
Active-Code Replacement in the
OODIDA Data Analytics Platform?

Gregor Ulm1,2
�

[0000−0001−7848−4883], Emil Gustavsson1,2[0000−0002−1290−9989],
and Mats Jirstrand1,2[0000−0002−6612−8037]

1 Fraunhofer-Chalmers Research Centre for Industrial Mathematics,
Chalmers Science Park, 412 88 Gothenburg, Sweden

2 Fraunhofer Center for Machine Learning,
Chalmers Science Park, 412 88 Gothenburg, Sweden

{gregor.ulm, emil.gustavsson, mats.jirstrand}@fcc.chalmers.se
http://www.fcc.chalmers.se/

Abstract. OODIDA (On-board/Off-board Distributed Data Analytics)
is a platform for distributing and executing concurrent data analytics
tasks. It targets fleets of reference vehicles in the automotive industry
and has a particular focus on rapid prototyping. Its underlying message-
passing infrastructure has been implemented in Erlang/OTP. External
Python applications perform data analytics tasks. Most work is performed
by clients (on-board). A central cloud server performs supplementary
tasks (off-board). OODIDA can be automatically packaged and deployed,
which necessitates restarting parts of the system, or all of it. This is
potentially disruptive. To address this issue, we added the ability to
execute user-defined Python modules on clients as well as the server.
These modules can be replaced without restarting any part of the system
and they can even be replaced between iterations of an ongoing assignment.
This facilitates use cases such as iterative A/B testing of machine learning
algorithms or modifying experimental algorithms on-the-fly.

Keywords: Distributed computing, code replacement, Erlang

1 Introduction

OODIDA is a modular system for concurrent distributed data analytics for the
automotive domain, targeting fleets of reference vehicles [6]. Its main purpose
is to process telemetry data at its source as opposed to transferring all data
over the network and processing it on a central cloud server (cf. Fig. 1). A
data analyst interacting with this system uses a Python library that assists in
creating and validating assignment specifications. Updating this system with
new computational methods necessitates terminating and redeploying software.
However, we would like to perform updates without terminating ongoing tasks.

? The final authenticated version is available online at https://doi.org/10.1007/
978-3-030-48340-1 55.

ar
X

iv
:1

91
0.

03
57

5v
2 

 [
cs

.D
C

] 
 1

5 
Ju

n 
20

20

http://www.fcc.chalmers.se/
https://doi.org/10.1007/978-3-030-48340-1_55
https://doi.org/10.1007/978-3-030-48340-1_55


2 G. Ulm et al.

We have therefore extended our system with the ability to execute user-defined
code both on client devices (on-board) and the cloud server (off-board), without
having to redeploy any part of it. As a consequence, OODIDA is now highly suited
for rapid prototyping. The key aspect of our work is that active-code replacement
of Python modules piggybacks on the existing Erlang/OTP infrastructure of
OODIDA for sending assignments to clients, leading to a clean design. This paper
is a condensed version of a work-in-progress paper [4], giving an overview of our
problem (Sect. 2) and its solution (Sect. 3), followed by an evaluation (Sect. 4)
and related work (Sect. 5).

f1 u1

b

c1 a1

f2

...

u2

fm-1

fm

um-1

um

...

a

c2

c3

cn-1

cn

a2

...

a3

an-1

an

...

(a) OODIDA in context

u b b′

x′x

y

z

y′

z′

(b) Whole-fleet assignment

Fig. 1: OODIDA overview and details: In (a) user nodes u connect to a central cloud b,
which connects to clients c. The shaded nodes are implemented in Erlang/OTP; the
other nodes are external Python applications, i.e. the user front-ends f , the external
server application a, and external client applications a. In (b) the core of OODIDA is
shown with permanent nodes (dark) and temporary handlers (light) in an instance of a
whole-fleet assignment. Cloud node b spawned an assignment handler b′. After receiving
an incoming task, clients x, y and z spawned task handlers x′, y′, and z′ that interact
with external applications. Nodes x and x′ correspond to c1 in (a) etc.

2 Problem

OODIDA has been designed for rapid prototyping, which implies that it frequently
needs to be extended with new computational methods, both for on-board and
off-board data processing. To achieve this goal, Python applications on the cloud
and clients have to be updated. Assuming that we update both, the following
steps are required: The user front-end f needs to be modified to recognize the
new off-board and on-board keywords for the added methods, including checks
of assignment parameter values. In addition, the cloud and client applications
have to be extended with the new methods. All ongoing assignments need to be
terminated and the cloud and clients shut down. Afterwards, we can redeploy
and restart the system. This is disruptive, even without taking into account
potentially long-winded software development processes in large organizations.
On the other hand, the turn-around time for adding custom methods would be



Active-Code Replacement in the OODIDA Data Analytics Platform 3

much shorter if we could do so at runtime. Active-code replacement targets this
particular problem, with the goal of further improving the suitability of OODIDA
for rapid prototyping.

3 Solution

With active-code replacement, the user can define a custom Python module
for the cloud and for client devices. It is implemented as a special case of an
assignment. The front-end f performs static and dynamic checks, attempting
to verify correctness of syntax and data types. If these checks succeed, the
provided code is turned into a JSON object and ingested by user node u for
further processing. Within this JSON object, the user-defined code is stored as an
encoded text string. It is forwarded to cloud node b, which spawns an assignment
handler b′ for this particular assignment. Custom code can be used on the cloud
and/or clients. Assuming clients have been targeted with active-code replacement,
node b′ turns the assignment specification into tasks for all clients c specified in
the assignment. Afterwards, task specifications are sent to the specified client
devices. There, the client process spawns a task handler for the current task,
which monitors task completion. The task handler sends the task specification
in JSON to an external Python application, which turns the given code into
a file, thus recreating the Python module the data analyst initially provided.
The resulting files are tied to the ID of the user who provided it. After the task
handler is done, it notifies the assignment handler b′ and terminates. Similarly,
once the assignment handler has received responses from all task handlers, it
sends a status message to the cloud node and terminates. The cloud node sends
a status message to inform the user that their custom code has been successfully
deployed. Deploying custom code to the cloud is similar, the main difference
being that b′ communicates with the external Python application on the cloud.

If a custom on-board or off-board computation is triggered by a special
keyword in an assignment specification, Python loads the user-provided module.
The user-specified module is located at a predefined path, which is known to the
Python application. The custom function is applied to the available data after
the user-specified number of values has been collected. When an assignment uses
custom code, external applications reload the custom module with each iteration
of an assignment. This leads to greater flexibility: Consider an assignment that
runs for an indefinite number of iterations. As external applications can process
tasks concurrently, and code replacement is just another task, the data analyst
can react to intermediate results of an ongoing assignment by deploying custom
code with modified algorithmic parameters while this assignment is ongoing. As
custom code is tied to a user ID, there is furthermore no interference due to
custom code that was deployed by other users. The description of active-code
replacement so far indicates that the user can execute custom code on the cloud
server and clients, as long as the correct inputs and outputs are consumed and
produced. What may not be immediately obvious, however, is that we can now



4 G. Ulm et al.

create ad hoc implementations of even the most complex OODIDA use cases in
custom code, such as federated learning [3].

Inconsistent updates are a problem in practice, i.e. results sent from clients
may have been produced with different custom code modules in the same iteration
of an assignment. This happens if not all clients receive the updated custom
code before the end of the current iteration. To solve this problem, each provided
module with custom code is tagged with its md5 hash signature, which is reported
together with the results from the clients. The cloud only uses the results tagged
with the signature that achieves a majority. Consequently, results are never
tainted by using different versions of custom code in the same iteration.

4 Evaluation

The main benefit of active-code replacement is that code for new computational
methods can be deployed right away and executed almost instantly, without
affecting other ongoing tasks. In contrast, a standard update of the cloud or client
installation necessitates redeploying and restarting the respective components of
the system. In an idealized test setup, where the various workstations that run
the user, cloud and client components of OODIDA are connected via Ethernet,
it takes a fraction of a second for a custom on-board or off-board method to be
available for the user to call when deployed with active-code replacement, as
shown in Table 1. On the other hand, automated redeployment of the cloud and
client installation takes roughly 20 and 40 seconds, respectively. The runtime
difference between a standard update and active-code replacement amounts to
three orders of magnitude. Of course, real-world deployment via a wireless or 4G
connection would be slower as well as error-prone. Yet, the idealized evaluation
environment reveals the relative performance difference of both approaches,
eliminating potentially unreliable data transmission as a source of error.

This comparison neglects that, compared to a standard update, active-code
replacement is less bureaucratic and less intrusive as it does not require interrupt-
ing any currently ongoing assignments. Also, in a realistic industry scenario, an
update could take days or even weeks due to software development and organiza-
tional processes. However, it is not the case that active-code replacement fully
sidesteps the need to update the library of computational methods on the cloud
or on clients as OODIDA enforces restrictions on custom code. For instance, some
parts of the Python standard library are off-limits. Also, the user cannot install
external libraries. Yet, for typical algorithmic explorations, which users of our
system regularly conduct, active-code replacement is a vital feature that increases
user productivity far more than the previous comparison may imply. That being
said, due to the limitations of active-code replacement, it is complementary to
the standard update procedure rather than a competitive approach.



Active-Code Replacement in the OODIDA Data Analytics Platform 5

Table 1: Runtime comparison of active-code replacement of a moderately long Python
module versus regular redeployment in an idealized setting. The former has a significant
advantage. Yet, this does not factor in that a standard update is more invasive but can
also be more comprehensive. The provided figures are the averages of five runs.

Cloud Client

Active-code replacement 20.3 ms 45.4 ms
Standard redeployment 23.6 s 40.8 s

5 Related Work

The feature described in this paper is an extension of the OODIDA plat-
form [6], which originated from ffl-erl, a framework for federated learning in
Erlang/OTP [5]. In terms of descriptions of systems that perform active-code
replacement, Polus by Chen et al. [1] deserves mention. A significant difference is
that it replaces larger units of code instead of isolated modules. It also operates in
a multi-threading environment instead of the highly concurrent message-passing
environment of OODIDA. We also noticed a similarity between our approach
and Javelus by Gu et al. [2]. Even though they focus on updating a stand-alone
Java application as opposed to a distributed system, their described ”lazy update
mechanism” likewise only has an effect if a module is indeed used. This mirrors
our approach of only loading a custom module when it is needed.

Acknowledgements. This research was financially supported by the project On-
board/Off-board Distributed Data Analytics (OODIDA) in the funding program FFI:
Strategic Vehicle Research and Innovation (DNR 2016-04260), which is administered by
VINNOVA, the Swedish Government Agency for Innovation Systems. It took place in
the Fraunhofer Cluster of Excellence ”Cognitive Internet Technologies.” Simon Smith
and Adrian Nilsson helped with a supplementary part of the implementation of this
feature and carried out the performance evaluation. Ramin Yahyapour (University of
Göttingen) provided insightful comments during a poster presentation.

References

1. Chen, H., Yu, J., Chen, R., Zang, B., Yew, P.C.: Polus: A powerful live updating
system. In: 29th International Conference on Software Engineering (ICSE’07). pp.
271–281. IEEE (2007)

2. Gu, T., Cao, C., Xu, C., Ma, X., Zhang, L., Lu, J.: Javelus: A low disruptive ap-
proach to dynamic software updates. In: 2012 19th Asia-Pacific Software Engineering
Conference. vol. 1, pp. 527–536. IEEE (2012)

3. McMahan, H.B., Moore, E., Ramage, D., Hampson, S., et al.: Communication-efficient
learning of deep networks from decentralized data. arXiv preprint arXiv:1602.05629
(2016)

http://arxiv.org/abs/1602.05629


6 G. Ulm et al.

4. Ulm, G., Gustavsson, E., Jirstrand, M.: Facilitating Rapid Prototyping in the
OODIDA Data Analytics Platform via Active-Code Replacement. arXiv preprint
arXiv:1903.09477 (2019)

5. Ulm, G., Gustavsson, E., Jirstrand, M.: Functional federated learning in Erlang
(ffl-erl). In: Silva, J. (ed.) Functional and Constraint Logic Programming. pp. 162–178.
Springer International Publishing, Cham (2019)

6. Ulm, G., Gustavsson, E., Jirstrand, M.: OODIDA: On-board/off-board distributed
data analytics for connected vehicles. arXiv preprint arXiv:1902.00319 (2019)

http://arxiv.org/abs/1903.09477
http://arxiv.org/abs/1902.00319

	Active-Code Replacement in the OODIDA Data Analytics Platform

