Skip to main content

Adaptive Domain Decomposition for Effective Data Assimilation

  • Conference paper
  • First Online:
  • 1268 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11997))

Abstract

We present a parallel Data Assimilation model based on an Adaptive Domain Decomposition (ADD-DA) coupled with the open-source, finite-element, fluid dynamics model Fluidity. The model we present is defined on a partition of the domain in sub-domains without overlapping regions. This choice allows to avoid communications among the processes during the Data Assimilation phase. However, during the balance phase, the model exploits the domain decomposition implemented in Fluidity which balances the results among the processes exploiting overlapping regions. Also, the model exploits the technology provided by the mesh adaptivity to generate an optimal mesh we name supermesh. The supermesh is the one used in ADD-DA process. We prove that the ADD-DA model provides the same numerical solution of the corresponding sequential DA model. We also show that the ADD approach reduces the execution time even when the implementation is not on a parallel computing environment. Experimental results are provided for pollutant dispersion within an urban environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Imperial College London AMCG: Fluidity manual v4.1.12, April 2015. https://figshare.com/articles/Fluidity_Manual/1387713

  2. Arcucci, R., D’Amore, L., Carracciuolo, L., Scotti, G., Laccetti, G.: A decomposition of the Tikhonov regularization functional oriented to exploit hybrid multilevel parallelism. Int. J. Parallel Program., pp. 1214–1235. (2016). https://doi.org/10.1007/s10766-016-0460-3

    Chapter  Google Scholar 

  3. Arcucci, R., D’Amore, L., Pistoia, J., Toumi, R., Murli, A.: On the variational data assimilation problem solving and sensitivity analysis. J. Comput. Phys. 335, 311–326 (2017)

    Article  MathSciNet  Google Scholar 

  4. Arcucci, R., Mottet, L., Pain, C., Guo, Y.K.: Optimal reduced space for variational data assimilation. J. Comput. Phys. 379, 51–69 (2019)

    Article  MathSciNet  Google Scholar 

  5. Aristodemou, E., Bentham, T., Pain, C., Robins, A.: A comparison of Mesh-adaptive les with wind tunnel data for flow past buildings: mean flows and velocity fluctuations. Atmos. Environ. J. 43, 6238–6253 (2009)

    Article  Google Scholar 

  6. Asch, M., Bocquet, M., Nodet, M.: Data Assimilation: Methods, Algorithms, and Applications, vol. 11. SIAM, University City (2016)

    Book  Google Scholar 

  7. Christie, M.A., Glimm, J., Grove, J.W., Higdon, D.M., Sharp, D.H., Wood-Schultz, M.M.: Error analysis and simulations of complex phenomena. Los Alamos Sci. 29 (2005)

    Google Scholar 

  8. Courtier, J.: A strategy for operational implementation of 4D-Var, using an incremental approach. Q. J. R. Meteorol. Soc. 120(519), 1367–1387 (1994)

    Article  Google Scholar 

  9. D’Amore, L., Arcucci, R., Marcellino, L., Murli, A.: A parallel three-dimensional variational data assimilation scheme. In: AIP Conference Proceedings, vol. 1389, pp. 1829–1831. AIP (2011)

    Google Scholar 

  10. Farina, R., Dobricic, S., Storto, A., Masina, S., Cuomo, S.: A revised scheme to compute horizontal covariances in an oceanographic 3D-Var assimilation system. J. Comput. Phys. 284, 631–647 (2015)

    Article  MathSciNet  Google Scholar 

  11. Ford, R., Pain, C.C., Goddard, A.J.H., De Oliveira, C.R.E., Umpleby, A.P.: A non-hydrostatic finite-element model for three-dimensional stratified oceanic flows. Part I: model formulation. Mon. Weather Rev. 132, 2816–2831 (2004)

    Article  Google Scholar 

  12. Hannachi, A.: A primer for EOF analysis of climate data. Department of Meteorology, University of Reading, UK (2004)

    Google Scholar 

  13. Hannachi, A., Jolliffe, I., Stephenson, D.: Empirical orthogonal functions and related techniques in atmospheric science: a review. Int. J. Climatol.:J. R. Meteorol. Soc. 27(9), 1119–1152 (2007)

    Article  Google Scholar 

  14. Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45 (1960)

    Article  MathSciNet  Google Scholar 

  15. Kalnay, E.: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge (2003)

    Google Scholar 

  16. Lelieveld, J., Evans, J.S., Fnais, M., Giannadaki, D., Pozzer, A.: The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525(7569), 367 (2015)

    Article  Google Scholar 

  17. Lorenc, A.: Development of an operational variational assimilation scheme. J. Meteorol. Soc. Jpn 75, 339–346 (1997)

    Article  Google Scholar 

  18. Lorenz, E.N.: Empirical orthogonal functions and statistical weather prediction (1956)

    Google Scholar 

  19. Nichols, N.K.: Mathematical concepts of data assimilation. In: Lahoz, W., Khattatov, B., Menard, R. (eds.) Data Assimilation, pp. 13–39. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-540-74703-1_2

    Chapter  Google Scholar 

  20. Oke, P.R., Brassington, G.B., Griffin, D.A., Schiller, A.: The bluelink ocean data assimilation system (BODAS). Ocean Model. 21(1–2), 46–70 (2008)

    Article  Google Scholar 

  21. Pain, C., Umpleby, A., De Oliveira, C., Goddard, A.: Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element calculations. Comput. Methods Appl. Mech. Eng. 190, 3771–3796 (2001)

    Article  Google Scholar 

  22. Teruzzi, A., Di Cerbo, P., Cossarini, G., Pascolo, E., Salon, S.: Parallel implementation of a data assimilation scheme for operational oceanography: the case of the medbfm model system. Comput. Geosci. 124, 103–114 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the EPSRC Grand Challenge grant “Managing Air for Green Inner Cities” (MAGIC) EP/N010221/1, by the EPSRC Centre for Mathematics of Precision Healthcare EP/N0145291/1 and the EP/T003189/1 Health assessment across biological length scales for personal pollution exposure and its mitigation (INHALE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rossella Arcucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arcucci, R., Mottet, L., Casas, C.A.Q., Guitton, F., Pain, C., Guo, YK. (2020). Adaptive Domain Decomposition for Effective Data Assimilation. In: Schwardmann, U., et al. Euro-Par 2019: Parallel Processing Workshops. Euro-Par 2019. Lecture Notes in Computer Science(), vol 11997. Springer, Cham. https://doi.org/10.1007/978-3-030-48340-1_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48340-1_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48339-5

  • Online ISBN: 978-3-030-48340-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics