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Abstract. In the context of automotive domain, modern control systems are
software-intensive and have adaptive features to provide safety and comfort.
These software-based features demand software engineering approaches and for-
mal methods that are able to guarantee correct operation, since malfunctions may
cause harm/damage. Adaptive Exterior Light and the Speed Control Systems are
examples of software-intensive systems that equip modern cars. We have used the
Abstract State Machines to model the behaviour of both control systems. Each
model has been developed through model refinement, following the incremental
way in which functional requirements are given. We used the ASMETA tool-set
to support the simulation of the abstract models, their validation against the infor-
mal requirements, and the verification of behavioural properties. In this paper,
we discuss our modelling, validation and verification strategies, and the results
(in terms of features addressed and not) of our activities. In particular, we pro-
vide insights on how we addressed the adaptive features (the adaptive high beam
headlights and the adaptive cruise control) by explicitly modelling their software
control loops according to the MAPE-K (Monitor-Analyse-Plan-Execute over a
shared Knowledge) reference control model for self-adaptive systems.

1 Introduction

Modern control systems, like those in the automotive domain, are software-intensive,
have adaptive features, and must be reliable. Formal methods can be applied in order
to improve their development and guarantee their correct operational behaviour and
safety assurance. In this paper, we report our experience in applying the Abstract State
Machine (ASM) formal method to the Adaptive Exterior Light (ELS) and the Speed
Control Systems (SCS), which are examples of software-intensive systems that equip
modern cars. We used the ASMETA framework, which provides a wide tool support to
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Fig. 1. ASM-based development process

ASMs. ASMETA tries to combine the formality of ASMs with a tools set that supports
the editing, simulation and animation of the abstract models, their validation against
the informal requirements, and the verification of behavioural properties. Moreover,
ASMETA adopts a refinement-based process, and employs several constructs in order
to allow modularity.

To address the adaptive features of the case study, i.e., the adaptive high beam
headlights and the adaptive cruise control, we exploited the concept of self-adaptive
ASMs [5], which allows modelling adaptation logics in terms of MAPE-K (Monitor-
Analyse-Plan-Execute over a shared Knowledge) feedback control loops.

The paper is structured as suggested by the call for paper of the case study. The fol-
lowing subsection briefly presents the ASM formal method and its supporting tool-set
ASMETA. Section 2 explains our modelling strategy. Details about our models and how
they capture the requirements are provided in Sect. 3. We have applied several valida-
tion and verification (V&V) activities that are presented in Sect. 4. Section 5 discusses
some observations that we draw from this experience, together with some limits of our
approach. Section 6 concludes the paper.

1.1 The ASM Method and the ASMETA Tool-Set

Basic Definition. ASMs [10,11] are an extension of Finite State Machines (FSMs)
where unstructured control states are replaced by states comprising arbitrary com-
plex data (i.e., domains of objects with functions defined on them), and transitions are
expressed by transition rules describing how the data (state function values saved into
locations) change from one state to the next. ASM models can be read as “pseudocode
over abstract data” which comes with a well defined semantics: at each computation
step, all transition rules are executed in parallel by leading to simultaneous (consistent)
updates of a number of locations.

Modelling Process and Tools. ASMs allow an iterative design process, shown in Fig. 1,
based on model refinement. Tools supporting the process are part of the ASMETA
(ASM mETAmodeling) framework1 [4]. Requirements modelling starts by developing
a high-level model called ground model (ASM 0 in Fig. 1). It is specified by reason-
ing on the informal requirements (generally given as a text in natural language) and
using terms of the application domain, possibly with the involvement of all stakehold-
ers. The ground model should correctly reflect the intended requirements and should

1 http://asmeta.sourceforge.net/.

http://asmeta.sourceforge.net/
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be consistent, i.e., without possible ambiguities of initial requirements. It does not
need to be complete, i.e., it may not specify some given requirements. The ground
model and the other ASM models can be edited in AsmEE by using the concrete syntax
AsmetaL [14]. Starting from the ground model, through a sequence of refined models,
further functional requirements can be specified until a complete model of the system is
obtained. The refinement process allows to tackle the system complexity, and to bridge,
in a seamless manner, specification to code. At each refinement level, already at the level
of the ground model, different V&V activities can be applied. In Sect. 4, we explain in
detail how model validation and property verification are performed in ASMETA tools.

Model to code transformation are supported for C++ code [9], and conformance
checking is possible to check if the implementation, if externally provided, conforms to
its specification. The tool ATGT [13] can be used to automatically generate tests from
ASM models and, therefore, to check the conformance offline; CoMA [3], instead, can
be used to perform runtime verification, i.e., to check the conformance online.

1.2 Distinctive Features of the Modelling Approach

Machine and Modules. As better explained in Sect. 2, in our modelling activity we
strongly make use ofmodularization. To concretely support it, we exploited the concept
of ASMmodule as introduced in [11] and provided by the language of the ASMETA tool
set. Specifically, an ASM module contains the declaration and definitions of domains,
functions, invariants, and rules; an ASM machine is an ASM module that additionally
contains a (unique) main rule representing the starting point of the machine execution,
and an initial state. The keyword asm introduces the main ASM while the keyword
module indicates a module.

Self-adaptive ASMs. To model the adaptive features of the two automotive subsystems,
we exploit the concept of MAPE-K (a sequence of four computations Monitor, Analyze,
Plan, and Execute over a shared Knowledge) feedback control loop [16] commonly
used to structure the adaptation logic of self-adaptive software systems. To this end, we
adopt self-adaptive Abstract State Machines (self-adaptive ASMs) as defined in [5] to
formalize the sequential execution of the four MAPE computations of a MAPE-K loop
in terms of ASM transitions rules (see Sect. 3.1, CarSystem003).

2 Modelling Strategy

We here describe the general strategy adopted while modelling the ELS and the SCS
using ASMs. We explain how our model is structured, how the structure relates to the
requirements, the model purpose (in terms of properties addressed and not addressed
by our solution), and our formalization approach.

Model Structure. The ELS and SCS sub-systems are loosely coupled (i.e., they work
in parallel and share some external signals), so we handle their requirements inde-
pendently. More specifically, for each subsystem, we developed an ASM specification
through a sequence of refined models, following the incremental way in which func-
tional requirements of the software based controllers are described in the requirements
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document [15]. The models are numbered from 1 to 9: models from CarSystem001
to CarSystem004 refer to the ELS, while the SCS is modelled from CarSystem005 to
CarSystem007. CarSystem008 merges the two systems and CarSystem009 introduces
the faults handling and general properties.

Fig. 2. ASM structure of the first 3 levels

Since, at a given refinement level, only some parts of the model were refined,
to keep track of maintained and refined parts and to relate abstract and refined sub-
models, we structure an ASM model in modules. Therefore, at each level, an ASM
results in the horizontal and vertical composition of ASM modules (by exploiting the
import module feature). For example, Fig. 2 illustrates the ASM models structure in
terms of horizontal and vertical imports for the first three refined levels of the CarSys-
tem related to the ELS subsystem. Level 1 consists of an ASM CarSystem001main
that imports module CarSystem001HW that imports module CarSystem001Blink, till
the final module CarSystem001Domains is imported2. At this level, module relations
are all horizontal imports. Similarly, ASM CarSystem002main imports (horizontally)
module CarSystem002Cornering from the same refinement level, and it imports (ver-
tically) module CarSystem001HW from the previous refinement level. Note that mod-
ule CarSystem002Domains imports module CarSystem001Domains, since the former
enlarges (as expected during refinement) the latter. Vertical relations can be also mod-
ule refinement relations. For example, Fig. 3 focuses on level 4 and illustrates the ASM
CarSystem004main that imports, among the others, the module CarSystem004HW
refining module CarSystem001HW from level 1, and module CarSystem004Cornering
refining module CarSystem002Cornering from level 2. Other depicted import/refine-

2 Note that common functions and common domains are declared and defined into specific mod-
ules (CarSystem00XFunctions and CarSystem00XDomains) which are imported by others.
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ment relations are self-explanatory. More details on the refinement levels and corre-
sponding models are given in Sect. 3.

Fig. 3. ASM structure of level 4

To model the overall behaviour resulting from the union of the behaviours of all
distributed software we simply exploit the notion of parallel ASMs [7]. Therefore, we
model software running on ECUs as parallel algorithms working in sequential global
time. Whenever necessary (as stated in the requirements document) and to avoid inter-
ference, the machine follows only one or a restricted subset of all possible parallel
execution paths by using the mutual exclusive guards pattern at the level of rules, i.e.,
the simultaneous activation of certain rules is avoided by modelling them as conditional
rules with mutual exclusive guards.

Model Purpose. The proposed ASM model is primarily tailored to the formalization
and analysis of functional aspects of the ELS and SCS subsystems in order to provide
guarantees of their operational correctness. Modelling and validation activities revealed,
however, some statements where the requirements were wrong or unambiguous. We had
the possibility to check our doubts with the chairs (working as domain experts) and we
got corrected version of the requirements. Further details on these missing/ambiguous
aspects are given in Sect. 5.

Except for some features not addressed by our solution (see below), our model(s)
capture(s) all requirements described in the document [15]. Each refined model was
analyzed using different techniques (see Sect. 4), considering also the description of
the operational scenarios that are given as annex part of the requirements. The most
important properties addressed by our solution are:

– On the ELS subsystem: a) The priority of hazard warning over blinking is guaran-
teed; b) Low beam headlights are turned on and off as required; c) Priority of ELS-19
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over other requirements has been addressed when the ambient light is activated; d)
High beam headlights are automatically turned on/off when the light rotary switch
is set to Auto; e)When subvoltage/overvoltage occurs the system reacts as required.

– On the SCS subsystem: a) (Adaptive) cruise control desired speed is set as required:
the adaptive cruise control sets automatically the speed to reach the target based on
different factors like the current speed and the speed of the vehicle ahead. b) Emer-
gency brake intervenes to avoid collisions; c) Speed limit and traffic sign detection
set the threshold speed when they are activated by the user.

Not Addressed Features. The main feature not addressed by our solution is the time
management. We are not able to deal with continuous time, although a notion of reactive
timed ASMs has been proposed [17], there is no tool support for it. To overcome this
limitation, we assume that a monitored function notifies the system whether an inter-
val time is passed. For example, requirement ELS-18 states that low beam headlights
remain active at least for 3 s. As shown in Code 1, we have introduced a monitored
function passed3Sec that notifies if 3 s had elapsed since the low beam headlights
received the command to be turned off. A further not addressed feature is the frequency
of blinking. Since the model does not support continuous time it is not possible to set
the direction lamps state (ON or OFF) every second (the duration of a flashing cycle is
1 s). Due to this limitation, we have introduced an enumerative value that indicates the
current pulse ratio and we have supposed that the Head-Unit sets the state of direction
lamp given the pulse ratio value.

Requirements Formalization Approach. To understand and specify the behaviour, we
started from the textual description of the systems, and we tried to express the text in
terms of transition rules, by supplying the necessary definitions of domains and func-
tions. In naming functions, domains and transition rules, we have used an domain-
specific terminology that can be understood by the stakeholders. Furthermore, for the
functions defined in the tables at the end of the document of specification we have
used the names proposed. An example of requirement formalization is shown in Code 1
that reports the requirement ELS–18 and the corresponding ASM rule. Sometimes the
requirements are not independent of each other, for this reason more than one require-
ment is modelled by one rule.
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CarSystem001:
Direction Blinking, Hazard warning light

ELS-1 to ELS-13

CarSystem002:
Low Beam headlights, Cornering light,

Emergency Brake Light and Reverse Light
ELS-14 to ELS-29 and ELS-39 to ELS-41

CarSystem003:
Manual High Beam Headlights and
Adaptive High Beam Headlights

ELS-30 to ELS-38

CarSystem004:
Faults

ELS-42 to ELS-49

CarSystem006:
Speed limit and Traffic sign detection

SCS-29 to SCS-39

CarSystem005:
Setting and modifying desired speed, Cruise Control

SCS-1 to SCS-17

CarSystem007:
Adaptive cruise control, Distance warning

and Emergency Brake Assistant
SCS-18 to SCS-28

CarSystem008:
ELS and SCS systems
ELS-1 to SCS-39

CarSystem009:
Faults and general properties

SCS-40 to SCS-43

Fig. 4. Chain of refined models and captured requirements

3 Model Details

In this section, we present the result of our modelling of the Adaptive Exterior Light
and Speed Control systems3.

We have proceeded through refinement of the two systems independently and finally
we have merged them together to obtain the complete system. Figure 4 shows the model
refinement chain and lists the requirements introduced in each model.

Table 1. Models dimension

Functions Rules

Monitored Controlled Derived Static n rules declarations n rules

CarSystem001 4 12 6 1 14 103

CarSystem002 14 26 14 4 26 218

CarSystem003 18 31 24 5 33 244

CarSystem004 19 31 31 5 33 252

CarSystem005 8 4 1 10 78

CarSystem006 12 8 2 14 125

CarSystem007 21 17 6 24 183

CarSystem008 36 46 36 5 56 433

CarSystem009 36 46 37 5 56 433

Table 1 shows the model dimensions in terms of number of functions and rules
and the traceability table between requirements and rules/functions (see Table 2). In the
sequel, we will show some parts of the models for each subsystem and then we will
explain the merging of two systems.

3 Artifacts are at https://github.com/fmselab/ABZ2020CaseStudyInAsmeta.

https://github.com/fmselab/ABZ2020CaseStudyInAsmeta
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Table 2. Traceability table between requirements and rules/functions

CS001 CS002 CS003 CS004 CS005 CS006 CS007 CS008 CS009
Exterior Light System
Direction Blinking

ELS-1 to ELS-7
Hazard Warning

ELS-8 to ELS-13
Low Beam Headlights Cornering Light

ELS-14 to ELS-29
Manual Hight Beam Headlights

ELSL-30 to ELS-31
Adaptive High Beam Headlights

ELS-32 to ELS-38
Emergency Brake Light

ELS-39 to ELS-40
Reverse Light

ELS-41
Fault Handling

ELS-42 to ELS-49
Speed Control System

Setting and modifying desired speed
SCS-1 to SCS-12

Cruise Control
SCS-13 to SCS-17

Adaptive Cruise Control
SCS-18 to SCS-24

Distance Warning
SCS-25 to SCS-26

Emergency Brake Assistant
SCS-27 to SCS-28

Speed Limit
SCS-29 to SCS-35

Traffic Sign Detection
SCS-36 to SCS-39

Fault Handling and General Properties
SCS-40 to SCS-43

3.1 Adaptive Exterior Light System

ELS has been modelled into 4 refinement steps which are explained below.

CarSystem001. This model describes the functions of direction blinking and hazard
warning. The critical features found in this modelling phase are the following: a) the
hazard warning has the priority over direction blinking (ELS-3); b) the tail lamp is used
as an indicator for cars sold in USA and Canada (ELS-6). Code 2 shows that if haz-
ard warning request is activated and any kind of blinking is running, blinking must be
stopped and hazard warning is started. In case of direction blinking, the value of pit-
man arm is stored to restart the request as soon as hazard warning is deactivated; if the
pitman arm is moved back to neutral position, the request is cancelled. The tail lamp
status is updated to FIX or BLINK. It is BLINK only if blinking is active and car is
sold in USA or Canada, otherwise it is FIX. Moreover, the value of light is dimmed
by 50% during blinking (see Code 3). To address the requests from the pitman arm,
we have defined three functions, pitmanArmUpDown for the incoming request, pit-
manArmUpDown RunnReq for the running request and pitmanArmUpDown Buff to
save the incoming request if it cannot be satisfied in the current state. When the run-
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ning request has been processed, the request in the buffer is executed unless a new one
arrives.

CarSystem002. This introduces the low beam headlights and cornering light, emer-
gency brake light, and reverse light functions. Each of these functions is modelled in an
ASMmodule. Common functions and domains are extended starting from those defined
in the CarSystem001, while hazard warning and direction blinking are unchanged.
Requirements ELS-15, ELS-16, ELS-17, and ELS-19 are interconnected because ELS-
19 has the priority over the others if ambient light activated. We have defined a guard
called ambientLightingAvailable which is true if ambient lighting is activated, the vehi-
cle is not armoured and darkness mode is switched off. Some requirements state that
the system performs an action if function X changes its value from state s to state
s + 1. To detect the value change, we store the value of function X in the previous
state (X Previous) and we compare that value with the current value. When the model
detects a value change, the system acts as defined by rules. An example is the require-
ment ELS-19: the low beam headlamps are activated if engine has been stopped. We
have captured the key state mutation by checking the value of keyState Previous com-
pared to keyState.

CarSystem003. This step introduces the control features for the manual and adaptive
high beam headlights (ELS-30 to ELS-38). We first modelled the manual control of the
high beam headlights and then, in the same refinement level, the adaptive one. The con-
trol variables are the high beam luminous strength (a percentage) and the illumination
distance (expressed in meters).
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In manual mode (ELS30-ELS31), the user can set a fixed illumination area of 220m
and 100% of luminous strength, or activate the high beam headlights temporary (so-
called flasher). We had to make the following assumptions due to missing requirements:
(i) a maximum illumination area of 360m and 100% of luminous strength in the flasher
mode; (ii) the key is inserted or the engine is on to activate high beam in a fixed way.

In adaptive mode (ELS32-ELS38), the illumination of the road is automated
depending on the incoming vehicles (as detected by a built-in camera) and optimized
to illuminate the appropriate area according to the vehicle speed, the last being the cur-
rent speed of the vehicle or the target speed provided by the advanced cruise control
in case it is activated. The illumination distance and the luminous strength are adjusted
according to characteristic curves provided in the requirements document. In order to
calculate such values, we had to reverse engineered the formulas as suggested in the
additional information provided with the specification document. We modelled this
adaptive behaviour in terms of a MAPE-K feedback control loop that starts with the
rule r MAPE HBH (see Code 4). A control loop in self-adaptive systems is a sequence
of four computations: Monitor-Analyse-Plan-Execute (MAPE) over a knowledge base.
In self-adaptive ASMs [5], it is modelled by means of four rules, one per MAPE compu-
tation, while the knowledge is modelled by means of functions, since in ASMs system
memory is represented in terms of functions. In our case, the MAPE loop consists of
the following rules invoked in a waterfall manner within one single ASM-step machine
(see Code 4): r Monitor Analyze HBH, where monitor and analyze computations are
modelled as a unique activity; r IncreasingPlan HBH and r DecreasingPlan HBH to
plan the adaptation if necessary: light illumination distance and luminous strength are
increased or decreased according to the vehicle speed; r Execute HBH to set the val-
ues as planned: highBeamOn to activate/deactivate the high beam, highBeamRange and
highBeamMotor for the high beam luminous strength and illumination distance.
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CarSystem004. This modelling phase introduces fault handling, in particular how
the software reacts to overvoltage or subvoltage. When subvoltage is present, some
functionalities like cornering light and parking light are not available. This has been
addressed by adding a guard that, in case of subvoltage (the voltage value is less than
8.5V), disables them (see Code 5). In case the voltage is more than 14.5V, the system
is in overvoltage. The maximum value of lights is computed by the setOvervoltage-
ValueLight function: it returns the minimum between current light value and the value
calculated by overVoltageMaxValueLight function. In this step of refinement, we have
refined the modules whose behaviour is affected by the voltage value.

3.2 Speed Control System

The final model of Speed Control System has been addressed through three steps of
refinement explained in the following.

CarSystem005. In the first model of SCS, we have implemented the functionalities
of cruise control and setting and modifying desired speed (see CarSystem005Desired-
SpeedCruiseC module). Desired speed and target speed are modified based on SCS
lever position when (adaptive) cruise control is activated.

CarSystem006. This step of refinement introduces the speed limit and traffic sign
detection functionalities. If traffic sign detection is on, the target speed is modified by
the recognized traffic sign value. The speed limit modifies the desired speed which must
not be exceeded by the current speed.

CarSystem007. This step of refinement introduces the adaptive cruise control and dis-
tance warning from the vehicle ahead (from SCS-18 to SCS-26), and the brake assistant
(from SCS-27 to SCS-28) to initiate braking in critical situations. Similarly to the adap-
tive high beam headlights (see refinement CarSystem003), we modelled the adaptive
behaviour of the cruise control in terms of a MAPE-K feedback control loop that mon-
itors the distance from the vehicle ahead, plans and executes acceleration/deceleration
automatically, including braking until a full standstill and starting from a standstill.

3.3 Merging ELS and SCS Models

Once we have developed the ELS and SCS separately, we have merged them to obtain
a model that includes both systems.
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CarSystem008. This step of refinement has been obtained easier than what we expected
due to the modularity followed in the previous steps of refinement. Once the main mod-
ule (CarSystem008main) has been defined, we have simply imported the modules pre-
viously developed. All rules are executed in parallel and no inconsistent update has
been found because the systems are independent of each other, they have only common
inputs. A schema that shows how we have imported modules is available on-line.

CarSystem009. We have introduced the requirements from SCS-40 to SCS-43. The
dangerous situations in SCS-40, SCS-41 and SCS-42 are already managed by the
model; in this step of refinement we have integrated SCS-43 by refining the guards
of CarSystem004EmergencyBrakeLights module. The brake lights are activated either
by the brake pedal pressed by the user or the system activates the emergency brake.

4 Validation and Verification

Validation and verification are supported by a set of ASMETA tools. In this section, we
report results and tools used for each activity, and explain the changes to the models
that resulted from the validation and the verification.

Validation. Model validation helps to ensure that the specification really reflects the
intended requirements, and to detect faults and inconsistencies as early as possible with
limited effort. While writing models, we have started the validation activity by using the
animator AsmetaA [8] which uses tables to convey information about states and their
evolution. We have performed interactive animation that consists in providing inputs
(i.e., values of monitored functions) to the machine and observing the computed state.
The animator, at each step, performs consistent updates checking to check that all the
updates are consistent (in an ASM, two updates are inconsistent if they update the same
location to two different values at the same time), and invariant checking.

With the increasing complexity of the ELS and SCS system models, we have
intensely used the scenario-based validation AsmetaV [12] that allows to build and
execute scenarios of expected system behaviours. In scenario-based validation, the
designer provides a set of scenarios specifying the expected behaviour of the mod-
els (using the textual notation Avalla [12]). These scenarios are used for validation
by instrumenting the simulator AsmetaS [14]. During simulation, AsmetaV captures
any check violation and, if none occurs, it finishes with a PASS verdict. Avalla pro-
vides constructs to express execution scenarios in an algorithmic way, as interaction
sequences consisting of actions committed by the user to set the environment (i.e.,
the values of monitored/shared functions), to check the machine state, to ask for the
execution of certain transition rules, and to enforce the machine itself to make one
step as reaction of the user actions. Code 7 shows an example of scenario: it specifies
the behaviour of the second validation sequence for the exterior light provided as part
of the documentation4. More scenarios are available on our online repository, including
all those provided with the case study document.

4 See the ValidationSequences v1.8.xlsx document in the web site of the case study.
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Although interactive and scenario-based simulations are very useful to get a fast
understanding of the developed models and quickly detect possible modelling errors,
they do not allow to perform an exhaustive check. Therefore, we performed model
review using the AsmetaMA tool [2], as a complementary validation technique: it is a
form of static analysis to determine if a model has sufficient quality attributes (as mini-
mality, completeness, consistency). This automatic activity can find problems that could
pass undetected during interactive simulation and scenario validation, which cannot
be exhaustive and perform only some system executions. For example, CarSystem003
has a rule that decides when to switch on the parking lights (parkingLightON :=
true). By introducing requirement ELS-46, however, we added a rule to switch the
lights off in case of subvoltage (parkingLightON := false). In the first version
of the CarSystem004, the two rules sometimes conflicted, so leading to an inconsistent
update. Model review allowed us to spot this problem, that we solved by introducing a
guard to avoid the conflict.

Verification. Formal verification of ASMs is possible by means of the tool
AsmetaSMV [1], and both Computation Tree Logic (CTL) and Linear Temporal Logic
(LTL) formulas are supported. To perform model checking with NuSMV (the model
checker AsmetaSMV is built on) that requires a finite state space, we reduce infinite
domains in the original models to finite domains.

For the case study, some properties can be naturally derived from the requirements.
The typical form of a requirement is “when/if . . . then . . . ” describing that when some-
thing happens (a given external input received, a given state condition, etc.), some
actions must be taken. Such kind of properties are naturally translated in temporal
properties as �(φ → ©(ψ)) or �(φ → ♦(ψ)). However, these kinds of properties
(in particular the first one) are also reflected in the structure of ASM rules derived from
the requirements, that take the form of if ... then ... else ... endif rules. In this case, tempo-
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ral properties assume the form of redundant specifications that can be used to enforce
the model and make it robust against possible wrong future modifications of the model.
An example of such kind of property that we developed related to requirement ELS-18
is the CTL property: ag((lightRotarySwitch = AUTO and engineOn and brightnessSensor <
200)implies ax(lowBeamLightingOn)).

In addition to these straightforward properties, we specified more general proper-
ties that are not directly related to single requirements. For example, we specified the
following three properties:

– both direction indicators blink iff the car is in hazard warning:
ag((blinkLeft != 0 and blinkLeftPulseRatio != NOPULSE and blinkRight != 0 and
blinkRightPulseRatio != NOPULSE)= hazardWarningSwitchOn Runn)

– if tail lamps are blinking, the car is not European:
ag((tailLampLeftStatus=BLINK or tailLampRightStatus=BLINK)implies marketCode!=EU)

– the market code of a car cannot be changed:
forall $c inMarketCode with (marketCode = $c implies ag(marketCode = $c))

5 Discussion

We here provide a more detailed discussion about our experience in modelling and
analysing the case that took totally less than one month (around one week for under-
standing the requirements, and the remaining time for the model development and
V&V). We report flaws we discovered in the requirements documents, features that we
would have expected in the documents, and also missing functionalities of our frame-
work that would have been helpful (besides the temporal aspects discussed in Sect. 2).

Scenarios. The scenarios provided with the case study requirements turned out to be
very useful as, in some cases, allowed us to clarify some misunderstanding we had
when we developed the models starting from the requirements document. For exam-
ple, observing the scenarios, we realized that desiredSpeed and targetSpeed
are two separate entities that can assume different values with two updating policies,
while, only reading the requirements document, we thought that the user could modify
both at the same time. However, in other cases, the description of the scenarios and
the description of the requirements were inconsistent. For some of such inconsisten-
cies, it was clear that the document to trust was the scenario description; for example,
the requirements document uses in an improper way the terms desired, target, and set
speed, sometimes using them interchangeably; the scenarios document, instead, clearly
distinguishes them and allows to observe their different roles. Other inconsistencies,
instead, were less easy to disambiguate. This was the case of traffic sign detection for
which the requirements document states that only the target speed is modified when the
sign is recognized; however, scenario 6 of Validation Sequences Speed shows a case in
which the car, when detects the sign, modifies both desired and target speed.

Requirements Coverage. Since the scenarios turned out to be so useful, we would
have liked to have a more exhaustive validation sequences in the informal documenta-
tion in order to build a set of scenarios covering all the requirements; using the coverage
feature of our validator AsmetaV, we realized that this is not the case. For example,
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requirements ELS-42 to ELS-47 are not covered by any validation sequence and there-
fore by any of our scenario. Moreover, when doing this coverage checking, we realized
a limit of our coverage tool that can only provide coverage information at the level
of macro rule (similarly to call coverage). This coarse grained level of coverage may
be not informative enough in situations in which requirements are mapped at the level
of, e.g., branches of conditional rules. As future work, we plan to extend our coverage
evaluator to provide information as decision and condition coverage.

Scenario Derivation and Animation. As said previously, we have extensively used
scenario-based validation during the modelling activity. We realized that a better inte-
gration with model animation [8] would permit to save animation sessions in terms of
scenarios, and also to animate existing scenarios. For this work, we have developed the
former technique that allows us to export into Avalla scripts the animations we perform,
and re-execute them later when changing the model (in a kind of regression testing using
“record and replay”).

Parametric ASMs. The systems described in the case study actually represent a family
of systems that can be configured on the base of the market and type of car. Different
configurations lead to different behaviours of the systems. In order to model all these
features, we had to introduce flags to be set in the initial state: this reduces the readabil-
ity and maintainability of the models. It would be useful to have a parametric version of
the ASM model, similarly to what done for software programs using Software Product
Lines. A recent approach has been proposed in this context for ASM [6], and we plan
to consider it in future usages.

Implementation. In modelling the case study, we did not consider any implementa-
tion. However, the ASMETA framework provides support in this sense. First of all, a
translator to C++ [9] is available; it could be applied to generate a first prototype of
the implementation, which could be then further extended by developers. Instead, if a
system implementation is available, conformance checking approaches can be applied,
in terms of model-based testing and runtime verification both supported by ASMETA.

6 Conclusions

We have presented the specification, validation, and property verification of an automo-
tive system by using ASMs. We have discussed our experience in modelling an adaptive
exterior light and the speed control systems that equip modern cars, also addressing the
adaptive features of the two systems in terms of MAPE-K feedback control loops. We
have also shown how to write and run scenarios and verify properties addressed by
our models. We have found some misunderstanding in the document of requirements,
because the described behaviour was different from the behaviour expected in valida-
tion sequences. We have found some limitations in our tools, e.g., the coverage eval-
uator provides only coverage in terms of macro rules, that we plan to overcome with
future improvements. On the other hand, this case study has provided us the oppor-
tunity to test our framework in terms of robustness and user experience in modelling
complex systems. We have noticed that the framework is particularly suitable to handle
the increasing complexity of the models: the support for modularization (at the level
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of modelling and scenario construction) allows producing refined model and refined
scenarios with limited effort.
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