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Abstract. Developing safety-critical systems requires to consider safety
and real-time requirements in addition to functional requirements. Event-
B is a formalism that is visualised by iUML-B and supports the develop-
ment of functional aspects having rich verification and validation tools.
However, it lacks well-established support for timing analysis. UPPAAL
Timed Automata (UTA), on the other hand, address timing aspects of
systems, and enable model checking reachability and timing properties.
By integrating iUML-B and UTA, we combine the best verifying and val-
idating practices from the two methods achieving a formal development
of systems. We present the mapping for translating iUML-B constructs to
UTA. The novel aspect is the use of a multi-process trigger-response pat-
tern to address the modelling and verification of reachability properties
of complex systems with concurrent processes. The approach is demon-
strated on an airport control system, where timing, fairness, as well as
liveness properties play a vital role in proving safety requirements.

Keywords: Verification · Model checking · Timed automata ·
Event-B · iUML-B · UPPAAL · Real-time systems · Trigger-response
patterns

1 Introduction

Correct-by-Construction Design (CCD) [1] plays an important role in the devel-
opment of safety critical-systems, since it guarantees their reliability and cor-
rectness with respect to the system requirements. This is vital in cases where
human safety and large financial assets are at stake. Correctness by construc-
tion is gained by the use of formal methods, which are mathematical methods for
deriving a system based on its requirements. The main reasons for applying for-
mal modelling is to avoid ambiguity or misunderstanding of system requirements
and to detect problems early in system development.
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One of the formal methods which supports CCD in the development process
is Event-B [1]. Event-B is based on set theory and supports design by stepwise
refinement. Event-B tool RODIN with its plug-ins provides a rich support for this
CCD. However, in spite of these beneficial aspects, Event-B lacks sufficient sup-
port for timing analysis and refinement of timed specifications. UTA [3] address
timing aspects of systems providing efficient data structures and algorithms for
their representation and verification, but are less focusing on supporting the
refinement-based development and verification.

The goal of this paper is to advocate a model-based design method, where
Event-B and UTA are combined to mutually complement each other. The moti-
vation for selecting Event-B as the base formalism is that Event-B provides
support for verifying infinite-sized models with advanced data structures using
first-order logic. Additionally, it allows for correct-by-construction development
via stepwise refinement. For mapping, we opt for UTA as it supports verification
of real-time properties which are required before the implementation phase of the
model. The design method consists of stepwise refining the system using Event-B
for proving the functional and safety properties in each step. Each development
step is then translated to a UTA model that can be validated via model check-
ing and checked for real-time properties without re-checking non-timing related
properties.

For the work in this paper we extend the earlier work on the Event-B to
UTA mapping by introducing an intermediate representation in iUML-B for the
generation of the control structure that serves as skeleton also for UTA. In par-
ticular, we investigate how the integrated approach addresses the development of
complex real-time trigger-response pattern-based systems with concurrent pro-
cesses and discuss the benefits of the integrated method in contrast to that when
only one of the two formalisms is applied for the development and verification
of safety critical Cyber-Physical Systems (CPS) [12,13].

2 Related Work

Formal development of CPSs requires continuous timing properties to capture
real behaviour of these systems. As discrete timing constraints cannot describe
some of the substantial dynamic properties like Zeno behaviour, essential discon-
tinuities, and other singularities of real-time systems in the physical environment,
continuous time constraints become the inseparable part of modelling CPS.

Event-B is a formal method for modelling a safety critical-system that origi-
nally lacks the notion of real-time. Recent attempts [5,8,10] have been made to
integrate discrete time to Event-B using patterns, such as delay, expriry, deadline
and interval. Since invariants on discrete time introduce noise to the provers [5],
it easily leads to cases that are difficult to prove. All these timing properties con-
tain a trigger and response pattern, which are modelled as events in Event-B. To
capture all these timing properties we focus on their underlying trigger-response
pattern, where a trigger must always be followed by a response.

Due to the lack of concept of time continuity, the above discrete time prop-
erties cannot always be applied to CPSs to embrace their continuous behaviour.
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Zhu et al. addressed this problem by extension of deadline constraints [12].
Moreover, authors defined discrete task- and scheduler-based timing properties
of each process and of concurrent tasks between processes, respectively. They
refined task-based timing into scheduler-based timing by either a FIFO queue
scheduling policy or a deferrable priority-based scheduling policy with aging.
For addressing intermediate events between trigger and response events, they
propose in [13] the conditional convergent notion. In this approach, intermedi-
ate events can converge if there is no response event enabled, assuming weak-
fairness of intermediate events and eventual execution of the response event.
While [13] addresses a single-process trigger-response pattern, we can model
multiple trigger-response relations in UTA by applying our integrated approach.
It allows verifying that the interleavings between concurrent processes do not
cause deadlock while proving reachability, liveness and non-Zenoness properties
in the model.

Compared to earlier research on combining Event-B and UTA [4,11], we
extend the mapping by considering sequencing of Event-B events in iUML-B
diagrams, and control structures representing trigger-response patterns. Specif-
ically, the iUML-B graphical design provides us with an untimed control struc-
ture identical to that of UTA. This is further elaborated by incorporating timing
analysis at each refinement/design step. The straight-forward mapping proposed
in [4] leads to too large models. In a later approach [11] an event-level mapping
was introduced where each event from the Event-B specification was translated
to an UTA and then parallely composed to form the full model. Additional
optimisations were needed to aggregate the automata which model mutually
exclusive events, and thus, reduce interleaving of model events.

In this paper the mapping is still based on the events but the UTA model
structure is extracted from the iUML-B state diagram. By decorating the
extracted control structure with UTA specific attributes we can verify the sys-
tem’s timing correctness and provide feedback to the Event-B side of the devel-
opment for the feasibility of system events. For capturing the behaviour of pro-
cesses based on the trigger-response pattern, we show in the following sections
how concurrency with multi-process intermediate events is modeled and verified
using an airport control system as a case study.

3 Preliminaries

3.1 Event-B and iUML-B

Event-B [1] is a state-based formalism for the development of reactive and dis-
tributed systems. Event-B uses refinement [2], which enables the system to be
created in a stepwise manner gradually adding details into the model proving
that each refinement step preserves the correctness of the previous steps. A
model in Event-B, a machine, can be interpreted as a transition system where
the variable valuations constitute the states and the events represent the tran-
sitions. Machines can be refined either via superposition refinement [9], where
new features are added to the machine, or by data refinement, where abstract
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features are replaced by more concrete ones. Event-B is well supported by the
Rodin Platform [6], which is extendable with plugins facilitating the modelling
and verification.

iUML-B is an integrated form of the classical UML-B graphical front-end for
Event-B [7] that is an extension of the Rodin Platform. It allows modellers to
build a model through a diagrammatic design in the form of state-machines and
class diagrams. The translator then generates Event-B automatically facilitating
the modelling process. Class diagrams provide a way to model data relationships,
while state-machines show the states and transitions of an Event-B machine.
The guards and actions of the Event-B events form the guards and actions of
the transitions in the state-machine diagrams. The operational semantics of the
events are, hence, visualised with the state-machines.

In a state-machine with an transition e1 between states S1 and S2, transition
e1 can be fired if the state is S1 and the guard of the transition G(t, v) evaluates
to true. When e1 is fired it changes the state to S2 and may also modify other
variables of the state-machine via actions S(t, v). This corresponds to event e1
in Event-B:

e1 = any t where state = S1 ∧ G(t, v) then state := S2 || S(t, v) end

Invariants may also be given in the states. They correspond to invariants in an
Event-B machine. The state-machines can be refined in a corresponding manner
to the Event-B machines concerning variables and events. Additionally, states
can be nested in state-machines (i.e. states in a state), which is also often used
when refining a system to model the increased level of detail in the states.

3.2 UPPAAL Timed Automata

UTA [3] are defined as a closed network of extended timed automata that are
called processes. The processes are combined into a single system by synchronous
parallel composition like that in process algebra CCS. The nodes of the automata
graph are called locations and directed lines between locations are called edges.
For each edge, which is a transition between two locations, conditions or guards
can be defined. Whenever the guard holds, the edge can be fired, which leads to
a new location. Communication and synchronisation between different automata
is taken care of by send and receive actions. An action send over a channel h is
denoted by h! and its co-action, receive is denoted by h?.

Formally, an UTA is defined as the tuple (L, E, V , CL, Init, Inv, TL), where:

– L is a finite set of locations,
– E is the set of edges defined by E ⊆ L × G(CL, V ) × Sync × Act × L, where

• G(CL, V ) is the set of constraints in guards,
• Sync is a set of synchronisation actions over channels and
• Act is a set of sequences of assignment actions with integer and boolean

expressions as well as with clock resets.
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– V denotes the set of integer and boolean variables,
– CL denotes the set of real-valued clocks (CL ∩ V = ∅),
– Init ⊆ Act is a set of assignments that assigns the initial values to variables

and clocks,
– Inv : L → I(CL, V ) is a function that assigns an invariant to each location,

I(CL, V ) being the set of invariants over clocks CL and variables V and
– TL : L → {ordinary, urgent, committed} is the function that assigns the type

to each location of the automaton.

In urgent locations an outgoing edge will be executed immediately when its
guard holds. Committed locations are useful for creating atomic sequences of
process actions since an outgoing edge must be executed immediatelly without
time passing.

UTA Requirement Specification Language. The requirement specification
language (in short, query language) of UTA, used to specify properties to be
model checked, is a subset of Timed Computation Tree Logic (TCTL) [3]. The
query language consists of path formulae and state formulae. State formulae
describe individual states, whereas path formulae quantify over paths or traces
of the model and can be classified into reachability, safety and liveness [3]. For
example, safety properties are specified with path formula A�ϕ stating that
state formula ϕ should be true in all reachable states. In the next section we
describe in more detail the TCTL formulae we apply in the rest of this paper.

4 Mapping from Event-B and iUML-B Models to UTA

We base our work here on the previous work by Vain et al. [11]. We assume
that the system is developed stepwise using Event-B and iUML-B and prove the
safety properties in each step using the proof system of this formalism. The result
of each development step is then translated to UTA in order to have a model
that can be validated via model checking and specifically checked for real-time
properties avoiding re-checking of functional/safety properties. Note that due to
the locality of refinements only those model fragments that are introduced by
Event-B refinements need to be mapped to the corresponding UTA fragments.
The rest of the UTA model defined in earlier steps remains untouched by the
current Event-B refinement step.

Plant and Controller. In Event-B and iUML-B the model represents a holistic
view to the control systems where the controller and the plant events are all given
in one machine. However, when mapping the model to UTA these different kinds
of events have to be identified. The plant events in the iUML-B state-machines
are mapped to UTA plant automaton with corresponding states and transitions.
This leads to a sequential model of the control system in UPPAAL. The states
and state transitions of the state-machines are given in Event-B as global, but
when mapped to UTA the states and transitions are partitioned by automata
that introduces modularity to models and to verification. The controller events
are each translated as in [11] to simple self-loop automata. All these events
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emulating self-loop transitions are composed in parallel. The communication
with the plant takes place via channels by trigger and response actions.

In control systems, there might be several plants (processes) for a controller.
In Event-B the setup of the system is given in the context machine. Only one
state-machine is created for the system, but the plants/processes are specified
as instances of the machine. When mapping this scenario to UPPAAL, one UTA
template is created for the process and instantiated for the multiple processes.

Mapping of Functions and Predicates. Variables of integer and enumerated
types in Event-B become integers in UTA, while finite sets and relations in Event-
B are mapped to (multidimensional) arrays in UTA. We can then implement the
set and relational operators as C-functions in UTA.

Mapping of Events. Transitions in iUML-B are generally translated to state
transitions in UTA [11]. In Fig. 1 we exemplify the translation with an iUML-B
state machine and Event-B code to the left and a corresponding UTA model to
the right. Let

e = any p where G(p, v) then S(p, v) end

be an event of Event-B, then

(i) the parameter p will appear in the select label of the UTA edge, which
contains a comma separated list of p : int expressions where p is a variable
name and int is a defined type (see Fig. 1).

(ii) the event guard G(p,v) is mapped to the guard G(V) of an edge where V
denotes UTA variables corresponding to variables v (p> 5 in Fig. 1).

(iii) the event action S(p,v) corresponds to assignment statements (updates)
V’= S(V) of the UTA edge (num :=num+p in Fig. 1).

For plants consisting of many processes, the instance of a plant is identified
by a unique parameter value. The template may have parameters of type inte-
ger. This allows modelling the ANY-construct of Event-B, where the choice is
finite. The parameter of a template specified by its type defines the instances
(processes) of the template, one for each value in the parameter type.

Timing of Events. When mapping the Event-B model to UTA, we need to add
timing explicitly to the model to be able to consider timing aspects like time-
bounded reachability. When adding explicit timing constraints to UTA events,
it is assumed that the occurrence of an event is instantaneous. An event may
occur within some time interval [lb, ub], where lb stands for lower bound and ub
stands for upper bound, provided it is enabled by guard G. For specifying these
constraints, new variables, namely the set CL of clocks is introduced. We usually
assume the continuous intervals are of shape [lb, ub], where lb and ub ≥ 0, and
ub ≥ lb. Note that having infimum inf of clocks domains inf dom(cl) = 0 and
guards cl ≥ inf it may introduce Zeno computations if there exists a loop in the
model where the maximum of lower bounds of occurrence interval of each edge
is equal to the infimum.
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In general, the timing specification of events introduces bounded intervals of
occurence that are specified as location invariant inv(CL) ≡ ∧i cli ≤ ubi and the
guard Gi(CL) ≡ ∧j clj ≥ lbj of its self-loop edge ei that models an event. A
set of clock conditions Gi(CL) and inv(CL) indicate time constraints when an
event ei should be fired, i.e. not later than time ubi (deadline) and not before
time lbi (delay) (see cl <= ub and cl >= lb in the UTA in Fig. 1).

Fig. 1. Transition structure in iUML-B (left) and UTA (right)

Undelayed Reaction. In the context of multiple trigger-response patterns,
some response should be fired immediately without delay in a critical situation. It
brings the concept of priority based on timing. According to the timing constraint
proposed in [8], the delay constraint is specified by Delay(Trigger, Response,
delay) that specifies the delay constraint where delay = 0. In UPPAAL, unde-
layed response is modelled with urgent channel (urgent chan) which is defined
to be synchronizing executions of enabled edges without delay. Clock conditions
on these transitions are not allowed. An alternative to model undelayed reac-
tion encoded as a single (not synchronized) edge is to define its source location
type as either committed or urgent or set this location invariant condition upper
bound to 0.

Invariants. The invariants of Event-B are not directly translated into UPPAAL
model-checking queries. However, these invariants can be specified and model
checked as TCTL formulas of form A�p, where p is a first order state formula
and the pair of modalities A� requires p to be true in all reachable states of the
model in UPPAAL. Formula p can involve predicates on model clocks to specify
explicit timing constraints.

Time Bounded Reachability. For real-time applications, we consider time
bounded reachability as one of the most fundamental properties. In UTA, the
reachability of an event E (where E is specified in terms of after state of the
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event and/or valuation of state variables) from model initial state is expressible
using TCTL formula pattern A♦E && Clock ≤ TB, for time bound TB.

Trigger-response properties are expressed as a special case of time bounded
reachability where the reachability of a response event is always considered rela-
tive to its trigger events. Proving multiple trigger-response properties in Event-
B presumes augmentation of the model with auxiliary “boolean property vari-
ables” which are set to true only when considered triggers receive a response (as
Landing permission(selfP ) := TRUE in Fig. 5). Conjoining multiple trigger-
response pairs of different processes is non-trivial and can easily cause misin-
terpretation. For instance, reactions to stimuli of different processes may occur
in different states or even be mutually exclusive in some states. Therefore, the
trigger-response properties for multiple concurrent processes need to be specified
and checked separately.

The reachability of a response event (actually its post condition rp) from a
trigger event tr (respectively its post condition tr) is then expressed in UTA
and TCTL using leads to operator as tr ��� rp. The multiple trigger-response
properties can be specified and proved similarly. For instance, TCTL formula
tr1&&...&&trn ��� rp1&&...rpm where auxilliary boolean variables tr1, ..., trn
in the model register the occurrence of trigger 1 to trigger n and auxilliary
variables rp1, ..., rpm register the occurrence of response events 1 to m.

In case of time bounded reachability of a response event, a property clock
constraint should be conjoined to the right hand side of leads to. Here it should
be granted that the property clock is reset in the model at the moment when
the trigger (conjunction tr1&&...&&trn) of considered trigger-response pair is
set to true.

Liveness. In Event-B due to weak fairness, enabled processes will eventually
be executed. If the system is deadlock free, there is always an event that can
be executed. In UTA, the situation, where a transition is enabled but there
is no finite interval specified in the location invariant (or not using location
types urgent, committed), may result in an infinite waiting in that location. This
provides behaviourally similar effect as deadlock. It means that regardless if one
or more of the outgoing edges of that location are enabled, none of them will
ever be executed because there is no upper bound that forces the edge to be
executed in finite time. In that way, weak fairness is not sufficient to guarantee
non-blocking in UTA and the progress must be granted by specifying the location
type either committed or urgent or adding a time bound conjunct to each location
invariant. Liveness can be proved by TCTL query A� not deadlock provided all
legal terminal locations are supplied with self-loop edges.

5 Overview of Case Study

In order to demonstrate the CCD methodology with integrated formal methods,
we use an airport control system example. We propose this case study for pre-
senting the verification of behavioral and timing properties by combining two
complementing formalisms Event-B and UTA. We focus only on the landing
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control with one runway. Based on system requirements, we have two types of
landing, namely, emergency landing and normal landing. The flight control is
in charge of safe landing by giving airplanes permission to land at appropriate
times. For normal landing planes may queue up to enter the landing runway.
There are two queues with different priorities based on the planes’ fuel level. An
emergency landing has higher priority than both queues. In case of an emergency
landing, no other plane can land and all landing requests are rejected. Only one
emergency landing can take place at a time. As a safety requirement it is ensured
that there is no plane in the runway before allowing another plane to use it.

The model of the airport system1 consists of one abstract model with three
refinement steps. The abstract model presents the general view of the airport
system, with two landing modes. In the first refinement step, we introduce two
queues with different priorities for normal landing. Next, we implement the FIFO
policy of the queues. Finally, we introduce fuel level for each plane.

5.1 M0: An Abstract Model of Airport Control System

In the abstract model the behaviour of the system is depicted in the a state-
machine diagram of iUML-B (in Fig. 2) where the different states of a plane to
reach the final state (At Gate) are modeled. In Event-B, we create a context
that introduces the set PLANES in addition to the generated implicit context
which consists of the states in the state-machine. The state of a plane and
the transitions between the states are generated automatically from the state-
machine. We define a parameter selfP in the iUML-B diagram to represent the
instances of PLANES, which is translated into corresponding Event-B events.

In the abstract Airport Control System in Fig. 2, a plane in state In Air
sends a landing request to the controller. If the response is positive, the plane
can enter the landing queue. We define an invariant (LQ Permission = TRUE)
in the Landing Queue state which ensures that each plane in the landing queue
has a landing queue permission.

The controller checks whether there is an ongoing emergency case or not via
the boolean variable Emergency Prog. In case of an ongoing emergency, no new
plane will get permission to land and will have to leave the airport.

We ensure safety on the critical section, the runway, using mutual exclusion
with boolean variable Runway Busy to ensure that no landing permission is
admitted if there is a plane on the runway. When the plane is on the runway it
will be given a gate by the controller and it moves to the final state At Gate.

Emergency request can be sent in states Landing Queue or In Air. Only
one emergency at a time can be handled at the airport. If there is already an
emergency, emergency landing permission for that plane is rejected, and the
plane has to leave the airport.

In order to be able to introduce timing properties to the airport system, we
map the Event-B and iUML-B model into an UTA. In Event-B, the model of

1 iUML-B and UTA models are found in: https://github.com/fshokri/FormalModels.
git.

https://github.com/fshokri/FormalModels.git
https://github.com/fshokri/FormalModels.git


Integration of iUML-B and UPPAAL Timed Automata 195

Fig. 2. The abstract model in iUML-B

the plane and the controller are integrated. However to model different timing
behaviors of components in UPPAAL, we need to divide the model into plane
and controller (Fig. 3) where simultaneous events are synchronised via channels.

For the plane template, we follow the same structure as in the iUML-B state-
machine diagram, while for the controller we only consider events for giving
permissions. The instantiation of the plane template for modelling the plane
instances is modelled with template parameter id, while the handling of each
plane by the controller is addressed with the select clause in UTA corresponding
to the ANY event parameter in Event-B. This is described in Mapping of events
in Sect. 4.

Fig. 3. The abstract model of plane (left) and controller (right) in UTA

We define clock constraints with upper bounds stated with invariants for
locations waiting before triggering requests. We assign locations as urgent when
waiting for responses from the controller. This way planes can progress immedi-
ately when a response is given. For the Landing Queue location an upper bound
is given allowing flexibility when later refining the behaviour for planes in the
landing queues i.e., allowing time passing when queueing.

Comments on the Modelling. In Event-B, the controller in the abstract
system gives landing queue entry permissions non-deterministically. Since there
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is no implicit timing in Event-B, this does not create a deadlock. However, in
order to avoid deadlock in the corresponding state Waiting L Permission of
the UTA model, we define a variable (Perm Given) to indicate that permission
has been given to make exit conditions from this state more deterministic. In
this way each plane gets an answer for the landing request, either a positive one
to move to the landing queue or a negative one to leave the airport.

5.2 M1: Introducing Two Queues

In the first refinement, we split the state Landing Queue into two queues states,
High Priority Queue and Low Priority Queue. This is done by adding nested
state-machines in iUML-B, while in UTA two separate states and transitions are
created (Fig. 4).

Fig. 4. The first level of refinement model excerpt in iUML-B (left) and UTA (right)

In M1, we introduce a new boolean variable High Risk which states whether
a plane has a high risk or not in the queueing situation. The plane with a high
risk is eligible to move to High Priority Queue with shorter waiting time, while
in normal situation planes enter Low Priority Queue. If High Priority Queue
is not empty, a plane in Low Priority Queue needs to wait for a number of
planes (here at most three) in High Priority Queue to land.

The nested state with queues in Event-B is translated to a separate state
for each queue in UTA. The guards and actions of the events in Event-B are
translated in a straightforward manner to guards and updates in the UTA model.

5.3 M2: Implementing FIFO Method for Each Queue

In the second refinement step, we implement the FIFO policy for each queue.
Since the functionality of two queues is the same, we focus on the high priority
queue in the Event-B model (Fig. 5).

The queues have positions (@inv1) and are of limited length (@inv4). Via
event Enter High Pqueue(selfP ) plane selfP can enter the high priority queue
High Pqueue provided that it is a high-risk plane that has been given landing
permission and that the high priority queue is not full. The plane selfP will be
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Fig. 5. The Event-B code for the second refinement with FIFO queue

inserted in the first free position of the queue which is position one if the queue
is empty. In event Give L Permission HighPQ, landing permission is given
to the first plane in the queue provided that less than three planes from the
high priority queue have landed in a row or low priority queue is empty. Event
Landing High Pqueue(selfP ) models plane selfP leaving the high priority
queue and entering the landing runway. As a result of landing, queueing planes
are shifted in the queue. If there is an emergency situation while the plane is in
the queue the plane will leave the queue (event Send HighPQ Emerg Req).

In the UTA model, we use functions for enqueuing and dequeuing, for a
smooth implementation of the FIFO queue corresponding to the lambda expres-
sions in Event-B. For example, action act1 of event Send HighPQ Emerg Req
in Fig. 5 is mapped to C-like functions in UTA as in Fig. 6. The left one
(Em deHPqu idx) appears in the guard and the right one (Em deHPqueue) in
the update of the transition from location High PQ to Waiting EmergLand
in Fig. 8.

5.4 M3: Introducing Fuel Consumption

In the third refinement step, we introduce variables Plane Fuel and Fuel count
in our Event-B model to indicate fuel consumption. Variable Plane Fuel gives
the fuel level (High, Medium and Low) for each plane, while Fuel count is a
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Fig. 6. UTA C-like functions for the second refinement with FIFO queues

variant of type natural number to show that the superposed fuel consumption
will not take over the behaviour of the system.

Fig. 7. The last level of refinement model in iUML-B

A plane with fuel level Medium enters High Pqueue, while a plane
with fuel level High is eligible for Low Pqueue. Events Fuel Cons HPQ,
Fuel Cons LPQ and Fuel ConsL LPQ will decrease plane fuel while waiting
for permission to enter the landing runway (see Fig. 7). If the fuel level drops to
Low, the plane will send an emergency request. The plane with the emergency
request will reach the At Gate location if there is no other emergency situation
progressing.

The iUML-B state-machine is directly mapped to a UTA (see Fig. 8). However
in the UTA model, the variable Plane Fuel is mapped to a variable of type enu-
merated set which assigns a numerical value for the fuel level of each plane. The
fuel consumption events are the events of the plane which are considered as inter-
mediate events. The execution of these events depends on the delayed response
from the controller for assigning landing permission. For avoiding delays on tran-
sitions triggering emergency cases, we defined the ELP,ELR HPQ,ELR LPQ
channels in UTA to be urgent.
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Fig. 8. The last level of refinement of Plane and Controller in UTA

5.5 Analysis Results

Proof Statistics: Machines M0 (abstract specification) and M1 (first refine-
ment) in Event-B are automatically proved almost (100%) by the Rodin tools.
For machine M2, where we introduce the FIFO mechanism for the queues,
more complex proof obligations were generated of which 57% were automati-
cally proved. In M3, where we define fuel consumption, 85% were automatically
discharged. By triggering the interactive provers the rest of the proof obligations
were discharged to get a fully proved model.

TCTL Queries: To verify the real-time behaviour of our UTA model based on
multi-trigger and response pattern, we specify correctness properties in TCTL
(Table 1). The properties which occur and need analysis in real systems include
concurrency, deadlock freedom, non-Zenoness, liveness and reachability as well
as the existence of intermediate events. Note that the mutual exclusion and
fairness have already been proved using Event-B proof support. The timing
related properties such as time bounded reachability and trigger-response timing
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correctness are verified in UPPAAL. Some of the most characteristic timing
properties of the case study are exemplified by Queries 1 to 3 in Table 1.

Table 1. TCTL queries based on multi-trigger and response pattern

Id Query Result

1 M3 Planes(1).Waiting L Permission && High Risk[1]
&& fuel[1]! =high && not Emergency Prog && lenH <
Max Queue Size && LQ per[1] ���
M3 Planes(1).High PQ && aux clk <= tb1

Satisfied

2 M3 Planes(1).Waiting EmergLand && Elan per[1] &&
Runway busy && Gate asn[1] ��� M3 Planes(1).At Gate
&& aux clk <= tb2

Satisfied

3 A<> forall (i : int [0,4]) Planes(i).At Gate ||
M3 Planes(i).Leaving Airport & & Gclk <= 120

Satisfied

Query 1 exemplifies a simpler timed trigger-response property satisfied by our
system for plane instance 1. It states that when the plane will trigger its landing
permission request to the controller, including also information about risk and
fuel level, the response by the controller, if there is no ongoing emergency and
if the queue is not full, will lead to the plane reaching location High PQ within
time tb1. Note that aux clk is an auxiliary clock used only for the verification of
the query. Constant tb1 comes from system requirements expressing the upper
time bound explicitly for this trigger-response property.

Query 2 exemplifies a more complex timed trigger-response property, includ-
ing intermediate events, satisfied by our system for plane instance 1. It states
that when the plane triggers an emergency landing case to the controller enter-
ing location Waiting EmergLand this will lead to the plane finally reaching
location At Gate if the intermediate response events by the controller allow it,
i.e., the controller giving the emergency landing permission, keeping the runway
reserved and assigning a gate to this plane instance. Application and assump-
tions for aux clk and time bound tb2 are as for Query 1.

Query 3 represents the full integral time-bounded reachability property sat-
isfied by our system. It states that all plane instances reach eventually the legal
terminal locations At Gate or Leaving Airport by the time the global clock
of the system reaches 120 time bound. The upper bound for the system global
clock for this query is based on the real-time constraints on resolving the landing
situation by traffic situations given by model constraints.

6 Conclusion and Discussion

The novel aspect studied in this paper is the use of multi-process trigger-response
pattern with intermediate events to address the modelling and verification of
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reachability properties of complex systems with concurrent processes. We first
extended the Event-B to UTA mapping by incorporating iUML-B for the genera-
tion of the control structure that serves as the skeleton for UTA avoiding genera-
tion of too large UTA models. We then investigated how the integrated approach
addresses the development of complex real-time trigger-response pattern-based
systems with concurrent processes. We have shown that by using our integrated
method we can address the development of complex real-time systems with con-
current processes without extending Event-B nor UTA standard features.

The co-use of Event-B and UTA and translation between them seems straight
forward since we follow the control structure imposed by the iUML-B state-
machine representation. Therefore, an automated translation from iUML-B is
currently being investigated.

An essential observation is that introducing timing constraints by imposing
them mechanically to Event-B or iUML-B model control structure often reveals
modelling cases that are correct from untimed perspective, but may appear to
be infeasible from the perspective of timing. For example, introducing non-zero
durations to triggering conditions of events, may introduce some blocking condi-
tions that results in violation of liveness properties proved on the initial Event-B
model. Hence, the combination of the two approaches has proved to be beneficial
to the development of coherent well-timed models.
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