. We use the superscripts A and C to denote abstract and concrete
features.

Table 1. Model structure

Context Machine Refinement
CONTEXT Ctx MACHINE MA

MACHINE MC

SETS s SEES Ctx REFINES MA

CONSTANTS c VARIABLES xA
VARIABLES xC

AXIOMS A INVARIANTS IA(xA) INVARIANTS J(xA, xC) ∧ IC (xC)

THEOREMS Tctx THEOREMS Tmch (xA) ...

END VARIANT V (xA) EVENTS

EVENTS EVENT evtC

EVENT evtA REFINES evtA

ANY αA
ANY αC

WHERE GA(xA, αA) WHERE GC (xC , αC)

THEN WITH

xA :| BAPA(αA, xA, xA′
) xA′, αA: W (αA, αC , xA, xA′, xC , xC′

)

END THEN

... xC :| BAPC (αC , xC , xC′
)

END

...

(a) (b) (c)

– Event-B Contexts (Table 1.a). Contexts are the static part of a model. They
set up all the definitions (carrier sets s and constants c), axioms (A) and
theorems (Tctx) needed to describe the required concepts.

– Event-B Machines (Table 1.b). A machine describes the dynamic part of a
model as a transition system. A set of guarded events modifying a set of vari-
ables (state) represents the core concepts of a machine. Variables x, invariants
I(x), theorems Tmch(x), variants V (x) and events evt (possibly guarded by
G and/or parameterized by α) are defined in a machine. Invariants and the-
orems formalize safety system properties while variants define convergence
properties (reachability).

– Event-B Refinements (Table 1.c). A system is gradually designed by intro-
ducing properties (functionality, safety, reachability) at various abstraction
levels. Refinement decomposes a machine, a state-transitions system, into a
more concrete one, with more design decisions (refined states and events)
while moving from an abstract level to a less abstract one. Abstract and

172 G. Dupont et al.

concrete variables are related by gluing invariants ensuring properties preser-
vation between abstract and concrete models.

– Proof Obligations (PO) and Property Verification. To establish the correctness
of an Event-B model, a set of POs are automatically generated from the
calculus of substitutions. They need to be proved.

– Extensions with mathematical theories. In order to handle theories beyond
set theory and first order logic, an Event-B extension to support externally
defined mathematical theories has been proposed. It offers the capability to
introduce new datatypes through the definition of new types, sets operators,
theorems and associated rewrite and inference rules, in so-called theories.

– Event-B and its IDE Rodin. It offers resources for model edition, automatic
PO generation, project management, refinement and proof, model checking,
model animation and code generation. Several provers, like SMT solvers, are
plugged to Rodin. In particular, a plug-in allows to define theories [11].

3 Hybrid Systems Modelling Features

Modelling hybrid systems requires handling of continuous behaviours. We thus
need to access specific mathematical objects and properties, not natively avail-
able in Event-B. These concepts such as differential equations and their associ-
ated properties have been modelled through an intensive use of Event-B theories
and have been used to model various case studies found in [13–15].

In order to deal with continuous objects, theories have been defined for con-
tinuous functions, (ordinary) differential equations as well as for their proper-
ties. They are used throughout the defined models. Their complete definitions
are available at https://irit.fr/~Guillaume.Dupont/models.php. Some of those
concepts as they are used in this paper are recalled below.

VARIABLES t
INVARIANTS

inv1 : t ∈ R
+

· · ·

Time. A notion of time is needed to define continu-
ous behaviors. We thus introduce dense time t ∈ R

+,
modeled as a continuously evolving variable.

System State. According to the architecture of hybrid systems, we have identified
two types of states.

– Discrete state xs ∈ STATES , variable that represents the controller’s inter-
nal state. It evolves in a pointwise manner with instantaneous changes.

– Continuous state xp ∈ R
+ → S represents the plant’s state and evolves

continuously. It is modelled as a function of time with values in space S.

Hybrid Modeling Features. Modeling hybrid systems requires the introduction of
multiple specific features which are defined below.

– DE(S) type for differential equations which solutions evolve over set S
– ode(f, η0, t0) represents the ODE1 η̇(t) = f(η(t), t) with initial condition

η(t0) = η0

1 Ordinary Differential Equation.

https://irit.fr/~Guillaume.Dupont/models.php

Formally Verified Design Patterns of Hybrid Systems 173

Fig. 1. Differential equation theory snippet

– solutionOf(D, η, E) is the predicate stating that function η is a solution of
equation E on subset D

– Solvable(D, E , I) is the predicate stating that equation E has a solution
defined on subset D so that the solution satisfies the constraint I

These features have been encoded in a theory from which we show a snippet on
Fig. 1 (the theory accumulates more than 150 operators and 350 properties).

Other, more specialised expressions and predicates are defined (FlowEquation,
FlowODE) in additional theories. Note that all these definitions use algebraic
datatypes together with axioms, theorems and proof rules.

In the following, we use x to denote the union of discrete and continuous
state variables.

Continuous Assignment. Continuous variables are essentially functions of time
and are at least defined on [0, t] (where t is the current time). Updating such
variables thus requires to 1) make the time progress from t to t′ > t, and 2)
append to the already existing function a new piece corresponding to its extended
behavior (on [t, t′]) while ensuring its “past” (i.e. whatever happened on [0, t])
remains unchanged.

Similarly to the classic Event-B’s before-after predicate (BAP), we define a
continuous before-after predicate (CBAP) operator, denoted :|t→t′ , as follows:

xp :|t→t′ P(xs, xp, x
′
p) & I ≡ [0, t] � x′ = [0, t] � x (PP)

∧P(xs, [t, t′] � xp, [t, t′] � x′
p) (PR)

∧∀t∗ ∈ [t, t′], x′
p(t

∗) ∈ I (LI)

We note CBAP(xs, xp, x
′
p) ≡ PP (xp, x

′
p) ∧ PR(xs, xp, x

′
p) ∧ LI(xp, x

′
p). The

operator consists of 3 parts: past preservation and coherence at assignment
point (PP), before-after predicate on the added section (PR), and local invariant
preservation (LI). The discrete state variables xs do not change in the interval
[t, t′] but the predicate P may use it for control purposes.

Note that this operator is well-defined if and only if t′ > t, as otherwise the
interval [t, t′] would not be well-defined.

174 G. Dupont et al.

From the above definition, shortcuts can be introduced for readability pur-
poses:

– Continuous assignment: x :=t→t′ f & I ≡ x :|t→t′ x′ = f & I
– Continuous evolution along a solvable differential equation E ∈ DE(S):

x :∼t→t′ E & I ≡ x :|t→t′ solutionOf([t, t′], x′, E) & I.

4 Architecture Patterns for Modelling Hybrid Systems

One of the most common architectures found in CPS (see Fig. 2) is a discrete
software controller, which interacts by some means (e.g. actuators) with a plant
and its physical environment (continuous physical phenomenon) in a closed-loop
schema. Input from sensors is processed and output is generated and communi-
cated to actuators [12]. Commands from a user or another controller may also
be addressed to the controller.

Fig. 2. Generic hybrid system repre-
sentation

Controllers are characterised by discrete
state variables and transitions correspond-
ing to control decisions; as for plants, they
are defined by continuous state variables
whose evolution is generally described using
differential equations. Sensors, user com-
mands control decision and actuators modify
these variables.

In this paper, we focus on the verification
of the correctness of such discrete controllers, which require correct composition
of discrete and continuous models. We claim that correctness should arise from
a design process based on sound abstractions and models of the relevant laws of
physics.

Hybrid systems may combine the behaviours of multiple separated compo-
nents (plants or controllers), which can lead to very different control strategies,
following the number of controllers and plants to be controlled. Therefore, the
generic architecture given in Fig. 2 should be refined into three types of archi-
tecture patterns:

– Single-to-Single AP corresponds to hybrid systems with one controller
and one plant. Examples of hybrid systems corresponding to this pattern
addressed in the literature include the automatic car braking [15], the sig-
nalised left-turn assist [13], heating systems [16], etc.

– Single-to-Many AP describes hybrid systems with one controller and many
plants (more than one). This pattern corresponds to centralised control. An
example of hybrid system corresponding to this pattern is the control of a
global volume distributed over several tanks formalised with hybrid automata
and with Event-B in [14].

– Many-to-Many AP characterises hybrid systems with many controllers and
many plants. This pattern refers to the case where several hybrid systems are
integrated together to implement a given function. Examples of such systems
are UAV or rover fleet control modelled in Event-B [22].

Formally Verified Design Patterns of Hybrid Systems 175

All the patterns defined above refine the one of Fig. 2. The controller and
the plant components may be refined to one or many components. These refine-
ments introduce specific properties and behaviours associated to each pattern.
The single-to-single AP defines one discrete state for the controller and one con-
tinuous state for the plant. The single-to-many AP defines a controller with one
discrete state able to build a global continuous state aggregating the many states
of each and every plants.

Finally, the many-to-many AP allows to define distributed hybrid systems
where each component has a partial view of all the other systems. Here, it is
difficult to build a global state of the whole system. Therefore, an approximation
of this global state is used by each system controller to take control decisions.
Then, the correctness of this approximation shall be ensured to establish global
invariants. In other words, local invariants associated to each hybrid system
contribute to ensure the global invariant of the whole system composed of all
the hybrid systems.

Note: it is worth noticing that the case of many-to-many AP may be defined
as a set of hybrid systems corresponding to either single-to-single AP or single-
to-many AP. In the last case, single-to-many is abstracted by a single-to-single
system, providing modular verification.

5 Methodology for Hybrid System Design

The pattern presented in Sect. 4 served as a basis for setting up a methodology
for hybrid system design. This methodology has been first presented in [15]. It
consists of a generic Event-B model that abstracts hybrid systems following the
pattern of Fig. 2. This model is then instantiated via refinement. Discrete models
can be derived in the same manner [6].

Note that the generic model introduces typically continuous concepts such
as differential equations and dense time. It therefore heavily relies on the theory
extension of Event-B implemented as a plug-in (see Sect. 3).

5.1 A Generic Event-B Model for Hybrid Systems

VARIABLES t , xs , xp
INVARIANTS

inv1 : t ∈ R

inv2 : xs ∈ STATES
inv3 : xp ∈ R

+ �→ S
inv4 : [0, t] ⊆ dom(xp)

Model State. The generic model deals with three vari-
ables. xs represents the controller’s discrete state that
belongs to STATES set consisting of the states of the
system’s mode automaton.

xp is the system’s continuous state. It is a function of time (inv3) valued in
the (continuous) state space S, usually R

n. It represents the physical quantities
that are sensed and/or controlled. Last, we recall that variable t models the
physical, dense time.

Model Behaviour. The defined model follows the control-command principle
depicted on Fig. 2. Two categories of events are defined. Discrete events are
instantaneous. They are associated with changes in the state of the mode
automaton either internal (Transition event) or induced by the sensing of the

176 G. Dupont et al.

plant’s state (Sense event). Continuous events, on the contrary, are not instan-
taneous. They describe the Plant’s behaviour, either following environmen-
tal changes (behave event) or caused by actuation (actuate event). Note that
all these generic events will be refined later for developing particular hybrid
systems.

Transition

ANY s
WHERE

grd1 : s ∈ P1(STATES)
THEN

act1 : xs :∈ s
END

Transition. Transition events (corresponding to
command arrow and the Ctrl box of Fig. 2) model
internal changes in the controller. They represent
user commands, internal timers or non-deterministic
choices that occur in the discrete part of the system
(mode automata). It updates the state of the automaton (act1).

Sense

ANY s , p
WHERE

grd1 : s ∈ P1(STATES)
grd2 : p ∈ P(STATES

×R × S)
grd3 : (xs �→ t �→ xp(t)) ∈ p

THEN

act1 : xs :∈ s
END

Sense. Sensing events (corresponding to sense arrow
of Fig. 2) model changes in the controller induced by
the reading of the plant’s state, generally obtained
from sensors. As they are fired according to the
plant’s state and to the mode automaton’s state,
they are guarded by a predicate over xp(t) and xs

(grd3). The purpose is to change state xs in action act1 of the mode automaton.

Behave

ANY eq , t′
WHERE

grd1 : eq ∈ DE(S)
grd2 : Solvable([t, t′], eq, �)

THEN

act1 : t, xp :∼
t→t′ eq & �

END

Behave. Behave events (corresponding to the
environment arrow of Fig. 2) represent changes in
the plant due to the environment: rain, wind, etc.
These events enforce, in action act1, the dynamics
of the plant to comply with a differential equation
under solvability condition (gdr2) but without any condition on the state of the
mode automaton.

Actuate

ANY eq , s , H , t′
WHERE

grd1 : eq ∈ DE(S)
grd2 : Solvable([t, t′], eq, H)
grd3 : s ⊆ STATES
grd4 : xs ∈ s
grd5 : H ⊆ S
grd6 : xp(t) ∈ H

THEN

act1 : t, xp :∼
t→t′ eq & H

END

Actuate. Actuation events (corresponding to the
actuate arrow of Fig. 2) model changes in the plant
induced by the controller (generally performed by
actuators). These events enforce, in action act1,
the dynamics of the plant to comply with a differ-
ential equation under solvability condition (gdr2)
and a constraint H on the plant evolution domain

(gdr5 and gdr6). Moreover, unlike for Behave, since Actuate results from a
change in the controller, it is guarded by a predicate on the mode automaton
(gdr4).

As mentioned above, both Behave and Actuate are continuous events. They
rely on the continuous evolution operators defined in Sect. 3. Both events enforce
plant behaviour by setting up a corresponding differential equation.

5.2 Semantics

The semantics of hybrid models we use is close to the one of Hybrid Event-B [8],
hybrid programs in [21] or continuous action systems [7,20].

Formally Verified Design Patterns of Hybrid Systems 177

In classical Event-B semantics, each model is associated with a discrete state-
transition system, in which transitions are the fired machine events and states
consist of the machine’s variables. A system is hence characterised by a set of
licit traces i.e. a set of fired events that abide by the system’s invariants.

In our approach, discrete events are timeless, while continuous ones have a
duration. In order to properly handle the modelling of continuous behaviours, the
semantics of Event-B is enhanced to handle modelling of continuous phenomena
which are, in nature, different from discrete behaviours. We have identified two
categories of events: discrete (instantaneous) events, which use discrete assign-
ments operators such as :| and := and continuous (not instantaneous) events
that span over some duration and use continuous assignment operators, namely
:|t→t′ and :=t→t′ . Note that, if several (continuous or discrete) events guards are
enabled, these enabled events are fired non deterministically.

A model is then defined as follows. After initialisation, continuous events
(Behave and Actuate events) run continuously unless a discrete, instantaneous
event is enabled (either a Sense or a Transition event). In this case, discrete
events are preemptive. This protocol ensures that when the conditions (events’
guards) are met, the controller is able to trigger control actions (Sense or Transi-
tion) that may or may not change the continuous behaviour of the plant (through
triggering an Actuate event). Unlike Actuate, the Behave event neither requires
control action to be triggered nor any plant evolution constraint H. Sensing
actions using the Sense event will re-establish the correct plant behaviour via
the control loop in order to further trigger an Actuate event.

5.3 The Generic Model in Rodin

The generic model is the entry point for the method. Specific hybrid system
models are obtained by refining it, providing the various witnesses issued from
event parameters and substituted variables. In itself, this model generates 13
proof obligations that are easily discharged. Among them there is an important
obligation stating that if equation e is solvable then x :∼t→t′ e is feasible.

This approach has been successfully applied to various case studies. [13,15]
show a class of systems with one controller and one plant while [14] demonstrates
the possible use of the method for a system with one controller and several plants.

Models for the generic approach, including the above-mentioned case studies
can be found at https://www.irit.fr/~Guillaume.Dupont/models.php.

6 Case Study: The Water Tank Problem

We now illustrate our approach for formally verifying hybrid systems patterns
with a well-known control theory problem: keeping the volume of liquid inside a
tank between specific bounds proposed by [5].

6.1 Abstract System

The problem is depicted on Fig. 3 and can be described as follows: one or more
tanks are filled with a liquid and connected to an input and an output pump.

https://www.irit.fr/~Guillaume.Dupont/models.php

178 G. Dupont et al.

A controller can access the global volume V of all tanks and may control their
pumps to start filling or emptying them. The goal of the controller is to keep
the whole volume between Vlow and Vhigh .

Fig. 3. Abstract tank

The following safety requirements are defined. Let V ,
be the volume of the tanks (continuous state being con-
trolled). V is physically bounded by 0 and Vmax , such
that Vhigh ≤ Vmax, and it shall satisfy the following prop-
erties:

SAF1 The volume never overflows nor underflows:
V (t) ∈ [Vlow , Vhigh]
SAF2 The variation of the volume is bounded (to avoid
excessive turmoil in the tank): |V̇ (t)| < ΔVmax

At this level, it is not needed to know the specific
characteristics of the tanks (i.e. their shapes, their num-

ber, the behaviour of the pumps, the way the controller accesses V and so on).
They are simply abstracted away so as to keep this description as generic as pos-
sible. The system is later refined for specific tanks and using specific architecture
patterns.

6.2 Architecture Patterns as Abstract System Refinements

The system formerly introduced can be refined to illustrate the three architecture
patterns identified in Sect. 4 and depicted on Fig. 4.

(a) Single-to-Single (b) Single-to-Many (c) Many-to-Many

Fig. 4. Three refinement patterns for the case study

Single-to-Single Architecture Pattern. Within a refinement, the abstract
model of Fig. 3 is instantiated by a concrete system composed of one controller
managing one cylinder-shaped tank (see Fig. 4a). The abstract plant’s volume
is refined using the gluing invariant V = B · h, where B is the surface of the
cylinder’s base and h is the height of liquid in the tank (easier to measure than
the direct volume). Constraints on h are strengthened by the well-definedness
condition Vmax ≤ B · Hmax , ensuring that the cylinder can contain (at least)
volume Vmax .

Formally Verified Design Patterns of Hybrid Systems 179

As a matter of simplification, the pumps are associated with a fixed flow rate
and are either open (full flow) or closed (no flow), with no intermediate state.
Therefore, a differential equation for the system is ḣ = in · δin +out · δout , where
in, out are the states of the pumps and δin , δout are their respective flows.

This pattern has been previously instantiated in [13,15].

Single-to-Many Architecture Pattern. The same case study can be used to
illustrate the second architecture pattern, which involves a single controller and
many plants. In this case, we assume that the controller has a global view of the
system. In other words, it knows all the plants’ continuous state variables.

Figure 4b depicts a simplified case for two cylinder tanks, but it scales to
any number of tanks of various shapes provided the differential equations that
governs these plants are known. For two cylindrical tanks, the gluing invariant is
V = B1 ·h1+B2 ·h2 where B1 and B2 are the surface of the cylinders bases and h1

and h2 are the height of liquid in the tanks. The associated differential equations
given as witnesses for instantiation are defined by a linear combination.

However, the interesting property in this instantiation relates to the feasibil-
ity of the refinement. Indeed, an additional well-definedness condition, expressed
as an invariant, states that Vmax ≤ B1 · H1,max + B2 · H2,max as to guarantee
that the maximum abstract volume can be contained by the two cylinders rep-
resenting the concrete plant.

This pattern has been thoroughly instantiated and studied in [14].

Note: All the Event-B models corresponding to the two architecture pat-
terns discussed above are available at https://www.irit.fr/~Guillaume.Dupont/
models.php. We did not discuss them in this paper due to space limitations.
More details can be found in [14,15].

Section 7 below, focuses only on the Event-B models corresponding to the
most complex architecture pattern: many-to-many.

7 Application of the Many-to-Many Architecture Pattern

In this section we present the last refinement chain corresponding to the many-
to-many architecture pattern of Sect. 4. The details of the Event-B models are
given below for the case study of the water tank following the instantiation of
this specific architecture pattern from Fig. 4c.

Refinement Strategy. The refinement strategy is similar to the one used with
the single-to-single and single-to-many patterns. It consists in instantiating the
generic model of Sect. 5. Depending on the number of components (controllers/-
plants), the generic parts for controller and plant are refined.

Note that the instantiation of the generic model is achieved by providing
witnesses to the parameters of the generic events of the Event-B models, i.e.
providing a witness for an existential proof obligation.

Two refinements leading to the final Event-B model are defined. First, an
abstract tank model corresponding to the system presented in Sect. 6.1 is built

https://www.irit.fr/~Guillaume.Dupont/models.php
https://www.irit.fr/~Guillaume.Dupont/models.php

180 G. Dupont et al.

as an instance of the generic model of Sect. 5. Then, the final instantiated archi-
tecture pattern of Fig. 4c is modelled as a refinement of this model, providing
witnesses for generic parameters. The two refinements are summarised below in
Sects. 7.1 and 7.2.

7.1 Abstract Tank Model

MACHINE WaterTank_base REFINES Generic
VARIABLES t , V , xs
INVARIANTS

inv1 : V ∈ R
+ �→ S

inv2 : [0, t] ⊆ dom(V)
inv2 : V = xp
inv3 : V ∈ D1([0, t], R)∧

∀τ · τ ∈ [0, t] ⇒
∣
∣
∣V̇ (τ)

∣
∣
∣ ≤ ΔVmax

inv4 : ∀τ · τ ∈ [0, t] ⇒ Vlow ≤ V (τ) ≤ Vhigh

Machine State. The controlled vari-
able is the volume V . As mentioned in
Sect. 6.1 (SAF1 and SAF2), this quan-
tity shall remain between Vlow and
Vhigh and its derivative (V̇) shall be
bounded by the ΔVmax constant.

The system operates in 4 modes: Emptying (volume decreases), Filling (vol-
ume increases), Normal (volume varies in an arbitrary way between Vlow and
Vhigh) and Stable (volume does not vary) defining the set STATES.

ctrl_sense_too_high REFINES Sense
WHERE

grd1 : Vhigh ≤ V (t)
WITH s : s = {Emptying}

p : p = STATES × R
+ × {V ∗ | Vhigh ≤ V ∗}

THEN

act1 : xs := Emptying
END

ctrl_transition_normal REFINES Transition
WHERE

grd1 : Vlow < V (t)
grd2 : V (t) < Vhigh

WITH s : s = {Normal}
THEN

act1 : xs := Normal
END

Transition and Sense. When the vol-
ume reaches Vlow (resp. Vhigh) the sys-
tem moves to Filling (resp. Emptying)
mode. Outside of these restrictions, the
system may evolve arbitrarily from one
mode to another, via transition events.
Transition events are guarded by a
stricter version of the safety invariant
as to prevent the system from deliber-
ately going into an unsafe mode.

ctrl_actuate_pumps REFINES Actuate
ANY e , ss , t′
WHERE

grd1 : e ∈ DE(S)
grd2 : Solvable([t, t′], e)
grd3 : FlowEq(ss, [t, t′], e)
grd4 : ss ∈ STATES
grd5 : xs = ss
grd6 : Vlow < V (t) < Vhigh

WITH x′
p : x′

p = V ′
s : s = {ss}
H : H = {V ∗ | Vlow < V ∗ < Vhigh}

THEN

act1 :
V :∼

t→t′ e & {V ∗ | Vlow < V ∗ < Vhigh}
END

Behave and Actuate. The system per-
forms actuation on the pumps. At this
level, the shape of the tank(s) and
the behaviour of the pumps are not
known yet. The only constraint the
actuation shall enforce is that when-
ever the system is in a specific state,
the provided differential equation for
actuation is such that its solutions have
the expected behaviour (e.g. decreas-
ing solutions when in Emptying mode,

increasing solutions when in Filling mode, etc.).
This constraint is captured by the FlowEq(xs,D, e) predicate of guard grd3

and is defined in a theory, where xs is the controller’s state, D is the domain
on which the predicated behaviour is expected to be true and e is the given
equation.

Formally Verified Design Patterns of Hybrid Systems 181

7.2 Many-to-many Model

The model presented below corresponds to the system depicted on Fig. 4c.

MACHINE WaterTank_2Ctrl_2Tanks REFINES WaterTank_base
VARIABLES t , V1 , V2 , V sim

1 , V sim
2 , x1

s , x2
s , Δsim

1 , Δsim
2

INVARIANTS

inv11 : V1 ∈ R
+ → S ∧ [0, t] ⊆ dom(V1)

inv12 : V sim
1 ∈ R

+ → S ∧ [0, t] ⊆ dom(V sim
1)

inv13 : x1
s ∈ STATES

inv14 : ∀τ · τ ∈ R
+ ⇒ V1(τ) + V sim

2 (τ) ≤ Vhigh − Δsim
2

∧Vlow + Δsim
2 ≤ V1(τ) + V sim

2 (τ)
inv15 : Δsim

1 ∈ R
+

inv16 : ∀τ · τ ∈ R
+ ⇒ |V2(τ) − V sim

2 (τ)| ≤ Δsim
2

inv21−26 : −− s imi l a r to inv11−16 with V2
inv01 : V = V1 + V2
inv02 : xs = guess_gs(x1

s �→ x2
s)

Machine State. In
this refinement, we
want to control two
tanks (although this
could be extended
to any number of
tanks). Each tank
has its own vol-
ume, V1 and V2

(see Fig. 4c) behav-
ing as a global invariant. The abstract volume V is hence refined using the gluing
invariant V = V1 + V2, and the safety invariant becomes Vlow ≤ V1 + V2 ≤ Vhigh

(corresponding to Vlow ≤ B1 · h1 + B2 · h2 ≤ Vhigh). Each volume Vi is
bounded by Vi,max , and in order to have a coherent refinement we need to have
Vmax ≤ V1,max+V2,max . The controller discrete abstract state xs is glued (inv02)
with the two discrete controllers states using the guess_gs operator.

Each tank is controlled by an independent controller. In a many-to-many
pattern, a controller does not know exactly the state of the other controllers
(i.e. what the other controllers are doing). However, the physics asserts that an
estimation of this other state, and as such of the global state, can be built. To
model this situation, two additional continuous variables, V sim

1 (resp. V2
sim) are

introduced. They allow the controller 2 (resp. 1) to simulate (i.e. estimate) V1

(resp. V2).
Because it is an estimation, V sim

i is associated to a bound, Δsim
i , that repre-

sents the maximum error allowed for the controller to ensure a correct behaviour.
We then need to have, at any time and for all i: |Vi − V sim

i | ≤ Δsim
i , i.e.: V sim

i

is a precise enough approximation of Vi. Again, these properties are borrowed
from the physics.

ctrl_sense_too_low_1 REFINES

ctrl_sense_too_low
WHERE

grd1 : V1(t) + V sim
2 (t) ≤ Vlow + Δsim

2
THEN

act1 : x1
s := Filling

END

Transition and Sense. Controller 1
needs to enforce the (local) invariant
Vlow + Δsim

2 ≤ V1 + V sim
2 ≤ Vhigh −

Δsim
2 , and similarly for controller 2.

This enforcement is used to prove the
initially defined global invariant.

Behave and Actuate. The system’s actuation is established using continuous
refinement as presented in [14]: the witness for e (abstract differential equation)
is a predicate that links the solutions of e1 and e2 (concrete differential equations)
such that the sum V ∗

1 + V ∗
2 of any pair of solutions (V ∗

1 , V ∗
2) of (e1, e2) is a

solution of e, in addition to having the relevant general constraints (namely, a
correct behaviour as per the system’s current state). The witness for V ′ is given
to establish the invariant after actuation.

182 G. Dupont et al.

ctrl_actuate_pumps REFINES ctrl_actuate_pumps
ANY ss , e1 , e2 , ss1 , ss2 , V sim∗

1 , V sim∗
2 , t′

WHERE

grd01−02 : ss ∈ STATES ∧ ss = guess_gs(ss1 �→ ss2)
grd11−13 : e1 ∈ DE(S) ∧ Solvable([t, t′], e1) ∧ FlowEq(ss1, [t, t′], e1)
grd14−15 : ss1 ∈ STATES ∧ x1

s = ss1
grd16 : V sim∗

1 ∈ R
+ �→ S ∧ [t, t′] ⊆ dom(V sim∗

1
grd17 : ∀V ∗

1 · V ∗
1 ∈ R

+ �→ S ∧ [t, t′] ⊆ dom(V ∗
1)∧

solutionOf([t, t′], V ∗
1 , e1) ⇒ (∀t∗ · t∗ ∈ [t, t′] ⇒ |V ∗

1 (t) − V sim∗
1 (t)| ≤ Δsim

1)
grd21−27 : −− s imi l a r to grd11−17 with V2
grd30 : Vlow < V1(t) + V sim

2 (t) < Vhigh

grd31 : Vlow < V sim
1 (t) + V2(t) < Vhigh

WITH

V ′ : V ′ = V ′
1 + V ′

2
e : e ∈ DE(S) ∧ Solvable([t, t′], e) ∧ FlowEq(guess_gs(ss1 �→ ss2), [t, t′], e)∧

(∀V ∗
1 , V ∗

2 · V ∗
1 ∈ R

+ �→ S ∧ [t, t′] ⊆ dom(V ∗
1) ∧ V ∗

2 ∈ R
+ �→ S ∧ [t, t′] ⊆ dom(V ∗

2)∧
solutionOf([t, t′], V ∗

1 , e1) ∧ solutionOf([t, t′], V ∗
2 , e2)

⇒ solutionOf([t, t′], V ∗
1 + V ∗

2 , e))
THEN

act1 : V1, V2, V sim
1 , V sim

2 :|
t→t′

solutionOf([t, t′], V ′
1 , e1) ∧ solutionOf([t, t′], V ′

2 , e2)∧
V sim′
1 = V sim∗

1 ∧ V sim′
2 = V sim∗

2
&{Vlow < V1(t) + V sim

2 (t) < Vhigh ∧ Vlow < V sim
1 (t) + V2(t) < Vhigh}

END

8 Assessment

The work presented in this paper showed that the generic model proposed in
[15] applies to different architecture patterns of hybrid systems. Below, we pro-
vide an assessment of the approach with respect to the proof effort and set up
methodology. The models presented in this paper have been developed on the
Rodin platform and all the generated proof obligations were discharged.

Complete models can be found at https://irit.fr/~Guillaume.Dupont/
models.php.

Proof Effort. The abstract tank model generated 107 proof obligations, most of
which are invariant (about 40%) or well-definedness (about 21%) related. Well-
definedness also appears often in proofs subgoals. These POs are usually easy to
prove, at least on paper. Feasibility POs, related to solution existence, are those
difficult to prove.

As for the many-to-many model, it yields 156 proof obligations, among which
a good proportion (53%) consists of invariant POs alone. Again, most of them
are not hard to discharge. The model also yields quite a few guard strengthening
POs (around 15%) that ensure that the controllers behave properly despite the
estimation it makes of the system. But the hardest POs to discharge are the one
regarding refinement (witness well-definedness and feasibility, and simulation).

A great interest of the proposed methodology is there: the only complex
proofs to carry on are related to refinement. Proofs for complicated invariants
and so on have been realised at the abstract level and are done once and for all.

Tool Support. Because of our heavy use of the theory plug-in in Rodin, proof
automation (including SMTs and external provers) is nearly nonexistent for dis-
charging the generated POs. Proof is thus mostly interactive, and even simple
steps such as basic well-definedness are to be done fully manually using the
interactive prover. That being said, the possibility to define rewrite and infer-
ence rules greatly improves the prover’s overall ergonomy.

https://irit.fr/~Guillaume.Dupont/models.php
https://irit.fr/~Guillaume.Dupont/models.php

Formally Verified Design Patterns of Hybrid Systems 183

Methodology. The use of patterns as methodological basis is not new in system
engineering. The availability of architecture patterns offers a methodological
guide to system designers, who simply need to identify which pattern matches
the hybrid system under design and instantiate it with refinements and witnesses.

The generic model offers a framework that is formally proven once and for
all. It corresponds to a customisation of Event-B to offer resources for modelling
controllers, plants, sensing and actuation, integrating both discrete and contin-
uous behaviours. Proofs are done once for all and the designer does not need to
re-prove them. This generic model is used as a ground model for further designs.

Each defined architecture pattern is formalised as an instance of the generic
model. The pattern to be chosen for instantiation depends on the number of
controllers and plants required in the model. Instantiation is performed using
Event-B refinement.

One of the interests of the Event-B method is the capability to check well-
definedness and feasibility conditions, which is particularly useful during instan-
tiation. In our developments, it has been extensively used to provide conditions
about the soundness of the defined instantiations. For example, it has been used
to state that the cylinders given as refinement are capable of storing an abstractly
specified volume of liquid Vmax .

9 Conclusion and Future Work

This paper presented a framework for modelling hybrid systems. It relies on a
formal model of different hybrid systems architecture patterns formalised with
the Event-B method using the Rodin platform. These patterns, commonly used
when designing hybrid systems, are characterised by the number of controlled
plants and by the kind of control strategy (centralised or distributed). Because
this framework is formalised at a generic level, it offers a systematic methodology
for hybrid systems development and verification.

The approach extensively uses the mathematical extensions capabilities
offered by the theory plug-in of Event-B, allowing to enrich Event-B models
with continuous behaviours. Data types for reals, continuous functions, differen-
tial equations and so on have been defined within a sound Event-B theory. The
available axioms and theorems were used to prove the relevant safety properties
of the developed systems expressed as machine invariants. The developed models
are scalable (modulo proof efforts), as they can deal an arbitrary number of state
variables. Witnesses for the sets STATES and S are provided at instantiation
using gluing invariants.

This work revealed several research perspectives. Below, we summarise the
identified future research actions.

Need for Other Domain Theories. Although the definition of generic architecture
patterns has reduced the number and the complexity of proof obligations and
their proofs, the proof effort still needs to be reduced. Providing other sound
domain theories contributes to such a reduction. One of the main extensions to
our work consists in enriching the proposed framework with other theories. Two
kinds of theories are expected: theories for other types of control and theories

184 G. Dupont et al.

where the physics of considered plants is formalised. A library of such theories
would help for such hybrid systems developments by making explicit knowledge
in physics and in other related domains [3].

Methodology. From the method formalisation point of view, the major improve-
ment is to leverage the formalisation of architecture patterns at a higher abstrac-
tion level to handle controllers and plants as first class mathematical objects.

Other patterns where the number of hybrid systems evolves dynamically
could be considered. In this case, each system would have a partial knowledge of
its environment. This kind of patterns may help to model autonomous aspects.
However, defining safety properties remains a major challenge for such patterns.

Integration of Simulation Tools. To handle the traditional hybrid systems devel-
opment processes where simulation is extensively used, coupling the developed
models with simulation tools, like in [1], would help in animating these models.

Acknowledgment. We thank T. S. Hoang for his help with Rodin’s Theory plug-in
and R. Banach for the helpful discussions related to Event-B hybridation.

References

1. Project INTO-CPS: Integrated Tool Chain for Model-based Design of Cyber-
Physical Systems. http://into-cps.au.dk/about-into-cps

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

3. Aït-Ameur, Y., Méry, D.: Making explicit domain knowledge in formal system
development. Sci. Comput. Program. 121(C), 100–127 (2016)

4. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: an
algorithmic approach to the specification and verification of hybrid systems. In:
Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991-1992. LNCS,
vol. 736, pp. 209–229. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
57318-6_30

5. Alur, R., Henzinger, T.A.: Modularity for timed and hybrid systems. In:
Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 74–
88. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63141-0_6

6. Babin, G., Aït-Ameur, Y., Singh, N.K., Pantel, M.: A system substitution mech-
anism for hybrid systems in Event-B. In: Ogata, K., Lawford, M., Liu, S. (eds.)
ICFEM 2016. LNCS, vol. 10009, pp. 106–121. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-47846-3_8

7. Back, R.J., Petre, L., Porres, I.: Continuous action systems as a model for hybrid
systems. Nord. J. Comput. 8(1), 2–21 (2001)

8. Banach, R., Butler, M., Qin, S., Verma, N., Zhu, H.: Core hybrid Event-B I: single
hybrid Event-B machines. Sci. Comput. Program. 105, 92–123 (2015)

9. Boldo, S., Clément, F., Filliâtre, J.C., Mayero, M., Melquiond, G., Weis, P.: Trust-
ing computations: a mechanized proof from partial differential equations to actual
program. Comput. Math. Appl. 68(3), 325–352 (2014)

10. Butler, M., Abrial, J.R., Banach, R.: Modelling and refining hybrid systems in
Event-B and Rodin. In: From Action Systems to Distributed Systems: The Refine-
ment Approach. Computer and Information Science Series, pp. 29–42. Chapman
and Hall/CRC (2016)

http://into-cps.au.dk/about-into-cps
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/3-540-63141-0_6
https://doi.org/10.1007/978-3-319-47846-3_8
https://doi.org/10.1007/978-3-319-47846-3_8

Formally Verified Design Patterns of Hybrid Systems 185

11. Butler, M., Maamria, I.: Practical theory extension in Event-B. In: Liu, Z., Wood-
cock, J., Zhu, H. (eds.) Theories of Programming and Formal Methods. LNCS, vol.
8051, pp. 67–81. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
39698-4_5

12. Cardenas, A.A., Amin, S., Sastry, S.: Secure control: towards survivable cyber-
physical systems. System 1(a2), a3 (2008)

13. Dupont, G., Aït-Ameur, Y., Pantel, M., Singh, N.K.: Hybrid systems and Event-B:
a formal approach to signalised left-turn assist. In: Abdelwahed, E., et al. (eds.)
MEDI 2018. CCIS, vol. 929, pp. 153–158. Springer, Cham (2018). https://doi.org/
10.1007/978-3-030-02852-7_14

14. Dupont, G., Aït-Ameur, Y., Pantel, M., Singh, N.K.: Handling refinement of con-
tinuous behaviors: a refinement and proof based approach with Event-B. In: 13th
International Symposium TASE, pp. 9–16. IEEE Computer Society Press (2019)

15. Dupont, G., Aït-Ameur, Y., Pantel, M., Singh, N.K.: Proof-based approach to
hybrid systems development: dynamic logic and Event-B. In: Butler, M., Raschke,
A., Hoang, T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol. 10817, pp. 155–170.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91271-4_11

16. Henzinger, T.A.: The theory of hybrid automata. In: Proceedings of 11th Annual
IEEE Symposium on Logic in Computer Science, LICS, pp. 278–292. IEEE Com-
puter Society (1996)

17. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Upper Saddle
River (1985)

18. Jifeng, H.: From CSP to hybrid systems. In: Roscoe, A.W. (ed.) A Classical Mind,
pp. 171–189. Prentice Hall International (UK) Ltd., Upper Saddle River (1994)

19. Lee, E.A., Seshia, S.A.: Introduction to Embedded Systems - A Cyber-Physical
Systems Approach, 1.5 edn. LeeSeshia.org (2014). http://leeseshia.org/

20. Meinicke, L., Hayes, I.J.: Continuous action system refinement. In: Uustalu, T. (ed.)
MPC 2006. LNCS, vol. 4014, pp. 316–337. Springer, Heidelberg (2006). https://
doi.org/10.1007/11783596_19

21. Logical Foundations of Cyber-Physical Systems. Lecture Notes in Computer Sci-
ence. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63588-0_21

22. Singh, N.K., Aït-Ameur, Y., Pantel, M., Dieumegard, A., Jenn, E.: Stepwise formal
modeling and verification of self-adaptive systems with Event-B. The automatic
rover protection case study. In: 21st International Conference on Engineering of
Complex Computer Systems, ICECCS 2016, pp. 43–52 (2016)

23. Su, W., Abrial, J.R., Zhu, H.: Formalizing hybrid systems with Event-B and the
Rodin platform. Sci. Comput. Program. 94(Part 2), 164–202 (2014). abstract State
Machines, Alloy, B, VDM, and Z

https://doi.org/10.1007/978-3-642-39698-4_5
https://doi.org/10.1007/978-3-642-39698-4_5
https://doi.org/10.1007/978-3-030-02852-7_14
https://doi.org/10.1007/978-3-030-02852-7_14
https://doi.org/10.1007/978-3-319-91271-4_11
http://leeseshia.org/
https://doi.org/10.1007/11783596_19
https://doi.org/10.1007/11783596_19
https://doi.org/10.1007/978-3-319-63588-0_21

	Formally Verified Architecture Patterns of Hybrid Systems Using Proof and Refinement with Event-B
	1 Introduction
	2 Modelling Hybrid Systems with Event-B
	3 Hybrid Systems Modelling Features
	4 Architecture Patterns for Modelling Hybrid Systems
	5 Methodology for Hybrid System Design
	5.1 A Generic Event-B Model for Hybrid Systems
	5.2 Semantics
	5.3 The Generic Model in Rodin

	6 Case Study: The Water Tank Problem
	6.1 Abstract System
	6.2 Architecture Patterns as Abstract System Refinements

	7 Application of the Many-to-Many Architecture Pattern
	7.1 Abstract Tank Model
	7.2 Many-to-many Model

	8 Assessment
	9 Conclusion and Future Work
	References

