
A Logic for Reflective ASMs

Klaus-Dieter Schewe1 and Flavio Ferrarotti2(B)

1 Zhejiang University, UIUC Institute, Haining, China
kd.schewe@intl.zju.edu.cn, kdschewe@acm.org

2 Software Competence Center Hagenberg, Hagenberg, Austria
flavio.ferrarotti@scch.at

Abstract. Reflective algorithms are algorithms that can modify their
own behaviour. Recently a behavioural theory of reflective algorithms has
been developed, which shows that they are captured by reflective abstract
state machines (rASMs). Reflective ASMs exploit extended states that
include an updatable representation of the ASM signature and rules to
be executed by the machine in that state. Updates to the representation
of ASM signatures and rules are realised by means of a sophisticated tree
algebra defined in the background of the rASM. In this paper the theory
is taken further by an extension of the logic of ASMs to capture inferences
on rASMs. The key is the introduction of terms that are interpreted
by ASM rules stored in some location. We show that fragments of the
logic with a fixed bound on the number of steps preserve completeness,
whereas the full run-logic for rASMs becomes incomplete.

Keywords: Abstract state machine · Reflection · Logic · Tree algebra

1 Introduction

Reflection refers to the ability of an algorithm or program to modify its own
behaviour. The concept is as old as computer science; it already appears in
LISP [16], where programs and data are both represented uniformly as lists.
General run-time and compile-time linguistic reflection in programming and
database research have been investigated in general by Stemple, Van den Bussche
and others in [18,19]. Recently, adaptivity and thus reflection has become a key
aspect of (cyber-physical) systems [7]. Nonetheless, it is still not well understood
and contains great challenges and risks. As it is hard to oversee how a system
behaves after many adaptations, any uncontrolled application of reflection bears
the risk of unpredictable and undesired outcomes. Thus, the challenge for rigor-
ous methods is to enable static reasoning and verification of desired properties
of reflective algorithms and systems, which requires to control an unbounded
family of specifications.

The research reported in this paper has been partly funded by BMVIT, BMDW, and
the Province of Upper Austria in the frame of the COMET Programme managed by
FFG.

c© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 93–106, 2020.
https://doi.org/10.1007/978-3-030-48077-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_7&domain=pdf
https://doi.org/10.1007/978-3-030-48077-6_7

94 K.-D. Schewe and F. Ferrarotti

Concerning the foundations of reflection we developed a behavioural the-
ory of reflective sequential algorithms (RSAs) in [12] (see arXiv version in [9]),
which extends and cleanses our previous sketch in [2]. The theory provides
an axiomatic, language-independent definition of RSAs, defines an extension
of sequential ASMs to reflective sequential ASMs (rsASMs), by means of which
RSAs can be specified, and provides a proof that RSAs are captured by rsASMs.
That is, rsASMs satisfy the postulates of the axiomatisation, and any RSA as
stipulated by the axiomatisation can be defined by a behaviourally equivalent
rsASM. The notion of behavioural equivalence is slightly weaker than the cor-
responding notion for sequential or parallel algorithms, as there is no need to
require that changes to the represented algorithm are exactly the same, as long
as the application of the algorithm to the core part of the structure yields the
same results.

In [13] we sketched how to generalise the theory to reflective parallel algo-
rithms [11], which requires an integration of the behavioural theory of syn-
chronous parallel algorithms [3]. Leaving this general aspect aside the gener-
alisation of just the reflective sequential ASMs to reflective ASMs is rather
straightforward. For deterministic ASMs this was done in [10]. In a nutshell,
in each step of a reflective ASM (rASM) the rule is taken from a dedicated loca-
tion self , which uses a tree structure to represent the signature and rule, and a
sophisticated tree algebra to manipulate tree values [14]. We also exploit partial
updates in the form of [15] to minimise clashes that may otherwise result from
simultaneously updating self by several parallel branches.

In this paper we address the fundamental question how desired properties of
a reflective algorithm can be verified. As rASMs capture reflective algorithms,
this requires extending the logic of ASMs [4,5,17]. We observe that in these
logics the rules defining an ASM only enter as extra-logical constants r that are
expanded in atomic formulae [r]ϕ (the application of r to the current state leads
to a state satisfying the formula ϕ), upd(r,X) (the rule r yields an update set
X in the current state), and upm(r, Ẍ) (the rule r yields an update multiset Ẍ
in the current state). In an rASM, however, the rule to be applied in the current
state is stored itself in the state in a sublocation of a location self . We therefore
explore the idea to treat r in formulae as variables that are interpreted by a rule
stored in the current state. Furthermore, as reasoning about reflective algorithms
only makes sense for multiple steps, we also extend the one-step ASM logic to a
multiple-step logic. The precise definition of such a logic and the completeness
proof for a fragment of the logic are the key contributions of this paper.

In Sect. 2 we present rASMs as extensions of ASMs. Section 3 is dedicated to
the introduction of the logic of ASMs, which follows our previous work in [4].
The core of the paper is Sect. 4, where we formally develop the extension of the
logic dealing with reflection and investigate completeness. We conclude with a
brief summary and outlook in Sect. 5.

A Logic for Reflective ASMs 95

2 Reflective Abstract State Machines

We assume general familiarity with ASMs as defined in [1]. The extension to
reflective ASMs requires to define a background structure that covers trees and
operations on them, a dedicated variable self that takes as its value a tree
representation of an ASM signature and rule, and the extension of rules by partial
updates. Due to space limitations our presentation must be terse—nevertheless
the details are given in [9,10,12]. Note that the omitted details include the
sophisticated tree algebra defined for the representation of rules and the access
to them. We use some of its operators, but they can be correctly understood
from the context.

Let Σ be an ASM signature, i.e. a set of function symbols. Partial assign-
ments are defined as follows: Whenever f ∈ Σ has arity n and op is an operator
of arity m + 1, ti (i = 1, . . . , n) and t′i (i = 1, . . . ,m) are terms over Σ, then
f(t1, . . . , tn) ⇔op t′1, . . . , t

′
m is a rule. The informal meaning is that we evalu-

ate the terms as well as f(t1, . . . , tn) in the current state S, then apply op to
valS(f(t1, . . . , tn)), valS(t′1), . . . , valS(t′m) and assign the resulting value v to the
location (f, (valS(t1), . . . , valS(tn))). Conditions for compatibility and the col-
lapse of an update multiset into an update set have been elaborated in detail in
[15].

For the dedicated location storing the self-representation of an ASM it is
sufficient to use a single function symbol self of arity 0. Then in every state S the
value valS(self) is a complex tree comprising two subtrees for the representation
of the signature and the rule, respectively. That is, in the tree structure we have
a root node o labelled by self with exactly two successor nodes, say o0 and o1,
labelled by signature and rule, respectively. So we have o ≺c o0, o0 ≺s o1 and
o ≺c o1, where ≺c and ≺s denote, respectively, the child and sibling relationships.
The subtree rooted at o0 has as many children o00, . . . , o0k as there are function
symbols in the signature, each labelled by func. Each of the subtrees rooted at
ooi takes the form func〈name〈f〉arity〈n〉〉 with a function name f and a natural
number n. The subtree rooted at o1 represents the rule of a sequential ASM as
a tree.

The inductive definition of trees representing rules is rather straightfor-
ward. For instance, an assignment rule f(t1, . . . , tn) := t0 is represented by a
tree of the form update〈func〈f〉term〈t1 . . . tn〉term〈t0〉〉, and a partial assign-
ment rule f(t1, . . . , tn) ⇔op t′1, . . . , t

′
m is represented by a tree of the form

partial〈func〈f〉func〈op〉term〈t1 . . . tn〉term〈t′1 . . . t′m〉〉.
The background of an rASM is defined by a background class K over a back-

ground signature VK . It must contain an infinite set reserve of reserve values
and an infinite set Σres of reserve function symbols, the equality predicate, the
undefinedness value undef, and a set L of labels self, signature, rule, func,
name, arity, update, term, if, bool, par, let, partial. The background class
must further define truth values and their connectives, tuples and projection
operations on them, natural numbers and operations on them, trees in TL and
tree operations, and the function I, where Ix.ϕ denotes the unique x satisfying
condition ϕ.

96 K.-D. Schewe and F. Ferrarotti

If B is a base set, then an extended base set is the smallest set Bext containing
B that is closed under adding function symbols in the reserve Σres , natural
numbers, the terms T with respect to B and Σres , and terms of the tree algebra
defined over Σres with labels in L as defined above. Furthermore, we use T̂ext

to denote the union of the set Text of terms with Σext and the set of rules.
The background must further provide functions: drop : T̂ext → Bext and

raise : Bext → T̂ext for each base set B and extended base set Bext, and a
derived extraction function β : Text → ⋃

n∈N
T

n, which assigns to each term
defined over the extended signature Σext and the extended base set Bext a tuple
of terms in T defined over Σ and B.

A reflective ASM (rASM) M comprises an (initial) signature Σ containing a
0-ary function symbol self , a background as defined above, and a set I of initial
states over Σ closed under isomorphisms such that any two states I1, I2 ∈ I coin-
cide on self . Furthermore, M comprises a state transition function τ on states
over extended signature ΣS with τ(S) = S+ΔrS

(S), where the rule rS is defined
as raise(rule(valS(self))) over the signature ΣS = raise(signature(valS(self))).

In this definition we use extraction functions rule and signature defined on
the tree representation of a sequential ASM in self . These are simply defined
as signature(t) = subtree(Io.root(t) ≺c o ∧ label(o) = signature) and rule(t) =
subtree(Io.root(t) ≺c o ∧ label(o) = rule).

3 The Logic of Abstract State Machines

We now look briefly into a simplified version of the logic of non-deterministic
ASMs as defined in [4]. The simplification concerns the distinction between db-
terms and algorithmic terms that is necessary, if explicit meta-finite states are
considered. Here we just consider a single uniform signature Σ, so terms are
defined in the usual way. However, we have to keep in mind that rASMs have
a rich set of operators in their background that are used to build terms. Fur-
thermore, as we are dealing with non-determinism there is a need to consider
also ρ-terms of the form ρv(t | ϕ), where ρ is a multiset operator defined in
the background, ϕ is a formula, t is a term, and v is a variable. A pure term is
defined as a term that does not contain any sub-term which is a ρ-term.

In order to define formulae inductively we extend the set of first-order vari-
ables with a countable set of second-order (relation) variables of arity r for each
r ≥ 1.

1. If s and t are terms, then s = t is a formula.
2. If t1, . . . , tr are terms and X is a second-order variable of arity r, then

X(t1, . . . , tr) is a formula.
3. If r is a rule and X is a second-order variable of arity 3, then upd(r,X) is a

formula.
4. If r is a rule and Ẍ is a second-order variable of arity 4, then upm(r, Ẍ) is a

formula.
5. If ϕ and ψ are formulae and x is a first-order variable, then ¬ϕ, ϕ ∨ ψ and

∀x(ϕ) are formulae.

A Logic for Reflective ASMs 97

6. If ϕ is a formula and X is a second-order variable, then ∀X(ϕ) is a formula.
7. If ϕ is a formula and X is a second-order variable of arity 3, then [X]ϕ is a

formula.

Note that we use second-order variables of arity 3 and 4 to capture update
sets and update multisets, respectively.

The semantics of the logic is defined by Henkin structures. A Henkin pre-
structure S is a state of signature Σ with base set B extended with a new universe
Dn of n-ary relations for each n ≥ 1, where Dn ⊆ P(Bn).

Variable assignments ζ into a Henkin prestructure S are defined as usual:
ζ(x) ∈ B for each first-order variable x, and ζ(X) ∈ Dn for each second-order
variable X of arity n.

Then the interpretation of a term in a Henkin prestructure S with a variable
assignment ζ is defined as usual; for ρ-terms t = ρv(t′ | ϕ) we have valS,ζ(t) =
ρ({{valS,ζ[v �→ai](t

′) | ai ∈ B and [[ϕ]]S,ζ[v �→ai] = true}}).
We extend this interpretation to formulae. For a second-order variable X of

arity 3 we abuse the notation by writing valS,ζ(X) ∈ Δ(r, S, ζ) meaning that
there is a set U ∈ Δ(r, S, ζ) such that (f, a0, a1) ∈ U iff (cS

f , a0, a1) ∈ valS,ζ(X).
Analogously, for a second-order variable Ẍ of arity 4 we write valS,ζ(Ẍ) ∈
Δ̈(r, S, ζ) meaning that there is a multiset Ü ∈ Δ(r, S, ζ) such that (f, a0, a1) ∈ Ü
with multiplicity n iff there are exactly b1, . . . , bn pairwise different values such
that (cS

f , a0, a1, bi) ∈ valS,ζ(X) for every 1 ≤ i ≤ n. If ϕ is a formula, then its
truth value on S under ζ (denoted as [[ϕ]]S,ζ) is defined by the following rules:

– If ϕ is of the form s = t, then [[ϕ]]S,ζ =

{
true if valS,ζ(s) = valS,ζ(t)
false otherwise

.

– If ϕ is of the form X(t1, . . . , tr), then

[[ϕ]]S,ζ =

{
true if (valS,ζ(t1), . . . , valS,ζ(tn)) ∈ valS,ζ(X)
false otherwise

.

– If ϕ is of the form upd(r,X), then

[[ϕ]]S,ζ =

{
true if valS,ζ(X) ∈ Δ(r, S, ζ)
false otherwise

.

– If ϕ is of the form upm(r, Ẍ), then

[[ϕ]]S,ζ =

{
true if valS,ζ(Ẍ) ∈ Δ̈(r, S, ζ)
false otherwise

.

– If ϕ is of the form ¬ψ, then [[ϕ]]S,ζ =

{
true if [[ψ]]S,ζ = false
false otherwise

.

98 K.-D. Schewe and F. Ferrarotti

– If ϕ is of the form α ∨ ψ, then

[[ϕ]]S,ζ =

{
true if [[α]]S,ζ = true or [[ψ]]S,ζ = true
false otherwise

.

– If ϕ is of the form ∀x(ψ), then

[[ϕ]]S,ζ =

{
true if [[ψ]]S,ζ[x�→a] = true for all a ∈ B

false otherwise
.

– If ϕ is of the form ∀X(ψ), where X is a second-order variable of arity n, then

[[ϕ]]S,ζ =

{
true if [[ψ]]S,ζ[X �→R] = true for allR ∈ Dn

false otherwise
.

– If ϕ is of the form ([X]ψ), then

[[ϕ]]S,ζ =

⎧
⎪⎨

⎪⎩

false if ζ(X) represents an update set U

such that U is consistent and [[ψ]]S+U,ζ = false
true otherwise

.

For a sentence ϕ to be valid in the given Henkin semantics, it must be true
in all Henkin prestructures. This is a stronger requirement than saying that ϕ
is valid in the standard Tarski semantics. A sentence that is valid in Tarski
semantics is true in those Henkin prestructures, for which each universe Dn is
the set of all relations of arity n.

The universes Dn of the Henkin prestructures should not be arbitrary collec-
tions of n-ary relations. Thus, it is reasonable to restrict our attention to some
collections of n-ary relations that we can define, i.e. we restrict our attention to
Henkin structures.

A Henkin structure is a Henkin prestructure S that is closed under definabil-
ity, i.e. for every formula ϕ, variable assignment ζ and arity n ≥ 1, we have that
{ā ∈ An | [[ϕ]]S,ζ[a1 �→x1,...,an �→xn] = true} ∈ Dn.

The main result in [4] states that the logic for ASMs defined here is complete
with respect to Henkin semantics.

4 Reasoning About Reflection

Let us now investigate the extension of the logic above to handle reflection. The
main difference of rASMs to ordinary ASMs is that in each step a different rule
r is applied, and this rule is part of the current state. In the one-step logic of
ASMs described in the previous section a rule is treated as a fixed extra-logical
constant appearing only in formulae of the form upd(r,X) and upm(r, Ẍ), and
the meaning of these formulae depends on the actual rule r.

A Logic for Reflective ASMs 99

4.1 Extension of the Logic of ASMs

In an rASM valS(self) is a tree value t and rule(t) (defined at the end of
Sect. 2) is the subtree representing the actual rule of the rASM in state S. Then
raise(rule(valS(self))) is the rule rS of the rASM in state S, or phrased differ-
ently, we obtain this rule by interpretation of the term

therule = raise(subtree(Io.root(self) ≺c o ∧ label(o) = rule).

That is, the only extension to the logic required to capture reflection is the
treatment of the first argument of upd(r,X) and upm(r, Ẍ) as a term that is
then evaluated in the state S. If the result is not a rule, these formulae remain
undefined.

However, for a single machine step this extension is rather irrelevant, as in an
rASM the main rule does not change within a single step. Thus, we have to take
multiple steps into account. For these we introduce two additional predicates
r-upd and r-upm with the following informal meaning:

– r-upd(n,X) means that n steps of the reflective ASM yield the update set X,
where in each step the actual value of self is used.

– r-upm(n, Ẍ) means that n steps of the reflective ASM yield the update mul-
tiset Ẍ.

To be more precise, X and Ẍ in predicates r-upd(n,X) and r-upd(n, Ẍ) are the
union of the n update sets and n updates multisets, respectively, yielded by the
reflective ASM in n steps.

Clearly, we have r-upd(1,X) ↔ upd(therule,X), and analogously,
r-upm(1,X) ↔ upm(therule, Ẍ). For the generalisation to arbitrary values of
n we exploit the definition of upd(r,X) and upm(r, Ẍ) for sequence rules to
inductively define axioms for r-upd and r-upm. We further need the definition
of consistent update sets in the logic:

conUSet(X) ≡
∧

cf∈Fdyn

∀xyz
((

X(cf , x, y) ∧ X(cf , x, z)
) → y = z

)

for the set Fdyn of constants representing the dynamic function symbols in Σ.
Then we can use con(r,X) to expresses that X represents one of the possible
update sets generated by a rule r and that X is consistent:

con(r,X) ≡ upd(r,X) ∧ conUSet(X).

We further define

r-upd(n + 1,X) ↔ (
r-upd(1,X) ∧ ¬conUSet(X)

)∨
(∃Y1Y2(r-upd(1, Y1) ∧ conUSet(Y1) ∧ [Y1]r-upd(n, Y2)∧

∧

cf∈Fdyn

∀xy(X(cf ,x, y) ↔ ((Y1(cf , x, y) ∧ ∀z(¬Y2(cf , x, z))) ∨ Y2(cf , x, y))))
)

100 K.-D. Schewe and F. Ferrarotti

as well as

upm(n + 1, Ẍ) ↔
(
r-upm(1, Ẍ)∧

∀X
(∧

cf∈Fdyn

∀x1x2(X(cf , x1, x2) ↔ ∃x3(Ẍ(cf , x1, x2, x3)))∧

¬conUSet(X)
))

∨
(
∃Ÿ1Ÿ2

(
r-upm(1, Ÿ1)∧

∀Y1

(∧

cf∈Fdyn

∀x1x2(Y1(cf , x1, x2) ↔ ∃x3(Ÿ1(cf , x1, x2, x3)))∧

conUSet(Y1) ∧ [Y1]r-upm(n, Ÿ2)
)
∧

∧

cf∈Fdyn

∀x1x2x3
(
Ẍ(cf , x1, x2, x3) ↔ (Ÿ2(cf , x1, x2, x3)∨

(Ÿ1(cf , x1, x2, x3) ∧ ∀y2y3(¬Ÿ2(cf , x1, y2, y3))))
))

.

4.2 Completeness

Let L(r)
asm denote the logic of rASMs resulting from these extensions using

therule and predicates r-upd(n,X) and r-upm(n,X) for arbitrary n. Let Lr
asm

denote the further extended logic of rASMs, in which in addition quantification
over n is permitted. Let us call L(r)

asm the multi-step logic of rASMs, and Lr
asm

the run logic of rASMs.
Even without updating the rule in every step it is obvious that the run logic

Lr
asm subsumes a full dynamic logic over runs of ASMs. As such it is impossible

to achieve completeness.

Theorem 1. The run logic Lr
asm of rASMs is incomplete.

Concerning the multi-step logic L(r)
asm of rASMs the situation is not so obvi-

ous. We may continue a sublogic L(r,n)
asm using a fixed value of n and formulae of

the form r-upd(m,X) and r-upm(m,X) with fixed m ≤ n. For such a sublogic we
can extend the completeness result of the logic of ASMs using similar arguments.

Theorem 2. For each n ∈ N the bounded fraction L(r,n)
asm of the multi-step logic

L(r)
asm of rASMs is complete.

The remaining part of this section is dedicated to prove this key result.
First note that every subformulae of the form r-upd(m,X) and of the form

r-upm(m,X) that occurs in a L(r,n)
asm -formulae can be replaced by their corre-

sponding definitions above. This is possible, because we have only bounded finite
values for m = 1 . . . n to consider.

Thus, the axioms and rules of the derivation system remain the same as for
the logic of ASMs [4,5]. Starting point is the natural formalism L2 as defined
in [6] for the relational variant of second-order logic on which the logic is based.

A Logic for Reflective ASMs 101

L2 uses the usual axioms and rules for first-order logic, with quantifier rules
applying to second-order variables as well as first-order variables, and with the
stipulation that the range of the second-order variables includes at least all the
relations definable by the formulae of the language. A deductive calculus for L2

is obtained by augmenting the axioms and inference rules of first-order logic as
follows:

– ∃X∀v1, . . . , vk(X(v1, . . . , vk) ↔ ϕ), where k ≥ 1, v1, . . . , vk are first-order
variables, and X is a k-ary second-order variable that does not occur freely
in the formula ϕ.

– ∀X(ϕ) → ϕ[Y/X], provided the arity of X and Y coincides.

–
ψ → ϕ[Y/X]
ψ → ∀X(ϕ)

, provided Y is not free in ψ.

In addition to these axioms and rules and standard axioms and rules for
first-order logic with equality, the logic L(r,n)

asm comprises the following:

– The axioms for upd(r,X) and upm(r,X). Since here we do not need to
consider explicit meta-finite states, these axioms are a simplified version of
Axioms U1–U7 and Axioms Ü1–Ü7 in Section 7.2 and 7.3 in [4], respectively.
For instance, Axiom U1 which states that X represents an update set yielded
by the assignment rule f(t) := s iff it contains exactly one update and this
update is ((f, t), s), can be written as:

U1: upd(f(t) := s,X) ↔ X(cf , t, s)∧
∀zxy(X(z, x, y) → z = cf ∧ x = t ∧ y = s)

– The distribution axiom and the necessitation rule from the axiom system K of
modal logic, and modus ponens, which allow us to derive all modal properties
that are valid in Kripke frames.

– The axiom ¬conUSet(X) → [X]ϕ asserting that if an update set X is not
consistent, then there is no successor state obtained from applying X to the
current state—thus [X]ϕ is interpreted as true for any formula ϕ.

– The axiom ¬[X]ϕ → [X]¬ϕ describing the deterministic accessibility relation
in terms of [X].

– The Barcan axiom ∀v([X]ϕ) → [X]∀v(ϕ), where v is a first-order or second-
order variable.

– Axioms ϕ ∧ upd(r,X) → [X]ϕ and con(r,X) ∧ [X]ϕ → ϕ for static and pure
ϕ asserting that the interpretation of static and pure formulae is the same in
all states.

– The frame axiom conUSet(X) ∧ ∀z(¬X(cf , x, z)) ∧ f(x) = y → [X]f(x) = y
and the update axiom conUSet(X)∧X(cf , x, y) → [X]f(x) = y asserting the
effect of applying an update set.

– The axiom upm(r,X) → ∃Y (upd(r, Y)) stating that if a rule r yields an
update multiset, then it also yields an update set.

– The restricted axiom of universal instantiation ∀v(ϕ(v)) → ϕ[t/v], if ϕ is pure
or t is static, t is a term free for v in ϕ(v).

102 K.-D. Schewe and F. Ferrarotti

– The rule of universal generalisation
ψ → ϕ[v′/v]
ψ → ∀v(ϕ)

if v′ is not free in ψ.

– The axiom

∃X(upd(seq r1 r2 endseq,X) ∧ [X]ϕ) ↔
∃X1(upd(r1,X1) ∧ [X1]∃X2(upd(r2,X2) ∧ [X2]ϕ)).

from dynamic logic asserting that executing a sequence rule is equivalent to
executing its sub-rules sequentially.

– The extensionality axiom

r1 ≡ r2 → (∃X1.upd(r1,X1) ∧ [X1]ϕ) ↔ ∃X2.upd(r2,X2) ∧ [X2]ϕ.

For the proof of completeness we proceed in the same way as for the cor-
responding completeness proof for the logic of ASMs in [4]. First for operators
defined in the background, in particular the multiset functions used in ρ-terms,
are treated as standard non-axiomatised functions. This allows us to assume
without loss of generality that formulae do not contain ρ-terms.

Then we turn formulae into variants of formulae of first-order logic with
types. For this we create a modified signature ΣT , which contains the function
symbols from Σ, a unary relation symbol Tn for each n ≥ 1, an (n + 1)-ary
relation symbol En for each n ≥ 1, and unary relation symbols T0 and Tr. With
these we proceed as follows:

1. Turn formulae upd(r,X) and upm(r,X) into formulae of the form Tr(x) →
upd(x,X) and Tr(x) → upm(x,X), where Tr(x) asserts that x is a tree term
representing a rule.

2. Bring all remaining atomic formulae into the form v1 = v2, f(v2) = v1 or
X(v1, . . . , vn).

3. Eliminate all modal operators expressing them by means of the formula
conUSet(X).

4. Replace each atomic (second-order) formula of the form X(t1, . . . , tn) by
En(t1, . . . , tn,X), and relativise quantifiers over individuals using T , and
quantifiers over n-ary relations in Dn for some n ≥ 1 to Tn.

The main difference to the similar reduction applied in [4] is that subformulae
upd(r,X) and upm(r,X) cannot be completely eliminated. However, by using Tr

and tree terms we turn these formulae into first-order formulae with types. Then
the axioms for upd(r,X) and upm(r,X) have to be adapted to this modification
as well. In the case of upd, we define a new axiom that replaces Axioms U1–U7
and has the form

upd(x,X) ↔ ϕU1(x,X) ∨ · · · ∨ ϕU7(x,X),

where ϕU1, . . . , ϕU7 are modified versions of the formulae in the right-hand side
of Axioms U1–U7, respectively. In particular, ϕU1 can be defined as follows:

∃x0x1x2x3xfxtxs

(
(x0 = Io.root(x) ≺c o ∧ label(o) = update)∧

A Logic for Reflective ASMs 103

label(x1) = func ∧ label(x2) = term ∧ label(x3) = term∧
x0 ≺c x1 ∧ x0 ≺c x2 ∧ x0 ≺c x3 ∧ x2 ≺s x3 ∧ x1 ≺c xf ∧ x2 ≺c xt ∧ x3 ≺c xs

∃yfytys(yf = valS(raise(xf)) ∧ yt = valS(raise(xt)) ∧ ys = valS(raise(xs))∧
∧X(yf , yt, ys) ∧ ∀zfztzs(X(zf , zf , zs) → zf = yf ∧ zt = yt ∧ zs = ys))

)

Note that for simplicity we have assumed, w.l.o.g. (see [4] among others), that
the arity of the functions in the update rules is 1.

Due to space limitations, we leave the definition of the remaining formulae
ϕU2, . . . , ϕU7 as a simple exercise to the reader. Likewise the definition of a new
axiom that replaces Axioms Ü1–Ü7 is also left as an easy exercise to the reader.

Lemma 1. A formula ϕ of L(r,n)
asm is true in a Henkin prestructure S iff the

transformed formula ϕ∗ is true in a first-order structure S∗ over ΣT that is
uniquely determined by S.

The first direction of Lemma 1, i.e., if an L(r,n)
asm -formula ϕ is true in S, then ϕ∗

is true in S∗, can be proven by structural induction. We only need to apply the
transformation described above to each of the cases in the definition of the set of
L(r,n)

asm -formulae and then check that the resulting first-order formulae is satisfied
by the corresponding state S∗. Likewise, the second direction of Lemma 1 can
be proven by structural induction on the definition of first-order formulae, in
this case using the inverse of the transformation described above. We omit these
proofs since both are quite long, but technically straightforward.

Thus, if ϕ∗ is valid, then ϕ is true in all Henkin structures. Note that the
converse does not always hold. For instance ∃x(x = x) is true in all Henkin
structures (since by definition the domain of S is not empty), but ∃x(T0(x)∧(x =
x)) is not valid. In general, not every ΣT -structure is an S∗ structure for some
Henkin Σ-structure S. However, if a ΣT -structure S∗ satisfies the following
properties, then it corresponds to a Henkin structure S (cf. [6]):

1. Σ-correctness:
– Tr(c) for nullary function symbols self ∈ Σ,
– T0(c) for all nullary function symbols c ∈ Σ other than self , and
–

∧
1≤i≤n T0(xi) → T (f(x1, . . . , xn)) for every f ∈ Σ.

2. Non-emptiness: ∃x(T0(x) ∨ Tr(x)).
3. Disjointness:

– Ti(x) → ¬Tj(x) for i, j ≥ 0 with i �= j,
– Tr(x) → ¬Ti(x) and Ti(x) → ¬Tr(x) for i ≥ 0.

4. Elementhood: En(x1, . . . , xn, y) → Tn(y)∧ (T0(x1)∨Tr(x1))∧ · · · ∧ (T0(xn)∨
Tr(xn)) for n ≥ 1.

5. Extensionality: Tn(x) ∧ Tn(y) ∧ ∀z̄(En(z̄, x) ↔ En(z̄, y)) → x = y for n ≥ 1.
6. Comprehension: ∃y∀x̄(En(x̄, y) ↔ ψ) for n ≥ 1 and y non-free in ψ.

104 K.-D. Schewe and F. Ferrarotti

Lemma 2. If A is a first-order structure of signature ΣT which satisfies prop-
erties 1–6 above and sub(A) is the sub-structure of A induced by the elements of⋃

n≥0(Tn)A ∪ (Tr)A, then for some Henkin structure S of signature Σ, sub(A)
is the structure S∗ determined by S.

Proof. Given A with domain dom(A), we define S as follows:

– dom(S) = (T0)A ∪ (Tr)A is the base set (of individuals) of S.
– For each n ≥ 1, the universe Dn of n-ary relations consists of the sets {ā ∈

(dom(S))n | (En)A(ā, s)} for all s ∈ (Tn)A.
– The interpretation of function symbols f ∈ Σ is the same as in A but

restricted to arguments from dom(S).

By the Σ-correctness, non-emptiness and comprehension properties of A, we get
that S is a Henkin structure.

We claim that sub(A) is isomorphic to S∗ via function g : dom(S∗) →
dom(sub(A)) where

g(x) =

{
x if x ∈ (T0)S∗ ∪ (Tr)S∗

{ā ∈ ((T0)S∗ ∪ (Tr)S∗
)n | (En)S∗

(ā, x)} if x ∈ (Tn)S∗
for n ≥ 1

First, we note that g is well defined by the disjointness property and by the fact
that, by definition of S and S∗, every element x in dom(S∗) is in

⋃
n≥0(Tn)S∗ ∪

(Tr)S∗
. That g is surjective follows from the definition of S∗ from A and the fact

that dom(sub(A)) is the restriction of dom(A) to dom(S∗). By the extensionality
property, we get that g is injective. By definition we get that g preserves the
function symbols in Σ as well as the relation symbols Tn for every n ≥ 0. Finally,
for every n ≥ 1, we get that g preserves En by the elementhood property. ��

Let Ψ be the set of formulae listed under properties 1–6 above, we obtain the
following Henkin style completeness theorem:

Theorem 3. An L(r,n)
asm -formula ϕ is true in all Henkin structures iff ϕ∗ is deriv-

able in first-order logic from Ψ (i.e., iff Ψ � ϕ∗).

Proof. Assume that Ψ � ϕ∗, and let S be a Henkin structure. Then S∗ |= Ψ
and therefore S∗ |= ϕ∗. By Lemma 1, we get that S |= ϕ.

Conversely, assume that ϕ is true in all Henkin structures. Towards showing
Ψ |= ϕ∗, let us assume that A |= Ψ , and let sub(A) be its substructure gener-
ated by the elements of

⋃
n≥0(Tn)A ∪ (Tr)A. Then by Lemma 2, sub(A) = S∗

for some first-order structure S∗ determined by a Henkin structure S. Since
by assumption we have that S |= ϕ, it follows from Lemma 1 that S∗ |= ϕ∗

and therefore sub(A) |= ϕ∗. But each quantifier in ϕ∗ is relativised to (Tn)A

for some n ≥ 1, and then we also have that A |= ϕ∗. We have shown that
Ψ |= ϕ∗, and then, by the completeness theorem of first-order logic, we get that
Ψ � ϕ∗. ��

A Logic for Reflective ASMs 105

It is easy to see that the proof system that we have described earlier in this
section is sound. Thus, if ϕ is a formula derivable in L(r,n)

asm , then ϕ is true in all
Henkin structures. It is then immediate from Theorem 3 that ϕ∗ is derivable in
first-order logic from Ψ . On the other hand, via an easy but lengthy induction
on the length of the derivations, we get the following.

Lemma 3. ϕ∗ is derivable in first-order from Ψ iff ϕ is derivable in L(r,n)
asm .

Theorem 3 and Lemma 3 immediately imply that L(r,n)
asm is complete.

5 Conclusion

We have shown before that reflective algorithms are captured by reflective
abstract state machines (rASMs), which exploit extended states that include an
updatable representation of the main ASM rule to be executed by the machine
in that state. Updates to the representation of ASM signatures and rules are
realised by means of a sophisticated tree algebra. This enables the rigorous spec-
ification of reflective algorithms and thus adaptive systems and is one step in the
direction of controlling the risk associated with systems that can change their
own behaviour.

In this paper we made another step in this direction by providing an extension
of the logic of ASMs to rASMs. For this we replaced extra-logical constants
representing rules by terms that are subject to interpretation in the current
state. As reasoning about reflective algorithms only makes sense for multiple
steps, we also extend the one-step ASM logic to a multiple-step logic, and prove
that for a sublogic with the number of steps bound to a fixed constant we preserve
the completeness of the logic, whereas the logic in general will be incomplete.

By providing such a logic we show that it is possible to reason statically over
specifications that are highly dynamic and even unbounded in the sense that
the behaviour of the system after a sequence of adaptations is not known at
all at the time the system is specified. This is of tremendous importance for
the application of rigorous methods to truly adaptive systems. Even more, by
showing that fragments of the logic that deal with bounded sequences of steps
are still complete we even enable tool support for such reasoning.

The use of the logic in an extension of proof obligations for the refinement
of rASMs in the line of [8] will be the next step in our research.

References

1. Börger, E., Stärk, R.: Abstract State Machines. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-36498-6

2. Ferrarotti, F., Schewe, K.-D., Tec, L.: A behavioural theory for reflective sequential
algorithms. In: Petrenko, A.K., Voronkov, A. (eds.) PSI 2017. LNCS, vol. 10742, pp.
117–131. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74313-4 10

https://doi.org/10.1007/3-540-36498-6
https://doi.org/10.1007/978-3-319-74313-4_10

106 K.-D. Schewe and F. Ferrarotti

3. Ferrarotti, F., Schewe, K.-D., Tec, L., Wang, Q.: A new thesis concerning syn-
chronised parallel computing - simplified parallel ASM thesis. Theor. Comput. Sci.
649, 25–53 (2016)

4. Ferrarotti, F., Schewe, K.-D., Tec, L., Wang, Q.: A complete logic for Database
Abstract State Machines. Logic J. IGPL 25(5), 700–740 (2017)

5. Ferrarotti, F., Schewe, K.-D., Tec, L., Wang, Q.: A unifying logic for non-
deterministic, parallel and concurrent Abstract State Machines. Ann. Math. Artif.
Intell. 83(3–4), 321–349 (2018)

6. Leivant, D.: Higher order logic. In: Handbook of Logic in Artificial Intelligence
and Logic Programming, Deduction Methodologies, vol. 2, pp. 229–322. Oxford
University Press (1994)

7. Riccobene, E., Scandurra, P.: Towards ASM-based formal specification of self-
adaptive systems. ABZ 2014. LNCS, vol. 8477, pp. 204–209. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-43652-3 17

8. Schellhorn, G.: Verification of ASM refinements using generalized forward simula-
tion. J. UCS 7(11), 952–979 (2001)

9. Schewe, K., Ferrarotti, F.: Behavioural theory of reflective algorithms I: reflective
sequential algorithms. CoRR, abs/2001.01873 (2020)

10. Schewe, K.-D.: Concurrent reflective Abstract State Machines. In: 19th Interna-
tional Symposium on Symbolic and Numeric Algorithms for Scientific Computing,
(SYNASC 2017), pp. 30–35. IEEE Computer Society (2017)

11. Schewe, K.-D.: Behavioural theory of reflective algorithms II: reflective parallel
algorithms (2019, under review)

12. Schewe, K.-D., Ferrarotti, F.: Behavioural theory of reflective algorithms I: reflec-
tive sequential algorithms (2019, under review)

13. Schewe, K.-D., Ferrarotti, F., Tec, L., Wang, Q., An, W.: Evolving concurrent sys-
tems: behavioural theory and logic. In: Proceedings of the Australasian Computer
Science Week Multiconference, (ACSW 2017), pp. 77:1–77:10. ACM (2017)

14. Schewe, K.-D., Wang, Q.: XML database transformations. J. UCS 16(20), 3043–
3072 (2010)

15. Schewe, K.-D., Wang, Q.: Partial updates in complex-value databases. In: Infor-
mation and Knowledge Bases XXII, Frontiers in Artificial Intelligence and Appli-
cations, vol. 225, pp. 37–56. IOS Press (2011)

16. Smith, B.C.: Reflection and semantics in LISP. In: Proceedings of the 11th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages, POPL
1984, pp. 23–35. ACM (1984)

17. Stärk, R., Nanchen, S.: A logic for abstract state machines. J. Univ. Comput. Sci.
7(11), 952–979 (2001)

18. Stemple, D., et al.: Type-safe linguistic reflection: a generator technology. In:
Fully Integrated Data Environments, Esprit Basic Research Series, pp. 158–188.
Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-642-59623-0 8

19. Van den Bussche, J., Van Gucht, D., Vossen, G.: Reflective programming in the
relational algebra. J. Comput. Syst. Sci. 52(3), 537–549 (1996)

https://doi.org/10.1007/978-3-662-43652-3_17
https://doi.org/10.1007/978-3-642-59623-0_8

	A Logic for Reflective ASMs
	1 Introduction
	2 Reflective Abstract State Machines
	3 The Logic of Abstract State Machines
	4 Reasoning About Reflection
	4.1 Extension of the Logic of ASMs
	4.2 Completeness

	5 Conclusion
	References

