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Abstract. This paper introduces an Event-B formal model of the
adaptive exterior light system for cars, a case study proposed in the con-
text of the ABZ2020 conference. The system describes the different pro-
vided lights and the conditions under which they are switched on/off in
order to improve the visibility of the driver without dazzling the oncom-
ing ones. The system can be viewed as a lights controller that reads
different information form the available sensors (key state, exterior lumi-
nosity, etc.) and takes the adequate actions by acting on the actuators of
the lights in order to ensure a good visibility for the driver according to
the information read. Our model is built using stepwise refinement with
the Event-B method. We consider all the features of the case study,
all proof obligations have been discharged using the Rodin provers. Our
model has been validated using ProB by applying the different provided
scenarios. This validation has permitted us to point out and correct some
mistakes, ambiguities and oversights in the first versions of the case study.

Keywords: Adaptive exterior light system · Event-B method ·
Refinement · Verification

1 Introduction

This paper presents a formal system model of an adaptive exterior light system
(ELS) for a car. This system has been proposed as a case study for the ABZ2020
conference. We use Event-B to construct and represent this formal model.

The exterior light system subject of this case study has objective to adapt
the brightness of the different lights with respect to the status of the car but
also the oncoming ones. For that purpose, the cars are equipped with different
lights that can be switched on/off under specific conditions. In this paper, we
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stress more on the modeling of low beams, tail lamps and direction indicators.
Roughly speaking, the low beams illuminate the road when the vehicle is running
or vehicle surrounding while leaving the car during darkness; tail lamps permit
to illuminate the vehicle if it is parked on a dark road at night, whereas the
direction indicators allow to inform the following vehicle that the car will turn
on the right/left. To control these exterior lights, the driver acts on the different
physical elements like the key, the hazard switch etc. The position of the key
(NoKeyInserted, KeyInserted, KeyInIgnitionOnPosition) is transmitted to the
controller of the lights via the sensor keyState. Similarly, the hazard warning
switch, with two positions (On/Off), permits to make both director indicators
flashing at the same time.

The rest of this paper is structured as follows. After a brief overview of the
Event-B method provided in Sect. 2, Sect. 3 presents our modelling strategy.
Section 4 describes our model in more details. The validation and verification
of our model are discussed in Sect. 5. Section 6 identifies the weaknesses of the
requirements document provided for the case study, and the adequacy of the
Event-B method for constructing a model of this case study. We conclude in
Sect. 7.

2 Event-B Method

Event-B is a formal system modeling notation [1] proposed by Abrial. It allows
for the stepwise construction of models using refinement. It is inspired from
actions systems originally proposed by Back [2] and extended by several others.
An Event-B model is made of components of two types: machine and context.
A machine consists of events that modify state variables. An event has a set
of guards and actions. When the guards hold, the event can be triggered; its
actions can then modify the system state. A machine has state invariants that
can be proved by discharging proof obligations.

A machine can refine another machine by replacing or adding state variables
and by adding new events. System elements can be gradually taken into account
through refinement. Existing variables can also be replaced by new variables; to
show behavior preservation, a gluing invariant must relate the old variables to the
new variables. An event refines an existing event by reducing its nondeterminacy,
by strengthening its guards and/or choosing a value v, called witness, for a
parameter p of the event. In that case, we should replace each occurrence of p by
the value v in the guard and the substitution of the event. New events implicitly
refine a skip event, so they cannot modify existing variables; they can only
modify the added (new) variables. System constants are specified in contexts.
A context can extend another context. Invariants are preserved by refinement,
so invariants are introduced at the most appropriate step that simplifies their
proof.

Event-B is supported by the Rodin platform [10], an Eclipse-based tool
that provides editors, provers and several other plugins for various tasks (e.g.,



An Event-B Model of an Automotive Adaptive Exterior Light System 353

animation and model checking with ProB [5], integration with UML class dia-
grams and state machines with UML-B [13]). In this paper, we have used Rodin
with the ProB and AtelierB provers plugins. We did not use any other plugin.

In this paper, we report on the use of this formal method for the modeling and
the verification of the automotive adaptive exterior light system whose behavior
is briefly described in the introduction. The chose of this formal method can
be justified by the refinement technique it provides to gradually introduce the
details of the system and also its different available support tools for modeling,
animating and proving a specification.

3 Modelling Strategy

We reuse the terminology introduced in [11]. A control system interacts with
its environment using sensors and actuators. A sensor measures the value of
some environment characteristic m, called a monitored variable (e.g., the state
of the ignition key), and provides this measure (e.g., whether the key is inserted
or not) to the software controller as an input variable i. In a perfect world,
we have m = i, but a sensor may fail. The software controller can influence
the environment by sending commands, called output variable o to actuators.
An actuator influences the value of some characteristics of the environment,
call a controlled variable c. Variables m and c are called environment variables.
Variables i and o are called controller variables. Finally, a controller has its
own internal state variables to perform computations. We use Event-B state
variables to represent environment (i.e., monitored and controlled) variables,
and controller variables. We do not model sensor/actuator failures.

3.1 Control Abstraction

A typical implementation of a control system such as the ELS is either a control
loop that reads all input variables at once and then computes all output variables
in the same iteration, or it can be driven by interruption triggered when a sensor
provides a new value. The body of a control loop represents a single event and
state transition. This allows for the definition of priorities between input variable
changes. In our model, we use a more abstract approach, as it is common in the
Event-B style of system modeling. We define one event for each input variable
change, which allows for a more modular specification that is easier to prove.
This is closer to an interrupt-driven control system. Our Event-B abstraction
is also a reasonable abstraction for a control loop, considering that in most cases,
a single input variable changes between two control loop iterations. The control
loop can be derived from our specification by merging all events and defining
priorities between events.

3.2 Modeling Structuration

The specification is structured into five refinements steps (five contexts and
six machines). At the most abstract level we introduce various kinds of lights
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controlled by the system. They are declared as constants in Context C0. The con-
sidered lights are: the direction indicators (left or right), the low beam headlights
(left and right), the tail lamp (left and right), the reverse light (that indicates
that the vehicle will move backwards), the brake lights and the cornering lights
(that illuminate the cornering area separately when turning left or right). The
high beam headlights are considered in Context C4 and Machine M5 since their
behavior is different from the other lights, as it can be adaptive. Constant Lignt-
nessLevel indicates the high beam light range, as specified in the requirement
document [3].

Machine M0 in Fig. 1 contains a unique variable headingState that associates
a level of brightness to each light declared in Context C0, and a unique event
headLightSet that assigns an arbitrary level of brightness to these lights.

Fig. 1. Machine M0

The first refinement, Machine M1 and Context C1, introduces the elements
that the car driver can control and that can have an impact on the state of the
lights declared in Context C0, namely the ignition key, the pitman arm, the light
rotary switch, the brake pedal and the hazard warning light switch. For each of
these elements, there is one event that refines headLightSet and that arbitrary
modifies the lights impacted by this element.

Each of the subsequent refinements describes the behavior of particular lights.
The choice of the lights taken into account in the refinements is arbitrary.
Machine M2 and Context C2 consider the direction indicators, the hazard warn-
ing light and the emergency brake light. Machine M3 and Context C3 consider
the low beam lights. Machine M4 considers the cornering lights and Machine M5
and Context C4 consider the high beam headlights.
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3.3 Formalization of the Requirements

Table 1 relates the components of our model with the requirements listed in [3].
As one can remark, some requirements are specified as invariant whereas others
are only considered in the related events. Requirement ELS-10 for instance stat-
ing the duration of a flashing cycle does not correspond to an invariant but it
is considered in the event flashingDark that makes the current time progress by
a unit of time. Specifying such requirements as an invariant would require the
introduction of two extra variables to store the starting and the ending moment
of the cycle to set that the difference should be equal to a unit of time. Roughly
speaking, a timed requirement, an action duration more precisely, is modelled as
an event if there is no other requirement that refers to such a duration otherwise
an invariant is associated with it. Moreover, let us note that M3 is the refinement
with the most invariants number because it models several interrelated lights,
that is the low beams, the tail lamps, the parking lights etc.

3.4 Modeling of Temporal Requirements

Some properties of the requirements depend on two consecutive states. For exam-
ple, requirement ELS-16 applies only when the rotary switch is turned to Auto
while the ignition is already Off. This requirement can be expressed using an
LTL formula as follows:

G ((keyState �= KeyInIgnitionOnPosition ∧ lightSwitch �= Auto)
⇒

X (lightSwitch = Auto ⇒ headingState[LowBeams] = 0))

Unfortunately Event-B does not support the expression of LTL formula as part
of the specification even if the ProB model-checker can check LTL formulas on
an Event-B specification with a finite state space, but it does not terminate
for our model on such properties, because of the size of the state space. On the
other hand, a proof-based approach for temporal formulas is proposed in [7],
but it generates a large number of proof obligations for a model of this size.
Thus, we have chosen to express these properties as invariants by adding an
extra variable to store the previous value of a state variable that is needed in a
two-consecutive-state property. For example, to express ELS-16 as an invariant,
we have to say that: (1) the current and previous states of the ignition are not
equal to On, (2) the previous state of the switch is different from Auto, and (3)
the current state of the switch is equal to Auto, which is represented by the
following invariant (Machine M3, Invariant inv18)

ELS16 = TRUE ∧ ELS16P = FALSE
⇒
keyState �= KeyInIgnitionOnPosition ∧
keyStateP �= KeyInIgnitionOnPosition ∧
lightSwitch = Auto ∧ lightSwitchP �= Auto
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Table 1. Cross-reference between the components of our model and the requirements
of [3]

Requirements [3] Component Invariant/event

ELS-1, ELS-2, ELS-4, ELS-23 M2 inv5, inv7

ELS-3 movePitmanUD

ELS-5, ELS-23 M2 inv8

ELS-6 M3 inv10

ELS-7 M2 movePitmanUD

ELS-8 M2 inv6, inv8

ELS-10 M2 flashingDark

ELS-11 to ELS-13 M2 movePitmanUD

ELS-14 M3 inv2

ELS-15 M3 inv3

ELS-16 M3 inv4

ELS-17 M3 inv5

ELS-18 M3 inv6, 7, 8, 9

ELS-19 M3 inv10

ELS-21 M3 inv3–5, inv10, inv14

ELS-22 M3 inv11, 12, 13

ELS-24, 25, 26, 27 M4 inv2–inv13

ELS-28 M3 inv14

ELS-29 All invariants defining
the brightness level

ELS-30, ELS-31 M5 inv3, 5

ELS-32..38 M5 inv6–11

ELS-39 M2 inv12, 13

ELS-40 M2 inv14

ELS-41 M1 inv12, 13

ELS-42 M5 inv4

ELS-43...49 M5 inv6–11

Variable ELS16 represent the satisfaction of the conditions of ELS-16 and it
is maintained by event moveSwitchAuto representing the state change of the
rotary switch to position Auto. Variable ELS16P represents its previous value.
It conditions the invariant to the state change of the rotary switch.

These extra variables storing previous values must obviously be maintained
in the events that change the value of the corresponding variable, but also in
events that rely on the previous value for making a decision, even if they do not
modify the corresponding variable.
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4 Model Details

In this section, we briefly describe some specific ways of modelling that character-
ize our specification. The complete archive of the Event-B project is available
in [6].

4.1 Modeling Complex User Interface Elements

There are elements manipulated by the car driver that have several positions
and that control several lights depending on their positions. This is the case of
the key and the light rotary switch. For each of these elements, the position it
can take depends on the current position and thus can be described by a state-
transition diagram. In the more abstract levels, we have chosen to gather all the
possible transitions into a single event because at these levels the invariants do
not depend on a specific position.

Let us take the case of the key. In Context C1, set keyStates describes all the
states of the key:

partition(keyStates,
{NoKeyInserted}, {KeyInserted}, {KeyInIgnitionOnPosition})

In Machine M1, Variable keyState represents the current state of the key,
Variable keyStateP contains the previous state of the key and the authorized
transitions are specified in Invariants inv2, inv3:

keyState = NoKeyInserted
⇒ keyStateP = NoKeyInserted ∨ keyStateP = KeyInserted

keyState = KeyInIgnitionOnPosition
⇒ keyStateP = KeyInIgnitionOnPosition ∨ keyStateP = KeyInserted

Event moveKey specifies the new state of the key according to its previous
state and restricts the value of the event parameter hl to the lights controlled
by the key.

Event moveKey =̂
refines headLightSet

any
hl,valkey

where
grd1: hl ∈ LowBeams ∪ tailLamps ∪ directionIndicators

∪ {corneringLightLeft, corneringLightRight}
�→ LigntnessLevel

grd2: (keyState = NoKeyInserted ⇒ valkey = KeyInserted)

∧ (keyState = KeyInserted ⇒ valkey ∈
{NoKeyInserted,KeyInIgnitionOnPosition})

∧ (keyState = KeyInIgnitionOnPosition ⇒ valkey = KeyInserted)
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then
act1: headingState := headingState �− hl

act2: keyState := valkey

act3: keyStateP := keyState

act4: pitmanArmUDP := pitmanArmUD
end

In Machine M2, Event moveKey is refined to specify the behavior of the direction
indicator and the tail lamps according to the position of the key and the position
of the hazard warning switch.

In Machine M3, we have split Event moveKey into four events (i.e., insertKey,
insertKeyputIgnitionOn, insertKeyputIgnitionOff, removeKey) to be more precise on
the state of the lights according to the position of the key.

Let us take the two events insertKey and insertKeyputIgnitionOn. In Event
insertKey, Action act4 specifies that if the hazard warning switch is not activated
then the direction indicator is off, otherwise it is on and the two flashing lights
are on.

Event insertKey =̂
refines moveKey

any
hl

where
grd1: hl ∈ LowBeams ∪ tailLamps ∪ directionIndicators

→ LigntnessLevel

grd2: keyState = NoKeyInserted

grd3: ...

grd4: hazardWarningSwitchOn = FALSE

⇒ (directionIndicators) × {0} ⊆ hl

...
with

valkey: valkey= keyInserted
then

act1: headingState := headingState �− hl

act2: keyState := KeyInserted

act3: keyStateP := keyState

act4: direcIndF lash :=

{TRUE �→ {blinkRight �→ FALSE, blinkLeft �→ FALSE},
FALSE �→ directionIndicators × {TRUE}
}(bool(hazardWarningSwitchOn = FALSE))

...
end

In Event putIgnitionOn, Action act4 specifies that if the hazard warning switch
is not activated then the direction indicator is activated to the left or right
according to the position of the pitman arm, otherwise it is on and the two
flashing lights are on.
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Event putIgnitionOn =̂
refines moveKey

any
hl

where
grd1: hl ∈ LowBeams ∪ tailLamps ∪ directionIndicators

→ LigntnessLevel

...
with

valkey: valkey= KeyInIgnitionOnPosition
then

act1: headingState := headingState �− hl

act2: keyState := KeyInIgnitionOnPosition

act3: keyStateP := keyState

act4: direcIndF lash :=

{TRUE �→ {blinkRight �→ bool(pitmanArmUD ∈ Upward),

blinkLeft �→ bool(pitmanArmUD ∈ Downward)},
FALSE �→ directionIndicators × {TRUE}
}(bool(hazardWarningSwitchOn = FALSE))

...
end

We have applied the same modeling process to the Light Rotary Switch.
Splitting the event makes the proof obligations easier to discharge even if

more proof obligations are generated.

4.2 Managing Priorities Between Requirements

Some requirements can be in conflict because they have common system states
with different transitions. This is the case for Requirements ELS-16 and ELS-17.
On one hand, ELS-16 states that if the key state is inserted then the low beam
headlights are off. This is specified in Invariant inv4 of Machine M3:

ELS16 = TRUE ∧ ... ⇒ headingState[LowBeams] = 0

where Variable ELS16 is TRUE if the key state is inserted.
On the other hand, ELS-17 states that if the daytime running light is acti-

vated then the low beam headlights are activated after starting the engine and
remain activated as long as the key is not removed, that is, either the key position
is inserted or the ignition is on.

We have detected the conflict when we have animated the specification. The
solution is to prioritize the requirements. After discussing with the case study
authors, a priority for ELS-16 over ELS-17 has been set; this is specified in
Invariant inv5 of Machine M3 that translates ELS-17:

(... ∨ dayT imeLightCont = TRUE) ∧ ... ∧ ELS16 = FALSE ∧ ...
⇒ headingState[LowBeams] = 100

where Variable dayTimeLightCont is true if the daytime running light is acti-
vated.
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4.3 Modeling Time Duration

In Event-B, a specification of requirements that involves time duration requires
to explicitly model time. In this case study, time can trigger changes on the
state of lights (e.g. Requirements ELS-18, 19, 24, ... specify time intervals where
particular lights have to be activated or not). A variable currentTime has been
introduced in Machine M1 to model the time progression together with Event
progress that increments this variable by an arbitrary positive number (Action
act2). Action act1 specifies the lights whose state can be modified by a time
progress.

Event progress =̂
refines headLightSet

any
hl

step
where

grd1: hl ∈ LowBeams ∪ tailLamps ∪ directionIndicators ∪
{corneringLightLeft, corneringLightRight} �→ LigntnessLevel

grd2: step ∈ N1
then

act1: headingState := headingState �− hl

act2: currentT ime := currentT ime + step

...
end

Event progress is refined in Machines M3, M4, M5 by detailing how each
kind of lights is impacted. For instance, in M3, the exterior brightness (ELS-18)
and the ambient light (ELS-19) imply to activate the low beam headlights for
a given time interval.

4.4 Model Statistics

Table 2 describes the size of the model. Since Rodin does not use text files
to store models, there are various ways of counting the lines of code (LOC)
of a model. Moreover, code is inherited when refinement and event extension
is used. Lines of code are computed using the Camille editor representation
of the Event-B model, which does not count inherited LOC through event
extension and puts all variables on the same line. Total LOC, which includes
inherited LOC, is provided within “( )”, and computed using the pretty printer
of the Rodin Event-B Machine Editor. Comments are excluded. Since we do
not use data refinement (i.e., no variable is replaced through refinement), we
provide the total number of variables for each machine along with the number
of new variables (i.e., introduced in a refinement) enclosed by “( )”. Invariants
are specific to each machine. Since some events are renamed by refinement, we
provide the total and new events introduced in each machine.
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Table 2. Model size

Component Size in LOC Constants/ Axioms/ Events

(extended) variables invariants

Total (New) New Total (New)

C0 15 (17) 7

C1 15 (17) 7

C2 8 (2) 2

C3 10 (2) 2

C4 16 1 10

M0 21 (28) 1 (1) 1 1

M1 215 (320) 15 (14) 13 12 (11)

M2 382 (691) 25 (10) 18 14 (2)

M3 908 (1619) 37 (12) 36 19 (5)

M4 885 (2377) 50 (13) 15 20 (1)

M5 416 (2694) 61 (11) 15 23 (3)

Total 2875 126

5 Validation and Verification

To verify and validate the Event-B models presented in the previous sections,
we have proceeded into three steps detailed hereafter.

5.1 Model Checking of the Specification

In this step, the ProB tool is used as a model checker in order to ensure that
the specification is invariant violation-free, that is, there is no trivial scenario
that violates the invariants. From a practical point of view, ProB can find a
sequence of events that, starting from a valid initial state of the machine, leads
to a state that violates its invariant. Such scenarios (or counterexamples) may
result from a guard/action missing but also from an incorrect invariant. This
step permits us to fix trivial bugs before the proof phase that can be very long
and hard. It is worth noting that even if the tool does not find any invariant
violation, it does not mean that the specification is correct. Indeed, there may
be a scenario that the tool fails to find for different reasons like a timeout on
the model checking process. In the present case study, the model checking step
permits us to detect missing actions in particular those related to the variables
representing the previous state of an element. Indeed, this makes the invariants
depending on such variables violated as they should be verified only when the
current and the previous values of these variables are different.
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5.2 Validation with Scenarios

The goal of this phase is to be sure that the specification satisfies the require-
ments. To this aim, we used the animation capability of ProB and played the
different scenarios provided with the case study. This step permits us to exhibit
several flaws/ambiguities in the initial release of the description documents (see
Sect. 6 for more details). As examples of such flaws, we can cite the lack of pri-
oritization between some requirements like ELS-16 and ELS-17 that share the
same activation conditions when the daytime running light option is activated
with the ignition in the Off position and the driver turns the switch in the Auto
position. To correct these flaws/ambiguities, we have discussed with the case
study authors because we are not specialists of the domain. For the above par-
ticular example, a priority is given to ELS-16 over ELS-17. It is worth noting
that such flaws/ambiguities can not be detected in the model checking phase
because they make the guard of some events unsatisfied, thus the event is not
enabled and the invariant is thus not violated. Let us note that we had some
problems to animate the first version of our models where we have kept the event
parameter hl as a partial function on the set of all the lights. Indeed in that case,
ProB checks all the possible partial functions on these lights which leads to a
timeout. To overcome this issue, we have replaced each partial function by a
more restrictive total function on the right domain, that is, the lights whose
state actually changes after the execution of the event.

5.3 Proof of the Specification

It is the last step, whose goal is to ensure the correctness of the specification
by discharging proof obligations generated by Rodin. These proof obligations
aim at proving invariant preservation by each event, but also to ensure that the
guard of each refined event is stronger than that of the abstract event. These
guard strengthening refinement proof obligations ensure that event parameters
like hl mentioned above are properly refined. For instance, hl is defined as a
partial function in the abstract event headLightSet; it is refined using total func-
tions by giving its value for each refining event. So, we have to ensure that
these values satisfy the initial guard. Figure 2 provides the proof statistics of
the case study: 1643 proof obligations have been generated, of which 23% (385)
were automatically proved by the various provers. The remaining proof obliga-
tions were discharged interactively since they needed the use of external provers
like the Mono Lemma prover that has shown to be very useful for arithmetic
formulas. In addition, we have added some theorems on min/max operators (a
min/max of a finite set is an element of the set, etc).

Let us note that the results of this phase has especially impacted some mod-
eling choices. For instance, to speed up the proof phase, we have included in the
guards some properties tagged as theorems in order to prove them only once and
reuse them in all the proofs that need them for that event. This is the case of
Guards grd9, grd10 of insertKey in Machine M3 that state:
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grd9: lowBeamRight ∈ dom(hl) ⇒ hl(lowBeamRight) ∈ 0..100

grd10: lowBeamLeft ∈ dom(hl) ⇒ hl(lowBeamLeft) ∈ 0..100

Fig. 2. Rodin proof statistics of the case study

6 Other Points

6.1 Feedback on the Requirements Document

The formal modeling of the requirements document [3] lead us to identify a
number of ambiguities and some contradictions with the test scenarios provided.
We have communicated these to the authors of the requirements document, and
a number of revisions were produced, following our comments. Our comments
induced 9 of the 17 versions produced after the publication of the initial ver-
sion of the requirements document. These modifications impacted 18 of the 49
requirements of the Exterior Light System. A detailed list of these elements
are described in the last version (i.e., 1.17) of the requirements document. We
have mainly rephrased some requirements for which the applicability conditions
should hold at different time points. For instance, in requirement ELS-16, the
condition “the switch in position Auto” should happen after the condition “the
ignition is already Off”. Moreover, we have defined priorities between require-
ments to make the specification deterministic: ELS-16 has priority over ELS-17,
ELS-19 has priority over ELS-17, etc. We have also rephrased some sentences
to clarify them. For instance in the first version of the document, the word
“released” was used with the meaning “button pushed” in some places and with
the meaning “button not pushed” in some others. To remove this ambiguity,
we have replaced it with the terms “active” and “not active”. Finally to make
the modeling easier and after a discussion with the case study authors, the
signal pitmanArm has been splitted into signals pitmanArmForthBack and pit-
manArmUpDown with their corresponding positions (states) and the possible
transitions between them.
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6.2 Modeling Temporal Properties

Dealing with previous values to prove temporal properties turned out to be a
significant burden. To improve/facilitate the specification of such kind of proper-
ties, which are probably very common in control systems, it would be interesting
to study how they could be handled in Rodin or in some other plugin like the
Event-B State machines plugin1. This plugin permits to generate Event-B
events from a state machine including their guards that specify the requirements
modeled by the state machine but without producing the related invariants. In
that case, it becomes difficult to trace and justify the usefulness of the generated
guards.

6.3 Identifying a Refinement Strategy

The crux in defining the structure of the Event-B model was to define the
requirements elements to include at each refinement level. Recall that once a
variable is introduced in a model, it cannot be modified by new events of subse-
quent refinements. Thus, when a variable is introduced, each event that needs to
update it must be also introduced. In this case study, there are several dependen-
cies between requirements elements. As many lights mutually rely on the same
sensors and are correlated in terms of behavior, we have defined a single event,
in the first machine, to model the light state changes and refined it according
to the different actuators/sensors. But, we think that it would be interesting
to look deeper into the existing structuring approaches for Event-B: decom-
position [12] or modularization [4], in order to structure the specification into
smaller logical units to make the proofs easier. A refactoring tool based on the
read/update dependencies between events and state variables would be nice. It
could help in finding an optimal decomposition based on the connected compo-
nents of a dependency graph for a given machine. Building such a graph from
the requirements is not easy, as one typically needs to formalize the requirements
to precisely understand which variables are needed and where. So, the specifier
typically finds the ideal refinement structure only after creating a potentially
non optimal refinement structure. Often a lot of effort has been invested in cre-
ating this first model, and there is no resource left to do a refactoring to obtain
a better model. By better, we mean a model whose refinement decomposition
would yield easier proofs for the same set of properties.

7 Conclusion

We have presented an Event-B model for the ELS case study. Our model takes
into account all of the requirements. The model was verified by proving a large
number of properties (98 invariants) and by simulation using ProB. Temporal
properties involving two consecutive states were proved using variables storing
previous state values. Due to the model size (61 state variables), ProB was
1 http://wiki.event-b.org/index.php/Event-B Statemachines.

http://wiki.event-b.org/index.php/Event-B_Statemachines
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unable to verify invariant or temporal properties. The proof effort was quite
significant: 1258 proofs obligation (76%) had to be manually discharged. The
last Event-B machine is quite large (2 694 LOC), which denotes that the case
study was an interesting modeling and verification challenge. The Rodin provers
were less efficient than in previous ABZ case studies, where the manual proofs
ratio was closer to 30% [8,9].

The formalization lead us to identify several small ambiguities in the require-
ments. They have been discussed with the case study authors as they were dis-
covered, which lead to 9 out of the 17 revisions of the case study text that were
published during the modeling process. This shows that formalization is an effec-
tive technique to discover defects early in the software development process. It
is well-known in the software engineering literature that the earlier a defect is
found, the cheaper it is to fix it.

Determining the best refinement strategy remains a challenge in Event-B.
We fell short of time to try out the model decomposition plugins available
in Rodin. They might have been useful in decomposing the specification into
smaller, more manageable parts. This case study is of a different nature than
the previous ones in the ABZ conference series (i.e., 2014 Landing gear, 2016
Hemodialysis, 2018 ERTMS). Its elements are more tightly coupled, which made
it more difficult to find an appropriate refinement strategy. It contains more
properties to prove than the previous ones, but they are more localized proper-
ties (i.e., each property referring to a small number of events on at most two
consecutive states) that do not depend on the relationship between monitored
variables and controlled variables. However, we really think that the Event-B
method must include modularization clauses as native structuring mechanisms
like those of the B method that permit to have a modular specification since the
first phases of the development. This will make Event-B more suitable for the
development of big and complex systems. For comparison, in the ERTMS case
study, we had to build a relationship between the real (actual) positions of the
trains and the controller view of the train positions to prove safety properties.
There were no such issues in the ELS case study.
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