Skip to main content

Exploiting Partial Convexity of Pump Characteristics in Water Network Design

  • Conference paper
  • First Online:
Operations Research Proceedings 2019

Part of the book series: Operations Research Proceedings ((ORP))

Abstract

The design of water networks consists of selecting pipe connections and pumps to ensure a given water demand to minimize investment and operating costs. Of particular importance is the modeling of variable speed pumps, which are usually represented by degree two and three polynomials approximating the characteristic diagrams. In total, this yields complex mixed-integer (non-convex) nonlinear programs.

This work investigates a reformulation of these characteristic diagrams, eliminating rotating speed variables and determining power usage in terms of volume flow and pressure increase. We characterize when this formulation is convex in the pressure variables. This structural observation is applied to design the water network of a high-rise building in which the piping is tree-shaped. For these problems, the volume flow can only attain finitely many values. We branch on these flow values, eliminating the non-convexities of the characteristic diagrams. Then we apply perspective cuts to strengthen the formulation. Numerical results demonstrate the advantage of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altherr, L.C., Leise, P., Pfetsch, M.E., Schmitt, A.: Resilient layout, design and operation of energy-efficient water distribution networks for high-rise buildings using MINLP. Optim. Eng. 20(2), 605–645 (2019)

    Google Scholar 

  2. D’Ambrosio, C., Lodi, A., Wiese, S., Bragalli, C.: Mathematical programming techniques in water network optimization. Eur. J. Oper. Res. 243(3), 774–788 (2015)

    Google Scholar 

  3. Frangioni, A., Gentile, C.: Perspective cuts for a class of convex 0–1 mixed integer programs. Math. Program. 106(2), 225–236 (2006)

    Google Scholar 

  4. Gleixner, A., Bastubbe, M., Eifler, L., Gally, T., Gamrath, G., Gottwald, R.L., Hendel, G., Hojny, C., Koch, T., Lübbecke, M.E., Maher, S.J., Miltenberger, M., Müller, B., Pfetsch, M.E., Puchert, C., Rehfeldt, D., Schlösser, F., Schubert, C., Serrano, F., Shinano, Y., Viernickel, J.M., Walter, M., Wegscheider, F., Witt, J.T., Witzig, J.: The SCIP Optimization Suite 6.0. Technical report, Optimization Online (2018)

    Google Scholar 

  5. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program 106(1), 25–57 (2006)

    Google Scholar 

Download references

Acknowledgements

We thank Tim Müller (TU Darmstadt) for the pump approximations. This research was funded by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project Number 57157498—SFB 805.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marc E. Pfetsch or Andreas Schmitt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pfetsch, M.E., Schmitt, A. (2020). Exploiting Partial Convexity of Pump Characteristics in Water Network Design. In: Neufeld, J.S., Buscher, U., Lasch, R., Möst, D., Schönberger, J. (eds) Operations Research Proceedings 2019. Operations Research Proceedings. Springer, Cham. https://doi.org/10.1007/978-3-030-48439-2_60

Download citation

Publish with us

Policies and ethics