
ar
X

iv
:2

10
4.

05
28

8v
1

 [
cs

.D
S]

 1
2

A
pr

 2
02

1

Algorithms and Complexity for the Almost Equal

Maximum Flow Problem

R. Haese T. Heller∗ S.O. Krumke

April 13, 2021

Abstract

In the Equal Maximum Flow Problem (EMFP), we aim for a maximum
flow where we require the same flow value on all edges in some given
subsets of the edge set. In this paper, we study the closely related Almost
Equal Maximum Flow Problems (AEMFP) where the flow values on edges
of one homologous edge set differ at most by the valuation of a so called
deviation function ∆. We prove that the integer almost equal maximum
flow problem (integer AEMFP) is in general NP-complete, and show
that even the problem of finding a fractional maximum flow in the case
of convex deviation functions is also NP-complete. This is in contrast to
the EMFP, which is polynomial time solvable in the fractional case. We
provide inapproximability results for the integral AEMFP. For the integer
AEMFP we state a polynomial algorithm for the constant deviation and
concave case for a fixed number of homologous sets.

1 Introduction

The Maximum Flow Problem is a well studied problem in the area of network
flow problems. Given a graph G = (V,A) with non-negative edge capacities
u : A 7→ R, a source s ∈ V , a sink t ∈ V \ {s} one searches for a s-t-flow
f : A 7→ R≥0 such that 0 ≤ f ≤ u (capacity constraints), for all v 6= s, t we have
f(δ+(v)) − f(δ−(v)) = 0 (flow conservation) and such that the total amount
of flow reaching the sink val(f) := f(δ−(t)) − f(δ+(t)) is maximized. Like in
standard notation from the literature, we denote by δ−(v) for a node v the set
of ingoing edges, by δ+(v) the set of outgoing edges, and for S ⊆ A abbreviate
f(S) :=

∑

a∈S f(a).

In this paper, we study a variant of the family of equal flow problems, which
we call the Almost Equal Flow Problems (AEFP). In addition to the data for
the Maximum Flow Problem one is given (not necessarily disjoint) homologous

∗Corresponding author, <till.heller@itwm.fraunhofer.de>.

1

http://arxiv.org/abs/2104.05288v1

subsets Ri ⊆ E for i = 1, . . . , k, monotonically increasing functions ∆i and one
requires for the flow f the homologous edge set condition that f(a) ∈ [fi,∆i(fi)]
for all e ∈ Ri, i = 1, . . . , k, where fi := mine∈Ri

f(e) denotes the smallest flow
value of an edge in Ri. In the special case that all ∆i are the identity, all edges
in a homologous set are required to have the same flow value. This problem is
known as the Equal Maximum Flow Problem (EMFP).

The EMFP and related problems have been studied for quite a time. Ali et
al. [AKS88] considered a variant of the minimum cost flow problem, where K
pairs of edges are required to have the same flow value, which they called equal
flow problem. An integer version of this problem, where flow on the edges
required to be integer, was also studied by Ali et al. [AKS88] and was shown
to be NP-complete. Further, they obtained a heuristic algorithm based on a
Lagrangian relaxation technique. Meyer and Schulz [MS09] showed that the
integer equal flow problem is not approximable in polynomial time (unless P =
NP), even if the edge sets are of size two. Ahuja et al. [AOSZ99] considered
the simple equal flow problem, where the flow value on edges of a single subset
of the edge set has to be equal. Using Megiddo’s parametric search technique
[Meg78, Meg81], they present a strongly polynomial algorithm which has a
running time of O({m(m+ n logn) logn}2).

Here we provide the first complexity results for the AEMFP. Our complexity
and approximation results for the AEMFP are covered in Table 1, where the
first three rows correspond to the variants of the AEMFP.

Function ∆ fractional integer fixed k lower bound
for approximation

AEMFP
const. deviation P NP P 2 - ǫ
concave P NP P no constant
convex NP NP NP no constant

Table 1: Overview of the results for the AEMFP.

The columns two to four denote the complexity classes of the different problem
variants while the entries of the fifth column contain an upper bound for the
best approximation factor for a polynomial algorithm (unless P = NP). If a
function ∆ is of the form x 7→ x+c for a fixed constant c ≥ 0 we call ∆ a constant
deviation function. For the AEFMP with k homologous edge sets and constant
deviation functions, we obtain a running time ofO(nkmk log(log(n))kTmf (n, n+
m)) where Tmf (n,m) denotes the running time of a maximum flow algorithm
on a graph G with n nodes and m edges. Note that general polynomial time
solvability of the AEMFP in case of constant deviation functions also follows
from Tardos’ Algorithm, see e.g. [Tar86]. Our main algorithmic contribution
is a combinatorial method which not only works in the constant deviation case
but also for concave functions.

The rest of the paper is organized as follows. In Section 2 we state the formal

2

definition of the AEMFP. The main complexity and approximation results for
the general case are provided in Section 3. The case of a constant deviation
function is discussed in Section 4 where also the strongly polynomial algorithm
based on the parametric search technique is presented. In Section 5 problem
variants of the AEMFP are discussed, i.e. the cases of concave and convex
deviation functions. We then conclude with a short outlook.

2 Problem Definition

In this section, we give a formal definition of the Almost Equal Maximum Flow
Problem. The AEMFP can be formulated as the following optimization problem
in the variables fe (e ∈ E):

(AEMFP) max f(δ+(s))− f(δ−(s)) (1)

s.t. f(δ+(s))− f(δ−(s)) ≥ 0 (2)

f(δ+(t))− f(δ−(t)) ≤ 0 (3)

f(δ+(v)) − f(δ−(v)) = 0 ∀v ∈ V \{s, t} (4)

0 ≤ fr ≤ ur ∀r ∈ E (5)

fi ≤ fr ≤ ∆i(fi) ∀r ∈ R∆i
, ∀R∆i

, (6)

where fi denotes the minimum flow value on edges from R∆i
. In the integral

version, we additionally require f to attain only integral values. Note that, in
general the above problem is nonlinear due to the nonlinearity of the deviation
functions ∆i and condition (6). However, if each ∆i is a constant deviation,
then (6) becomes fi ≤ f(ri) ≤ fi + ci and the AEMFP can be formulated as a
linear program.

The simple AEMFP is defined as the AEMFP with just one homologous edge set
R∆. Note that by subdividing edges that are contained in several homologous
edge sets, we can assume without loss of generality that the homologous edge
sets are disjoint.

3 Complexity and Approximation

In this section, we provide complexity and approximation results for the constant
deviation, concave and convex AEMFP.

Theorem 1. The integer AEMFP is NP-complete, even if all deviation func-
tions are the same constant deviation function, the homologous sets are disjoint,
the capacities are integral, and the graph is bipartite.

Proof. We prove this by a reduction from Exact-3-Set-Cover (X3C). Given an
instance of X3C, we construct a graph G in the following way. For each of the

3

q sets Si ∈ S we add a node Si and for each of the q elements aj ∈ A, we add
a node aj to G. Further, we add a source node s and a sink node t. We add
edges (s, Si) for i = 1, . . . , k with capacity 5, edges (Si, t) for i = 1, . . . , k with
capacity 2, edges (aj , t) for j = 1, . . . , q with capacity 1 and edges between Si

and aj if aj is contained in Si with capacity 1. The edges of the form (Si, t)
are referred to as bonus edges. We define homologous edge sets Ri as {(Si, aj) :
aj ∈ Si} ∪ {(Si, t)} for i = 1, . . . , q and R0 := {(aj , t) : j = 1, . . . , q} where all
these sets have the same constant deviation function ∆ : x 7→ x+ 1.

Now we want to show that X3C has a solution if and only if there is an integer
almost equal maximum s-t-flow in G with value 7q

3 . Assume first that X3C has
a solution S′. Then, we define an integer almost equal flow as follows:

- f(s, Si) =

{

5, if Si ∈ S′

1, else.

- f(Si, aj) =

{

1, if Si ∈ S′ and aj ∈ Si

0, else.

- f(Si, t) =

{

2, if Si ∈ S′

1, else.

- f(aj , t) = 1, for i = 1, . . . , q.

By definition of the flow f , the homologous edge set constraints, the flow con-
servation and capacity constraints are fulfilled. Hence, f is an integer almost
equal s-t-flow with flow value 7q

3 . Assume there is a flow f ′ which has greater
value than f . Due to capacity constraints, this flow must send at least one more
unit of flow along an edge of the form (Si, t) with Si /∈ S′. Thus, at least one of
the constraints (6) is violated. This is a contradiction to f ′ being feasible and,
hence, f is maximal.

Conversely, assume that the almost equal maximum flow in G has flow value 7q
3 .

Due to constraint (6), only using bonus edges yield in a flow with value q. Since
all flow must be integral and flow preservation holds, we know that f(Si, aj) ∈
{0, 1} for i, j = 1, . . . , q. For a fixed node Si we distinguish two cases:

- If f(Si, aj) = 1 for three such edges, then the bonus edge (Si, t) carries {0, 1, 2}
units of flow, or

- if f(Si, aj) = 0 for at least one of the three edges (Si, aj), then the flow
value f(Si, t) lies in {0, 1}.

Suppose f(aj , t) = 0 for at least one edge. By flow preservation, also f(Si, aj) =
0 and with (6), we get f(Si, t) ≤ 1. With the considerations above, we get an
upper bound on the maximum flow value. From edges of the form (aj , t) we get

4

at most q − 1 units of flow in total, while at most q−3
3 bonus edges can carry 2

units of flow and q − q−3
3 bonus edges carry 1 unit of flow. Hence, we obtain a

maximum flow value of 7q
3 − 2.

In order to get the desired flow value of 7q
3 , we need f(aj, t) = 1 for all j =

1, . . . , q. Thus, each aj receives one unit of flow from some set node Si. Further,
we need f(Si, t) = 2 for at least q

3 edges. We denote the corresponding indices
as i1, . . . , i q

3
. This can only happen is for each of these il case 1 is true. Now

consider Vl := {aj : f(Sil , aj) = 1}, l = 1, . . . , q
3 . All these sets are subsets of A

and are pairwise disjoint. Since |Vl| = 3, l = 1, . . . , q
3 , we get that

∪
q/3
l=1Vl = A. (7)

Hence, f(Si, aj) = 0 for all other i. Choosing S′ := {Sil : l = 1, . . . , q
3} gives a

X3C solution since each aj appears exactly once in it. This settles the claim.

Theorem 2. Unless P = NP, for any ǫ > 0, there is no polynomial time
(2 − ǫ)-approximation algorithm for the integer AEMFP, even if we consider
disjoint sets and a constant deviation x 7→ x+ 1.

Proof. We extend the instance of the proof of Theorem 1 by adding two addi-
tional nodes t′, t′′. Further, we add one edge (t, t′) with capacity 7q

3 ,
7q
3 parallel

edges (t′, t′′) with capacity 1 and k parallel edges (s, t′′) with capacity 2, which
we refer to as bonus edges.

For the edges (t′, t′′) and (s, t′′) a homologous edge set Rb with ∆b = 1 is added.
The node t′′ is the new sink, i.e. we are asking for a s-t′′-flow.

If there exists a solution of X3C, then flow value is equal to 7q
3 , as proven before,

and all of the edges (t, t′) can be fully saturated. This means, on every bonus
edge (s, t′′) two units of flow can be send. Overall, this yields in a flow value of

val(fyes) =
7q

3
+ k ·

7q

3
· 2. (8)

Now assume that there exists no solution of X3C. Then the maximum flow value
is at most 7q

3 − 1. Hence, at least one of the edges (t′, t′′) carries no flow. But
since all of the bonus edges are in the same homologous set together with the
parallel edges (t′, t′′), each bonus edge can carry at most one unit of flow. Again,
overall we get a flow value of

val(fno) ≤
7q

3
− 1 + k ·

7q

3
. (9)

Thus, for k 7→ ∞, the approximation factor goes to 2.

4 The Constant Deviation Case

We start with the simple AEMFP. Let G = (V,E) be a graph with a single
homologous edge set R and constant deviation function ∆R : x 7→ x + c. For

5

easier notation, we define Q := E\R as the set of all edges that are not contained
in the homologous edge set R. By the homologous edge set condition (6), we
know that the flow value on each of the corresponding edges must lie in an
interval [λ∗,∆(λ∗)] = [λ∗, λ∗ + c], where λ∗ is unknown. For a guess value λ
consider the modified network Gλ, where we set the upper capacity of every
edge in R to λ+ c and its lower capacity from 0 to λ. All edges in Q keep their
upper capacities and have lower capacity of 0. By fλ we denote a traditional
s-t-flow which is feasible in Gλ.

For an (s, t)-cut (S, T) let us denote by

gS(λ) := u(δ+(S ∩Q)) +
∑

r∈δ+(S∩R)

min{u(r),∆R(λ)} −
∑

r∈δ−(S∩R)

λ

its capacity in Gλ. By the Max-Flow Min-Cut Theorem we get

max
fλ

val(fλ) = min
(S,T) is a (s, t)-cut

gS(λ)

We summarize some structural results in the following observation.

Observation 3. The following statements are true.

i) The function

F (λ) := min
(S, T) is a (s, t)-cut

gS(λ)

is a piecewise linear concave function.

ii) AEMFP can be solved by solving

max

{

F (λ) : 0 ≤ λ ≤ min
r∈R∆

u(r)

}

.

iii) The function F (λ) has at most 2m breakpoints.

iv) The minimum distance between two of these breakpoints is 1
m2 .

Proof. i) The function F (λ) is the minimum of linear functions in λ and,
hence, a concave linear function in λ.

ii) This is a direct consequence of the Max-Flow Min-Cut Theorem.

iii) Let dR(S) := |δ+(S ∩R)|− |δ−(S ∩R)| denote the number of outgoing and
ingoing edges of R in the cut (S, T). A breakpoint of F (λ) occurs whenever
the cut (S, T) changes in a way that changes dR(S). As F (λ) is concave
and dR(S) counts edges, this can happen at most 2m times.

6

iv) At a breakpoint, we have

u(δ+(S ∩Q))− l(δ−(S ∩Q)) + λdR(S) = u(δ+(S′ ∩Q))− l(δ−(S′ ∩Q)) + λdR(S
′)

for two cuts (S, T), (S′, T ′). This gives an expression for λ as

λ =
(u(δ+(S ∩Q))− l(δ−(S ∩Q)))− (u(δ+(S′ ∩Q))− l(δ−(S′ ∩Q)))

dR(S′)− dR(S)
.

Note that the denominator is not zero since dR(S) 6= dR(S
′) by definition

of a breakpoint. Therefore, the expression for λ is well-defined. Further, we
also know (u(δ+(S∩Q))− l(δ−(S∩Q))) 6= (u(δ+(S′∩Q))− l(δ−(S′∩Q))).
By denoting U := max{u(r) : r ∈ A} and L := min{l(r) : r ∈ A}, we get

(u(δ+(S ∩Q))− l(δ−(S ∩Q)))− (u(δ+(S′ ∩Q))− l(δ−(S′ ∩Q)))

= (u(δ+(S ∩Q))− u(δ+(S′ ∩Q)))− (l(δ−(S ∩Q)) + l(δ−(S′ ∩Q)))

≤ mU −mL

= m(U − L)

≤ mU

W.l.o.g. we can rearrange the two cuts such that both nominator and
denominator are positive, i.e. the nominator lies in {1, . . . ,mU −mL} and
the denominator lies in {1, . . . , |R|} since it just counts the edges. Thus,
we get for the breakpoint λ:

1

m
≤

1

|R|
≤ λ ≤

m(U − L)

1

Hence, the smallest distance between two breakpoints is 1
m(m−1) >

1
m2 .

Observe that the optimal value λ∗ is attained at a breakpoint of F . At this
point the slope to the left is positive or the slope to the right is negative. If
there exists a cut such that the slope is 0, we simply take the breakpoint to the
left or right of the current value λ.

Now we apply the parametric search technique by Megiddo [Meg78, Meg81] to
search for the optimal value λ∗ on the interval [0, uR], where uR := minr∈R∆

u(r)
denotes the minimum upper bound of edges in R. We simulate an appropriate
maximum flow algorithm, e.g. the Edmonds-Karp algorithm, for symbolic lower
capacities λ∗ and upper capacities λ∗ + c on the edges in R.

Observation 4. If we run the Edmonds-Karp algorithm, see [EK72], to com-
pute a maximum flow with a symbolic input parameter λ, all flow values and
residual capacities which are calculated during the algorithm steps are of the
form a+ bλ for a, b ∈ Z.

7

Proof. At the start of our algorithm, all flow values are zero. The residual
capacities are either integer or of the form bλ for some b ∈ Z, thus can be
written as a+ bλ. Whenever we augment flow along a path, we add two values
of the form a+ bλ, resulting in a new value of the same form.

Algorithm 1: Symbolic Edmonds-Karp

1 Input: A graph G = (V,E), a source s and a sink t, capacities cij for all
(ij) ∈ E.

2 Initialization: Set fij ← 0 for all (ij) ∈ E.
3 while there exist a path p in Gf do
4 Choose shortest path in Gf w.r.t. the number of edges.

5 Compute ∆ := min(ij)∈p c
f
ij by using Algorithm 2 for solving

symbolic comparisons.
6 foreach e = (i, j) ∈ p do
7 fij ← fij +∆
8 fji ← fji −∆

9 return f .

Algorithm 2: Solve Comparison

1 Input: A graph G, lower and upper capacity functions l, u, a
homologous edge set R and a test value λ

2 Initialization: Set λ1 := λ− 1
2m2 , λ2 := λ+ 1

2m2

3 for i = 1, 2 do
4 Compute a maximum flow in Gλi

.
5 Compute d(Si) for the corresponding cuts Si.

6 if d(S1) > 0 and d(S2) > 0 then
7 return False

8 else
9 if d(S1) < 0 and d(S2) < 0 then

10 return True

11 else
12 Compute λ∗ as the intersection of gS1

(λ) and gS2
(λ).

13 return λ∗

Lemma 5. Algorithm 1 computes an almost equal maximum flow in timeO(n3m·
TMF (n, n +m)), where TMF (n, n +m) denotes the time needed to compute a
maximum flow on a graph with n nodes and n+m edges.

Proof. Correctness: In order to resolve a comparison, we need to decide if the
current λ is to the left or to the right of the optimal λ∗. Since λ might be a

8

breakpoint, we instead check λ1 := λ− 1
2m2 and λ2 := λ+ 1

2m2 and denote the
corresponding cuts as S1, S2. If dR(Si) is positive for i = 1, 2, then λ∗ > λ, since
the flow value increases to the right of the current λ. In the same way, if dR(Si)
is negative for i = 1, 2, then the flow value increases to the left of the current λ,
i.e. λ∗ < λ. Hence, since the objective function is concave, the only remaining
case is dR(S1) > 0 and dR(S2) < 0. In this case, the flow value decreases in both
direction, and we just have to find the unique breakpoint in the interval between
λ1 and λ2. This can be done by computing the intersection of gS1

(λ1) and
gS2

(λ2). In total, the comparison is correctly resolved. The proposed algorithm
is the usual Edmonds-Karp algorithm except for the comparison which has
to be made in order to compute the augmenting path. If the comparison is
made correctly, this has no influence on the correctness of the Edmonds-Karp
algorithm. However, this is the case, since the question

a1 + b1λ < a2 + b2λ

is equivalent to

λ <
a2 − a1
b1 − b2

.

Therefore the Edmonds-Karp algorithm with updated comparison resolving is
also correct.

Now for the algorithm: We set the lower and upper capacities of all edges in R to
λ to ensure that they have the same flow. Then, by applying the Edmonds-Karp
algorithm that runs with a symbolic parameter on G′, we find a feasible flow.
With this, we have a starting flow for the almost equal maximum problem and
we can use the Edmonds-Karp algorithm with updated comparison resolving to
find an optimal flow since the residual network respects lower capacities.

Running time: The Edmonds-Karp algorithm with updated comparison re-
solving has at most O(nm) iterations. In each of these, a shortest s-t-path P
w.r.t. the number of edges is calculated, which can be done with Breadth-
First-Search and therefore needs time O(n + m). Then the algorithm com-
putes the minimum residual capacity on the edges of P . Since P has at most
n − 1 edges and each of the residual capacities may depend on the paramet-
ric value λ∗, there are at most O(n2) comparisons which the algorithm has to
resolve. Updating the residual network takes at most 2m comparisons of the
form a + bλ < u(r) and a + bλ > 0, thus at most O(m) comparisons have to
be resolved. For each comparison, a maximum flow and the corresponding cut
have to be computed. Since all other operations are done in constant time,
the running time of resolving one comparison is O(TMF (n,m)). Altogether,
the Edmonds-Karp algorithm with updated comparison resolving runs in time
O(nm · (n2 +m)TComparison) ⊆ O(n3m · TMF (n,m)).

So, in total the algorithm has a running time of O(m+(n3mTMF (n, n+m)) +
(n3mTMF (n,m))) ⊆ O(n3m · TMF (n, n+m)).

9

The number of comparisons can be decreased by exploiting implicit paral-
lelism [Meg81].

When building the residual network, the algorithm has to solve l(r) < f(r) and
f(r) < u(r) for every edge r ∈ A. Since f(r) = a+bλ, we have to solve up to 2m
comparisons. Instead of this, we can first calculate all the values v for which we
want to test λ∗ < v and sort them. This takes time O(m logm) and afterwards
we apply a binary search over these values. In total, we can compute the residual
network in time O(m logm ·TComparison). With the same trick, the time needed
to find the minimum residual capacity on a path P is O(n logn · TComparison).
This results in a running time of O(nm(n log n+m logm)TMF (n, n+m)).

To solve the integer version of the maximum AEMFP, we simply use the optimal
value λ∗ of the non-integer version and compute two maximum flows on the
graphs G⌊λ∗⌋ and G⌈λ∗⌉. By taking the argmax{val(f⌊λ∗⌋), val(f⌈λ∗⌉)} we get
the optimal parameter λ∗

int for the integer version.

In the general constant deviation AEMFP we consider more than one homol-
ogous edge set. By iteratively using the algorithm for the simple constant de-
viation AEMFP, we obtain a combinatorial algorithm for the general constant
deviation AEMFP. We present the algorithm for the case of two homologous
edge sets, but it can be generalized to an arbitrary number of homologous edge
sets. The idea behind the algorithm is to fix some λ1 and then use the algo-
rithm for the simple case to find the optimal corresponding λ2. Once we found
λ∗
2(λ1), we check if λ1 is to the left, right or equal to λ∗

1. Note that the objective
function is still a concave function in λ1 and λ2 since it is the sum of concave
functions. Also, like in the simple case, all flow values and capacities both in the
network G and the residual network Gf during the algorithm are of the form

a+ bλ1 + cλ2.

Note that the running time of the algorithm for the general constant deviation
AEMFP increases for every additional homologous edge set roughly by a factor
of the running time of the algorithm for the simple constant deviation AEMFP.
The next theorem summarizes the results above.

Theorem 6. Let Tmf (n,m) denote the running time of a not specified maximum
flow algorithm on a graph G with n nodes and m edges. The AEMFP with k
homologous sets can be solved in time

O
(

nkmk log(log(n))k · Tmf (n, n+m)
)

when we use the Edmonds-Karp algorithm as the underlying maximum flow
algorithm.

Note that the running time for an arbitrary number of homologous edge sets
becomes exponential. Interestingly, using one of the known faster maximum
flow algorithms instead of the Edmonds-Karp algorithm does not seem to yield
an improved running time, since using an algorithm based on a push-relabel-
technique yields a running time of O(n3k · Tmf (n, n+m)) (see [Hae19]).

10

5 Problem Variants

In the section above we considered the case of a constant deviation of the flow
value on edges within a homologous edge set. Now we allow the deviation
function to be given as either a convex or a concave function.

5.1 The Convex Deviation Case

If the deviation function is a convex function ∆conv : R 7→ R≥0, we get the con-
vex AEMFP. Note that this problem is neither a convex nor a concave program
due to the constraint (6). Hence, standard methods of convex optimization can
not be applied. In fact, the next theorem states that, unless P = NP , one can-
not hope to find a polynomial time algorithm that solves the fractional variant
of this problem:

Theorem 7. The AEMFP with a convex deviation function ∆ is NP-complete,
even if all deviation functions are given as ∆R(x) = 2x2 +1 for all homologous
sets R, the homologous sets are disjoint, the capacities are integral, and the
graph is bipartite.

Proof. Again we use a reduction from Exact-3-Cover. Given an X3C instance,
we construct a network graph in the same way as in the proof of Theorem 1.
We now show that there exists an almost equal maximum flow with convex
deviation functions and flow value 8q

3 if and only if there exists a solution of
X3C.

Assume first that X3C has a solution S′. Then, we define an almost equal
maximum flow in the same way as in the proof of Theorem 1. Suppose there
is an almost equal maximum flow x with flow value val(x) > 8q

3 . Since the
capacity of edges (aj , t) is 1, the summarized amount of flow on these edges is
at most q. That means, the sum of flow on edges (Si, t) has to be greater than
5q
3 + 1. Suppose a flow x′ uses more than q edges of (s, Si). Then there must
be at least two edges (Si1 , t), (Si2 , t) with x′(Sik , t) ∈ (1, 3) for k = 1, 2. By the
homologous edge constraint we know that at least one edge of the form (Si1 , aj)
and one of the form (Si2 , aj) are not fully saturated, i.e. x′(Sik , aj) ∈ (0, 1) for
k = 1, 2. W.l.o.g. let x′

1 := x′(Si1 , aj) ≥ x′(Si2 , aj) =: x′
2. We show that this

flow cannot yield the highest possible flow value, since shifting ǫ between these
two edges yields in a higher flow value. Note that the sum

∑2
k=1 x

′
k remains

the same, only the value of the edges (Sik , t) changes. In the following, we
distinguish the following three cases.

Case 1: The edges (Sik , aj) have both the strict smallest flow values in their
homologous edge set. Then we shift an ǫ from (Si2 , aj) to (Si1 , aj). This yields

2(x′
1 + ǫ)2 + 1 + 2(x′

2 − ǫ)2 + 1 = 2(x′
1)

2 + 2ǫ(x′
1 − x′

2) + 2ǫ2 + 2 + 2(x′
2)

2

> 2(x′
1)

2 + 1 + 2(x′
2)

2 + 1.

11

Hence, the sum of the flow value on the edges (Sik , t) for k = 1, 2 is higher which
is a contradiction to the maximality of x′.

Case 2: x′
1 is the smallest value among the flow value on edges of the corre-

sponding homologous edge set and x′
2 is strictly larger than the smallest flow

value of edges of the corresponding homologous edge set. Then, increasing x′
1

by ǫ ≤ min{u1 − x′
1, x

′
2 − x′

2,min} with x′
2,min = min fR2

yields

2(x′
1 + ǫ)2 + 1 + 2(x′

2,min)
2 + 1 = 2(x′

1)
2 + 1 + 2ǫx′

1 + 2ǫ2 + 2(x′
2,min)

2 + 1

> 2(x′
1)

2 + 1 + 2(x′
2,min)

2 + 1.

Again, this is a contradiction to the maximality of x′.

Case 3: x′
2 is the smallest flow value on edges of the related homologous edge

set, x′
1 is strictly larger than the minimum. Then, shifting ǫ units of flow from

x′
1 to x′

2 gives us

2(x′
1,min)

2 + 1 + 2(x′
2 + ǫ)2 + 1 = 2(x′

1,min)
2 + 1 + 2(x′

2)
2 + 2ǫx′

2 + 2ǫ2 + 1

> 2(x′
1,min)

2 + 1 + 2(x′
2)

2 + 1.

Also in this case the increasing resp. decreasing by ǫ yields in a higher flow
value — a contradiction to the maximality of x′.

Conversely, assume that the almost equal maximum flow in G has flow value
8q
3 . We need to show that this induces a solution to X3C and this can be done
similar to the proof of Theorem 1 under consideration of the three cases above.
This settles the proof.

Theorem 8. Unless P = NP, there is no polynomial time constant factor
approximation algorithm for the integer convex AEMFP.

Proof. For this, we use the same reduction as in Theorem 2. For the concave
deviation function of the set Rb, we choose ∆k

B : x 7→ kx. Then, one can
see that the maximum flow value is 0 if no solution of X3C exists and 7

3q +
k if one exists. Thus, unless P = NP , no polynomial time constant factor
approximation algorithm can exist.

5.2 The Concave Deviation Case

In contrast to the convex case, which is NP-complete even for the fractional
case, the concave case is polynomially solvable since in this case the AEMFP
becomes a concave program.

In the following we describe an algorithm for this variant using again the para-
metric search technique [Meg78, Meg81] and a refinement by Toledo [Tol93]. We
restrict ourselves to the case of one homologous edge set R, but the algorithm
can be extended to an arbitrarily number of homologous edge sets according
to [Tol93]. As we have seen before, we can solve the AEFMP for fixed lower

12

bounds λi for each homologous edge set Ri by a maximum flow computation.
Therefore, one can use the parametric search technique by Megiddo [Meg78,
Meg81] with symbolic input parameters λ∗

i in order to find the (unknown) min-
imizer of F . Also we know that F (·) has no jumps between two breakpoints.
Therefore, we restrict ourselves to an interval between two breakpoints and to
find a maximizer x∗

I for every such interval I. In a second step, we evaluate all
these local maximizers and find the global solution x∗. The problem of finding
a maximizer in each of the m intervals can then be done simultaneously.

By using a standard trick in network optimization, we can assume that our graph
G has lower bounds 0 and we can apply the Edmonds-Karp algorithm to it. The
maximum flow algorithm has to answer questions of the form fλ∗(e) = pe(λ

∗) ≤?

min{c(e),∆(λ∗)}. Such a comparison made by the algorithm is equivalent to
the question which sign a polynomial concave function p at a given point x has.

Observation 9. During the algorithm, all flow values and all residual capacities
can be described by a polynomial p in λ which is of degree at most q.

Proof. We start with the zero flow. In the first step, the residual capacities are
either integer or ∆(λ) for some polynomial ∆ of bounded degree. Thus, the
residual capacities can be written as a polynomial p(λ) of bounded degree.

Whenever the algorithm augments the flow along a path, it adds two values of
the form p1(λ), p2(λ), where p1, p2 are again polynomials with degree at most
δ. This results in a flow value of the same form.

Since the sign of a polynomial is constant between two roots, it is sufficient to
restrict ourselves to the roots {r1, . . . , rl} of the polynomial p. For every root,
we evaluate F and test if its evaluation is equal to x∗ or else if it is to its left or
right.

We know that we can determine the relative position of a point x to x∗ by
evaluating F at this point. In the case of a constant deviation function, we
did this by computing the slope of F at x. Here, instead of relying on the
slope, we use the idea by Toledo [Tol93]. This process is presented in Figure 1.
Evaluating F at a point x1 is a maximum flow computation in the graph Gx1

,
i.e. the graph where the lower bound on edges of the homologous edge set is set
to x1. Now we distinguish two cases, either x1 is to the left or to the right of
the maximum x∗. First we check if we have already evaluated F at a point x0

with F (x1) ≥ F (x0). If this is the case, we know that the maximum x∗ lies in
the direction of x0.

If we have not found a point with larger value in previous evaluations, we cannot
resolve the comparison. The Case 0 of Figure 1 shows this situation. Now, we
copy the state of the algorithm and proceed in one copy with the presumption
that x1 lies to the left of x∗ and in the other copy with the presumption that x1

lies to the right of x∗. These two cases are depicted as Case 1 (or Case 2 resp.)
in Figure 1. So, on one side, we calculate a maximum flow for some x1 < x0. If
val(f(x1)) > val(f(x0)), we can resolve the comparison from above. During the

13

x0

x1 x2

Case 0: The maximum
could be either to the left
or to the right of x0.

x0

x1 x2

Case 1: If F (x1) > F (x0)
holds, only look to the
right of x1.

x0

x1 x2

Case 2: If F (x1) < F (x0)
holds, copy the state
of the algorithm at x1

and cancel the right side
above.

Figure 1: The different possible outcomes of the comparison step.

whole process, we only have two copies running at any given time. These two
copies can be run in parallel, since they only need to communicate right before
the next branching step in order to know which branches of the tree to cut.

This enables us to prove the following result:

Theorem 10. The AEMFP with a piecewise polynomial concave deviation func-
tion ∆ with maximum degree q can be solved in polynomial time for one homol-
ogous edge set in time O(mq · (nm · (n + 2m + n2)(TMF (n, n + m)))) under
the assumption that the roots of a polynomial p of maximum degree q can be
computed in constant time O(1).

Proof. Since we have to compute the maximum for every interval, we have
to run the algorithm O(mq) times. In each interval, we run the Edmonds-
Karp algorithm which has at most O(nm) iterations. In each iteration, the
algorithm needs to find a shortest path P w.r.t. the number of edges, which
can be done in O(n + m) time, for example with a Breadth-First-Search. To
find the minimum residual capacity on P , the algorithm needs to do O(n2)
comparisons. For updating the residual network, again O(m) comparisons are
needed.In order to resolve a comparison, first the roots of a polynomial p of
bounded degree are computed, which can be done in constant time O(1) by
assumption. Evaluating F at a root is a maximum flow computation in the
graph G′ where the lower bounds have been eliminated. Since this graph G′

has n nodes and n+m edges, we write TMF (n, n+m) for the time needed to
compute a maximum flow in this graph. Overall, this yields in a running time
of O(mq · (nm · (n+ 2m+ n2)(TMF (n, n+m)))).

In the worst case, our algorithm yields a better running time than a direct imple-

14

mentation of the Megiddo-Toledo algorithm for maximizing non-linear concave

function in k dimensions, which runs in O((Tmf (n,m))2
k

) ([Tol93]).

The integral version of the concave AEMFP turns out to be still hard to solve
and hard to approximate.

Theorem 11. The concave integer AEMFP is NP-complete.

Proof. The proof is similar to the proof of Theorem 1.

Theorem 12. Moreover, unless P = NP, there is no polynomial time constant
factor approximation algorithm for the integer concave AEMFP.

Proof. For this, we use the same reduction as in Theorem 2. For the concave
deviation function of the set Rb, we choose ∆k

B : x 7→ kx. Then, one can see
that the maximum flow value is 0 if no solution of X3C exists and 7

3q+ k other-
wise. Thus, unless P = NP , no polynomial time constant factor approximation
algorithm can exist.

6 Outlook

In this paper, we considered a novel class of flow problems, which we call almost
equal flow problems. These are to be understood as a generalization of the
equal flow problems. The motivation to study these problems comes from its
application of finding an optimal load schedule between energy suppliers and
energy consumers, where one tries to use flexibility to shift power consumption
from peak times to times of lower grid utilization. This can be modeled in a
time-expanded graph that shows the flow of electricity to a consumption unit.
Such a consumption unit often has technical limitations that prevent the load
from changing too much between successive points in time. These types of
constraints can now be modeled by the almost equal property in such a time-
expanded flow network.

For the Almost Equal Maximum Flow case we proved that the problem of finding
such an optimal integer flow turns out to be hard to solve in general, regardless
of whether the function is given by an affine transformation, a concave function
or a convex function. Further, even finding an optimal maximum fractional
flow for a convex deviation function is NP-hard to find. Nevertheless, by using
the parametric search technique by Megiddo we provide strongly polynomial
algorithms if the number of homologous sets is given by a constant and the
deviation function is either a constant or concave deviation function. As variants
of the Almost Equal Flow Problems, we discussed different deviation functions
and obtained complexity results for these problem variants.

Future research should be directed to the question if the network structure can
be exploited in order to get faster algorithms for special graph classes. Further-
more, the obtained results can be extended to the Almost Equal Minimum Cost
Flow Problem in a similar way.

15

References

[AKS88] Agha Iqbal Ali, Jeff Kennington, and Bala Shetty. The equal flow
problem. European Journal of Operational Research, 36(1):107–115,
1988.

[AOSZ99] Ravindra K. Ahuja, James B. Orlin, Giovanni M. Sechi, and Paola
Zuddas. Algorithms for the simple equal flow problem. Management
Science, 45(10):1440–1455, 1999.

[EK72] Jack Edmonds and Richard M. Karp. Theoretical improvements in
algorithmic efficiency for network flow problems. Journal of the ACM
(JACM), 19(2):248–264, 1972.

[Hae19] Rebekka Haese. Almost equal flow problems. Master Thesis, TU
Kaiserslautern, 2019.

[Meg78] Nimrod Megiddo. Combinatorial optimization with rational objective
functions. In Proceedings of the tenth annual ACM symposium on
Theory of computing, pages 1–12. ACM, 1978.

[Meg81] Nimrod Megiddo. Applying parallel computation algorithms in the
design of serial algorithms. In 22nd Annual Symposium on Founda-
tions of Computer Science (sfcs 1981), pages 399–408. IEEE, 1981.

[MS09] Carol A. Meyers and Andreas S. Schulz. Integer equal flows. Opera-
tions Research Letters, 37(4):245–249, 2009.

[Tar86] Eva Tardos. A strongly polynomial algorithm to solve combinatorial
linear programs. Operations Research, 34(2):250–256, 1986.

[Tol93] Sivan Toledo. Maximizing non-linear concave functions in fixed di-
mension. In Complexity in numerical optimization, pages 429–447.
World Scientific, 1993.

16

Version April 13, 2021

Till Heller
Department of Optimization
Fraunhofer ITWM, Kaiserslautern
Germany
ORCiD: 0000-0002-8227-9353

Rebekka Haese
Sven O. Krumke
Optimization Research Group, Department of Mathematics
Technische Universität Kaiserslautern, Kaiserslautern
Germany

17

	1 Introduction
	2 Problem Definition
	3 Complexity and Approximation
	4 The Constant Deviation Case
	5 Problem Variants
	5.1 The Convex Deviation Case
	5.2 The Concave Deviation Case

	6 Outlook

