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Abstract. A language over an alphabet B = A ∪ A of opening (A) and
closing (A ) brackets, is balanced if it is a subset of the Dyck language
DB over B, and it is well-formed if all words are prefixes of words in DB.
We show that well-formedness of a context-free language is decidable
in polynomial time, and that the longest common reduced suffix can be
computed in polynomial time. With this at a hand we decide for the class
2-TW of non-linear tree transducers with output alphabet B∗ whether
or not the output language is balanced.
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1 Introduction

Structured text requires that pairs of opening and closing brackets are properly
nested. This applies to text representing program code as well as to XML or
HTML documents. Subsequently, we call properly nested words over an alpha-
bet B of opening and closing brackets balanced. Balanced words, i.e. structured
text, need not necessarily be constructed in a structured way. Therefore, it is
a non-trivial problem whether the set of words produced by some kind of text
processor, consists of balanced words only. For the case of a single pair of brack-
ets and context-free languages, decidability of this problem has been settled by
Knuth [3] where a polynomial time algorithm is presented by Minamide and
Tozawa [9]. Recently, these results were generalized to the output languages of
monadic second-order logic (MSO) definable tree-to-word transductions [8]. The
case when the alphabet B consists of multiple pairs of brackets, though, seems
to be more intricate. Still, balancedness for context-free languages was shown
to be decidable by Berstel and Boasson [1] where a polynomial time algorithm
again has been provided by Tozawa and Minamide [13]. Whether or not these
results for B can be generalized to MSO definable transductions as e.g. done
by finite copying macro tree transducers with regular look-ahead, remains as an
open problem. Reynier and Talbot [10] considered visibly pushdown transducers
and showed decidability of this class with well-nested output in polynomial time.

Here, we provide a first step to answering this question. We consider deter-
ministic tree-to-word transducers which process their input at most twice by
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calling in their axioms at most two linear transductions of the input. Let 2-TW
denote the class of these transductions. Note that the output languages of lin-
ear deterministic tree-to-word transducers is context-free, which does not need
to be the case for 2-TW transducers. 2-TW forms a subclass of MSO definable
transductions which allows to specify transductions such as prepending an XML
document with the list of its section headings, or appending such a document
with the list of figure titles. For 2-TW transducers we show that balancedness is
decidable—and this in polynomial time. In order to obtain this result, we first
generalize the notion of balancedness to the notion of well-formedness of a lan-
guage, which means that each word is a prefix of a balanced word. Then we show
that well-formedness for context-free languages is decidable in polynomial time.
A central ingredient is the computation of the longest common suffix of a context-
free language L over B after reduction i.e. after canceling all pairs of matching
brackets. While the proof shares many ideas with the computation of the longest
common prefix of a context-free language [7] we could not directly make use of
the results of [7] s.t. the results of this paper fully subsume the results of [7]. Now
assume that we have verified that the output language of the first linear transduc-
tion called in the axiom of the 2-TW transducer and the inverted output language
of the second linear transformation both are well-formed. Then balancedness of
the 2-TW transducer in question, effectively reduces to the equivalence of two
deterministic linear tree-to-word transducers—modulo the reduction of opening
followed by corresponding closing brackets. Due to the well-formedness we can
use the equivalence of linear tree-to-word transducers over the free group which
can be decided in polynomial time [5].

This paper is organized as follows. After introducing basic concepts in Sect. 2,
Sect. 3 shows how balancedness for 2-TW transducers can be reduced to equiv-
alence over the free group and well-formedness of LTΔs. Section 4 considers the
problem of deciding well-formedness of context-free languages in general.

Missing proofs can be found in the extended version of this paper [4].

2 Preliminaries

As usual, N (N0) denotes the natural numbers (including 0). The power set of a
set S is denoted by 2S . Σ denotes some generic (nonempty) alphabet, Σ∗ and
Σω denote the set of all finite words and the set of all infinite words, respectively.
Then Σ∞ = Σ∗∪Σω is the set of all countable words. Note, that the transducers
considered here output finite words only; however, for the operations needed to
analyze the output infinite words are very helpful. We denote the empty word by
ε. For a finite word w = w0 . . . wl, its reverse wR is defined by wR = wl . . . w1w0;
as usual, set LR := {wR | w ∈ L} for L ⊆ Σ∗. A is used to denote an alphabet of
opening brackets with A = {a | a ∈ A} the derived alphabet of closing brackets,
and B := A ∪ A the resulting alphabet of opening and closing brackets.

Longest Common Prefix and Suffix. Let Σ be an alphabet. We first define the
longest common prefix of a language, and then reduce the definition of the longest
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common suffix to it by means of the reverse. We write
p

� to denote the prefix

relation on Σ∞, i.e. we have u
p

� w if either (i) u,w ∈ Σ∗ and there exists v ∈ Σ∗

s.t. w = uv, or (ii) u ∈ Σ∗ and w ∈ Σω and there exists v ∈ Σω s.t. w = uv,
or (iii) u,w ∈ Σω and u = w. We extend Σ∞ by a greatest element � �∈ Σ∞

w.r.t.
p

� s.t. u
p

� � for all u ∈ Σ∞
� := Σ∞ ∪{�}. Then every set L ⊆ Σ∞

� has an

infimum w.r.t.
p

� which is called the longest common prefix of L, abbreviated by
lcp(L). Further, define εω := �, �R := �, and �w := � =: w� for all w ∈ Σ∞

� .
In Sect. 4 we will need to study the longest common suffix ( lcs) of a language

L. For L ⊆ Σ∗, we can simply set lcs(L) := lcp(LR)R, but also certain infinite
words are very useful for describing how the lcs changes when concatenating two
languages (see e.g. Example 2). Recall that for u,w ∈ Σ∗ and w �= ε the ω-regular
expression uwω denotes the unique infinite word uwww . . . in

⋂
k∈N0

uwkΣω; such
a word is also called ultimately periodic. For the lcs we will use the expression
w

ω

u to denote the ultimately left-periodic word . . . wwwu that ends on the suffix
u with infinitely many copies of w left of u; these words are used to abbreviate
the fact that we can generate a word wku for unbounded k ∈ N0. As we reduce
the lcs to the lcp by means of the reverse, we define the reverse of w

ω

u, denoted
by (w

ω

u)R, by means of (w

ω

u)R := uR(wR)ω.

Definition 1. Let Σulp denote the set of all expressions of the form w

ω

u with
u ∈ Σ∗ and w ∈ Σ+. Σulp is called the set of ultimately left-periodic words.
Define the reverse of an expression w

ω

u ∈ Σulp by means of (w

ω

u)R := uR(wR)ω.
Accordingly, set (uwω)R := (wR)

ω
uR for u ∈ Σ∗, w ∈ Σ+.

The suffix order on Σ∗ ∪ Σulp ∪ {�} is defined by u
s
� v :⇔ uR

p

� vR. The
longest common suffix (lcs) of a language L ⊆ Σ∗ ∪ Σulp is lcs(L) := lcp(LR)R.

For instance, we have lcs((bba)

ω

, (ba)

ω

a) = a, and lcs((ab)

ω

, (ba)

ω

b) = (ab)

ω

.

As usual, we write u
s
� v if u

s
� v, but u �= v. As the lcp is the infimum

w.r.t.
p

�, we also have for x, y, z ∈ {�} ∪ Σ∗ ∪ Σulp and L,L′ ⊆ {�} ∪ Σ∗ ∪ Σulp

that (i) lcs(x, y) = lcs(y, x), (ii) lcs(x, lcs(y, z)) = lcs(x, y, z), (iii) lcs(L)
s
� lcs(L′)

for L ⊇ L′, and (iv) lcs(Lx) = lcs(L)x for x ∈ {�} ∪ Σ∗. In Lemma 8 in the
appendix of the extended version [4] we derive further equalities for lcs that
allow to simplify its computation. In particular, the following two equalities (for
x, y ∈ Σ∗) are very useful:

lcs(x, xy) = lcs(x, y

ω

) = lcs(x, xyk) for every k ≥ 1

lcs(x

ω

, y

ω

) =

{
(xy)

ω

if xy = yx

lcs(xy, x

ω

) = lcs(xy, yxk) if xy �= yx, for every k ≥ 1

For instance, we have lcs((ab)

ω

, (bab)

ω

) = bab = lcs(abbab, (ab)

ω

). Note also that
by definition we have ε

ω

= � s.t. lcs(x

ω

, ε

ω

) = (xε)

ω

. We will use the following
observation frequently:
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Lemma 1. Let L ⊆ Σ∗ be nonempty. Then for any x ∈ L we have lcs(L) =
lcs(lcs(x, z) | z ∈ L); in particular, there is some witness y ∈ L (w.r.t. x) s.t.
lcs(L) = lcs(x, y).

Involutive Monoid. We briefly recall the basic definitions and properties of the
finitely generated involutive monoid, but refer the reader for details and a formal
treatment to e.g. [11]. Let A be a finite alphabet (of opening brackets/letters).
From A we derive the alphabet A := {a | a ∈ A} (of closing brackets/letters)
where we assume that A∩A = ∅. Set B := A∪A . We use roman letters p, q, . . .
to denote words over A, while Greek letters α, β, γ, . . . will denote words over B.

We extend · to an involution on B∗ by means of ε := ε, a := a for all a ∈ A,
and αβ := β α for all other α, β ∈ B∗. Let

ρ→ be the binary relation on B∗ defined
by αaa β

ρ→ αβ for any α, β ∈ B∗ and a ∈ A, i.e.
ρ→ cancels nondeterministically

one pair of matching opening and closing brackets. A word α ∈ B∗ is reduced
if it does not contain any infix of the form aa for any a ∈ A, i.e. α is reduced
if and only if it has no direct successor w.r.t.

ρ→. For every α ∈ B∗ canceling
all matching brackets in any arbitrary order always results in the same unique
reduced word which we denote by ρ(α); we write α

ρ
= β if ρ(α) = ρ(β). Then

B∗/
ρ
= is the free involutive monoid generated by A, and ρ(α) is the shortest

word in the
ρ
=-equivalence class of α. For L ⊆ B∗ we set ρ(L) := {ρ(w) | w ∈ L}.

Well-Formed Languages and Context-Free Grammars. We are specifically inter-
ested in context-free grammars (CFG) G over the alphabet B. We write →G for
the rewrite rules of G. We assume that G is reduced to the productive nonter-
minals that are reachable from its axiom S. For simplicity, we assume for the
proofs and constructions that the rules of G are of the form

X →G Y Z X →G Y X →G u v

for nonterminals X,Y,Z and u, v ∈ A∗. We write LX := {α ∈ B∗ | X →∗
G α}

for the language generated by the nonterminal X. Specifically for the axiom S
of G we set L := LS . The height of a derivation tree w.r.t. G is measured in the
maximal number of nonterminals occurring along a path from the root to any
leaf, i.e. in our case any derivation tree has height at least 1. We write L≤h

X for
the subset of LX of words that possess a derivation tree of height at most h s.t.:

L≤1
X = {u v | X →G u v} L≤h+2

X = L≤h+1
X ∪

⋃

X→GY Z

L≤h+1
Y L≤h+1

Z ∪
⋃

X→GY

L≤h+1
Y

We will also write L<h
X for L≤h−1

X and L=h
X for L≤h

X \ L<h
X . The prefix closure of

L ⊆ B∗ is denoted by Prf(L) := {α′ | α′α′′ ∈ L}.

Definition 2. Let α ∈ B∗ and L ⊆ B∗.

1. Let Δ(α) := |α|A −|α|A be the difference of opening brackets to closing brack-

ets. α is nonnegative if ∀α′ p

� α : Δ(α′) ≥ 0. L ⊆ B∗ is nonnegative if every
α ∈ L is nonnegative.
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2. A context-free grammar G with L(G) ⊆ B∗ is nonnegative if L(G) is nonneg-
ative. For a nonterminal X of G let dX := sup({−Δ(α′) | α′α′′ ∈ LX}).

3. A word α is well-formed (short: wwf) resp. well-formed (short: wf) if ρ(α) ∈
A ∗A∗ resp. if ρ(α) ∈ A∗. A context-free grammar G is wf if L(G) is wf.
L ⊆ B∗ is wwf resp. wf if every word of L is wwf resp. wf.

4. A context-free grammar G is bounded well-formed (bwf) if it is wwf and for
every nonterminal X there is a (shortest) word rX ∈ A∗ with |rX | = dX s.t.
rXLX is wf.

Note that dX ≥ 0 as we can always choose α′ = ε in the definition of dX .
As already mentioned in the abstract and the introduction, we have that L

is wf iff Prf(L) is wf iff L is a subset of the prefix closure of the Dyck language
generated by S → ε, S → SS, S → aSa (for a ∈ A). We state some further
direct consequences of above definition: (i) L is nonnegative iff the image of
L under the homomorphism that collapses A to a singleton is wf. Hence, if L
is wf, then L is nonnegative. Δ is an ω-continuous homomorphism from the
language semiring generated by B to the tropical semiring 〈Z ∪ {−∞},min,+〉.
Thus it is decidable in polynomial time if G is nonnegative using the Bellman-
Ford algorithm [2]. (ii) If L is not wf, then there exists some α ∈ Prf(L)\{ε} s.t.
Δ(α) < 0 or α

ρ
= uab for u ∈ A∗ and a, b ∈ A (with a �= b). (iii) If LX is wwf,

then dX = sup{|y| | γ ∈ LX , ρ(γ) = y z}.
In particular, because of context-freeness, it follows that, if G is wf, then for

every nonterminal X there is rX ∈ A∗ s.t. (i) rX ∈ ρ(Prf(LX)), (ii) |rX | = dX

and (iii) rXLX is wf. Hence:

Lemma 2. A context-free grammar G is wf iff G is bwf with rS = ε for S the
axiom of G.

The words rX mentioned in the definition of bounded well-formedness can be
computed in polynomial time using the Bellman-Ford algorithm similar to [13];
more precisely, a straight-line program (SLP) (see e.g. [6] for more details on
SLPs), i.e. a context-free grammar generating exactly one derivation tree and
thus word, can be extracted from G for each rX .

Lemma 3. Let L = L(G) be wf. Let X be some nonterminal of G. Let rX ∈ A∗

be the shortest word s.t. rXLX is wf. We can compute an SLP for rX from G in
polynomial time.

Tree-to-Word Transducers. We define a linear tree-to-word transducer (LTB)
M = (Σ,B, Q, S,R) where Σ is a finite ranked input alphabet, B is the finite
(unranked) output alphabet, Q is a finite set of states, the axiom S is of the
form u0 or u0q(x1)u1 with u0, u1 ∈ B∗ and R is a set of rules of the form
q(f(x1, . . . , xm)) → u0q1(xσ(1))u1 . . . qn(sσ(n))un with q, qi ∈ Q, f ∈ Σ, ui ∈
B∗, n ≤ m and σ an injective mapping from {1, . . . , n} to {1, . . . , m}. Since
non-deterministic choices of linear transducers can be encoded into the input
symbols, we may, w.l.o.g., consider deterministic transducers only. For simplicity,
we moreover assume the transducers to be total. This restriction can be lifted
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by additionally taking a top-down deterministic tree automaton for the domain
into account. The constructions introduced in Sect. 3 would then have to be
applied w.r.t. such a domain tree automaton. As we consider total deterministic
transducers there is exactly one rule for each pair q ∈ Q and f ∈ Σ.

A 2-copy tree-to-word transducer (2-TW) is a tuple N = (Σ,B, Q, S,R) that
is defined in the same way as an LTB but the axiom S is of the form u0 or
u0q1(x1)u1q2(x1)u2, with ui ∈ B∗.

TΣ denotes the set of all trees/terms over Σ. We define the semantics �q� :
TΣ → B∗ of a state q with rule q(f(t1, . . . , tm)) → u0q1(tσ(1))u1 . . . qn(tσ(n))un

inductively by

�q�(f(t1, . . . , tm)) = ρ(u0�q1�(tσ(1))u1 . . . �qn�(tσ(n))un)

The semantics �M� of an LTB M with axiom u0 is given by ρ(u0); if the axiom
is of the form u0q(x1)u1 it is defined by ρ(u0�q�(t)u1) for all t ∈ TΣ ; while the
semantics �N� of a 2-TW N with axiom u0 is again given by ρ(u0) and for axiom
u0q1(x1)u1q2(x1)u2 it is defined by ρ(u0�q1�(t)u1�q2�(t)u2) for all t ∈ TΣ . For
a state q we define the output language L(q) = {�q�(t) | t ∈ TΣ}; For a 2-TW
M we let L(M) = {�M�(t) | t ∈ TΣ}. Note that the output language of an LTB

is context-free and a corresponding context-free grammar for this language can
directly read from the rules of the transducer.

Additionally, we may assume w.l.o.g. that all states q of an LTB are non-
singleton, i.e., L(q) contains at least two words. We call a 2-TW M balanced
if L(M) = {ε}. We say an LTB M is well-formed if L(M) ⊆ A∗. Balanced and
well-formed states are defined analogously. We use q to denote the inverse trans-
duction of q which is obtained from a copy of the transitions reachable from q by
involution of the right-hand side of each rule. As a consequence, �q �(t) = �q�(t)
for all t ∈ TΣ , and thus, L(q ) = L(q) . We say that two states q, q′ are equivalent
iff for all t ∈ TΣ , �q�(t) = �q′�(t). Accordingly, two 2-TWs M , M ′ are equivalent
iff for all t ∈ TΣ , �M�(t) = �M ′�(t).

3 Balancedness of 2-TWs

Let M denote a 2-TW. W.l.o.g., we assume that the axiom of M is of the form
q1(x1)q2(x1) for two states q1, q2. If this is not yet the case, an equivalent 2-TW
with this property can be constructed in polynomial time. We reduce balanced-
ness of M to decision problems for linear tree-to-word transducers alone.

Proposition 1. The 2-TW M is balanced iff the following two properties hold:

– Both L(q1) and L(q2) are well-formed;
– q1 and q2 are equivalent.

Proof. Assume first that M with axiom q1(x1)q2(x1) is balanced, i.e., L(M) = ε.
Then for all w′, w′′ with w = w′w′′ ∈ L(M), ρ(w′) = u ∈ A∗ and ρ(w′′) = u .
Thus, both L(q1) and L(q2) consist of well-formed words only. Assume for a
contradiction that q1 and q2 are not equivalent. Then there is some t ∈ TΣ such
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that �q1�(t) � ρ= �q2 �(t). Let �q1�(t) = u ∈ A∗ and �q2 �(t) = �q2�(t) = v with
v ∈ A∗ and u �= v. Then ρ(�q1�(t)�q2�(t)) = ρ(uv ) �= ε as u �= v, u, v ∈ A∗. Since
M is balanced, this is not possible.

Now, assume that L(q1) and L(q2) are well-formed, i.e., for all t ∈ TΣ ,
�q1�(t) ∈ A∗ and �q2�(t) ∈ A ∗. Additionally assume that q1 and q2 are equivalent,
i.e., for all t ∈ TΣ , �q1�(t) = �q2 �(t) = �q2�(t) . Therefore for all t ∈ TΣ , �q2�(t) =
�q1�(t) and hence,

ρ(�q1�(t)�q2�(t)) = ρ(�q1�(t)�q1�(t) ) = ε

Therefore, the 2-TW M must be balanced. ��

The output languages of states q1 and q2 are generated by means of context-free
grammars of polynomial size.

Example 1. Consider LTB M with input alphabet Σ = {f (2), g(0)} (the super-
script denotes the rank), output alphabet B = {a, a }, axiom q3(x1) and rules

q3(f(x1, x2)) → aq2(x1)q2(x2)a q2(g) → ε
q2(f(x1, x2)) → aq1(x1)q1(x2)a q2(g) → ε
q1(f(x1, x2)) → q3(x1)q3(x2) q1(g) → aa

We obtain a CFG producing exactly the output language of M by nondetermin-
istically guessing the input symbol, i.e. the state qi becomes the nonterminal Wi.
The axiom of this CFG is then W3, and as rules we obtain

W3 → aW2W2a | ε W2 → aW1W1a | ε W1 → W3W3 | aa

Note that the rules of M and the associated CFG use a form of iterated squaring,
i.e. W3 →2 W 4

3 , that allows to encode potentially exponentially large outputs
within the rules (see also Example 4). In general, words thus have to be stored
in compressed form as SLPs [6].

Therefore, Theorem 2 of Sect. 4 implies that well-formedness of q1, q2 can be
decided in polynomial time. Accordingly, it remains to consider the equivalence
problem for well-formed LTBs. Since the two transducers in question are well-
formed, they are equivalent as LTBs iff they are equivalent when their outputs
are considered over the free group FA. In the free group FA, we additionally have
that a a

ρ
= ε—which does not hold in our rewriting system. If sets L(q1),L(q2 ) of

outputs for q1 and q2 , however, are well-formed, it follows for all u ∈ L(q1), v ∈
L(q2 ) that ρ(uv ) = ρ(ρ(u)ρ(v )) cannot contain a a. Therefore, ρ(uv ) = ε iff
uv is equivalent to ε over the free group FA. In [5, Theorem 2], we have proven
that equivalence of LTBs where the output is interpreted over the free group, is
decidable in polynomial time. Thus, we obtain our main theorem.

Theorem 1. Balancedness of 2-TWs is decidable in polynomial time.
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4 Deciding Well-Formedness of Context-Free Grammars

As described in the preceding sections, given a 2-TW we split it into the two
underlying LTBs that process a copy of the input tree. We then check that each
of these two LTBs are equivalent w.r.t. the free group. As sketched in Example 1
we obtain a context-free grammar for the output language of each of these LTBs.
It then remains to check that both context-free grammars are well-formed. In
order to prove that we can decide in polynomial time whether a context-free
grammar is well-formed (short: wf), we proceed as follows:

First, we introduce in Definition 3 the maximal suffix extension of a language
L ⊆ Σ∗ w.r.t. the lcs (denoted by lcsx(L)), i.e. the longest word u ∈ Σ∞ s.t.
lcs(uL) = u lcs(L). We then show that the relation L ≈lcs L′ :⇔ lcs(L) = lcs(L′)∧
lcsx(L) = lcsx(L′) is an equivalence relation on Σ∗ that respects both union and
concatenation of languages (see Lemma 5). It then follows that for every language
L ⊆ Σ∗ there is some subset Tlcs(L) ⊆ L of size at most 3 with L ≈lcs Tlcs(L).

We then use Tlcs to compute a finite ≈lcs-equivalent representation T≤h
X of

the reduced language generated by each nonterminal X of the given context-
free grammar inductively for increasing derivation height h. In particular, we
show that we only have to compute up to derivation height 4N + 1 (with N the
number of nonterminals) in order to decide whether G is wf: In Lemma 7 we show
that, if G is wf, then we have to have T≤4N+1

X ≈lcs T
≤4N
X for all nonterminals X

of G. The complementary result is then shown in Lemma 6, i.e. if G is not wf,
then we either cannot compute up to T≤4N+1

X as we discover some word that is
not wf, or we have T≤4N

X �≈lcs T
≤4N+1
X for at least one nonterminal X.

Maximal Suffix Extension and lcs-Equivalence. We first show that we can com-
pute the longest common suffix of the union L ∪ L′ and the concatenation LL′

of two languages L,L′ ⊆ Σ∗ if we know both lcs(L) and lcs(L′), and in addition,
the longest word lcsx(L) resp. lcsx(L′) by which we can extend lcs(L) resp. lcs(L′)
when concatenating another language from left. In contrast to the computation
of the lcp presented in [7], we have to take the maximal extension lcsx explicitly
into account. In this paragraph we do not consider the involution, thus let Σ
denote an arbitrary alphabet.

Definition 3. For L ⊆ Σ∗ with R = lcs(L) the maximal suffix extension (lcsx)
of L is defined by lcsx(L) := lcs(z

ω| zR ∈ L).

Recall that by definition lcsx(∅) = lcs(∅) = � and lcsx({R}) = lcs(ε

ω

) = �. The
following example motivates the definition of lcsx:

Example 2. Consider the language L = {R, xR, yR} with lcs(L) = R and
lcsx(L) = lcs(x

ω

, y

ω

). Assume we prepend some word u ∈ Σ∗ to L resulting
in the language uL = {uR, uxR, uyR}, see the following picture for an illustra-
tion (dotted boxes represent copies of z ∈ {x, y} stemming from the usual line
of argumentation that, if z is a suffix of u = u′z, then uzR = u′zzR, and thus
eventually covering all of u by z

ω

):
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Ru

Ru x

Rxxxx

Ru y

Ryyy

As motivated by the picture, lcs(uL) is given by lcs(u, x

ω

, y

ω

)R. Using the con-
cept of ultimately left-periodic words, we may also formalize this as follows:

lcs(u{xR, yR,R}) = lcs(u, ux, uy)R
= lcs(lcs(u, ux), lcs(u, uy))R (as lcs(u, ux) = lcs(u, x

ω

))
= lcs(lcs(u, x

ω

), lcs(u, y

ω

))R
= lcs(u, lcs(x

ω

, y

ω

))R = lcs(u, lcsx(L))lcs(L)

In particular, if xy = yx, we can extend lcs by any finite suffix of lcsx(L) = (xy)

ω

(note that, if x = ε = y, then lcsx(L) = ε

ω

= � is defined to be the

greatest element w.r.t.
s
�); but if xy �= yx, we can extend it at most to

lcsx(L) = lcs(x

ω

, y

ω

) = lcs(xy, yx)
s
� xy. Essentially, only three cases can arise

as illustrated by the following three examples:
First, consider L1 = {ab, cb} with lcs(L1) = b. Obviously, for every word

u ∈ Σ∗ we have that lcs(uL1) = lcs(L1) and so we should have lcsx(L1) = ε.
Instantiating the definition we obtain indeed lcsx(L1) = lcs(a

ω

, b

ω

) = lcs(ε) = ε.
As another example consider L2 = {a, baa} with lcs(L2) = a. Here, we obtain

lcsx(L2) = lcs(ε

ω

, (ba)

ω

) = lcs(�, (ba)

ω

) = (ba)

ω

, i.e. the suffix of L2 can be
extended by any finite suffix of (ba)

ω
= . . . bababa.

Finally, consider L3 = {b, banb, abanb} with lcs(L3) = b for some fixed n ∈ N.
As mentioned in Sect. 2, we have lcs(x

ω

, y

ω

) = lcs(xy, yx) for xy �= yx. We thus
obtain in this case lcs((ban)

ω

, (aban)

ω

) = lcs(ban aban, aban ban) = anban. The
classic result by Fine and Wilf states that, if xy �= yx, then |lcs(x ω

, y

ω

)| <
|x| + |y| − gcd(|x|, |y|). Thus x = ban and y = aban constitute an extremal case
where the lcs is only finitely extendable.

If lcs(L) is not contained in L, then lcs(L) has to be a strict suffix of every
shortest word in L, and thus immediately lcsx(L) = ε. As in the case of the lcs,
also lcsx(L) is already defined by two words in L:

Lemma 4. Let L ⊆ Σ∗ with |L| ≥ 2 and R := lcs(L). Fix any xR ∈ L \ {R}.
Then there is some yR ∈ L \ {R} s.t. lcsx(L) = lcs(x

ω

, y

ω

) = lcs(x

ω

, y

ω

, z

ω

) for
all zR ∈ L. If xy = yx, then R ∈ L.

We show that we can compute the lcs and the extension lcsx of the union resp.
the concatenation of two languages solely from their lcs and lcsx. To this end,
we define the lcs-summary of a language as:

Definition 4. For L ⊆ Σ∗ set πlcs(L) := (lcs(L), lcsx(L)). The equivalence rela-
tion ≈lcs on 2Σ∗

is defined by: L ≈lcs L′ iff πlcs(L) = πlcs(L′).

Lemma 5. Let L,L′ ⊆ Σ∗ with πlcs(L) = (R,E) and πlcs(L′) = (R′, E′). If L =
∅ or L′ = ∅, then πlcs(L ∪ L′) = (lcs(R,R′), lcs(E,E′)), and πlcs(LL′) = (�,�).
Assume thus L �= ∅ �= L′ which implies R �= � �= R′. Then:
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– lcs(L ∪ L′) = lcs(R,R′) and lcs(LL′) = lcs(R,E′)R′.
– If lcs(R,R′) �∈ {R,R′}, then lcsx(L ∪ L′) = ε; else w.l.o.g. R′ = δR and

lcsx(L ∪ L′) = lcs(E, lcs(E′, E′δ)δ).
– If lcs(R,E′)

s
� R, then lcsx(LL′) = ε; else E′ = δR and lcsx(LL′) = lcs(E, δ).

Example 3. Lemma 5 can be illustrated as follows:

(L ∪ L′)

lcs(L)
lcs(L′)
lcs(L′)

δ

lcsx(L)

lcsx(L′)
δδδ

(LL′)
lcs(L′)
lcs(L′)lcs(L)

lcs(L)δ

lcsx(L)

lcsx(L′) lcs(L′)

For instance, consider L = {a, baa} and L′ = {aa, baaa} s.t. πlcs(L) = (a, (ba)

ω

)
and πlcs(L′) = (aa, (ba)

ω

). Applying Lemma 5, we obtain for the union lcs(L ∪
L′) = lcs

(
a, aa

)
= a and lcsx(L ∪ L′) = lcs

(
(ba)

ω

, lcs((ba)

ω

, (ba)

ω

a)a
)

= a. In
case of the concatenation, Lemma 5 yields lcs(LL′) = lcs

(
a, (ba)

ω)
aa = aaa and

lcsx(LL′) = lcs
(
(ba)

ω

, (ab)

ω

) = ε.

As both the lcs and the lcsx are determined by already two words (cf. Lem-
mas 1 and 4), it follows that every L ⊆ Σ∗ is ≈lcs-equivalent to some sublanguage
Tlcs(L) ⊆ L consisting of at most three words where the words xR, yR can be
chosen arbitrarily up to the stated constraints (with R = lcs(L)):

Tlcs(L) :=

⎧
⎪⎨

⎪⎩

L if |L| ≤ 2
{R, xR, yR} if {R, xR, yR} ⊆ L ∧ lcsx(L) = lcs(x

ω
, y

ω
)

{xR, yR} if R = lcs(xR, yR) ∧ R �∈ L ∧ {xR, yR} ⊆ L

Deciding Well-Formedness. For the following, we assume that G is a context-free
grammar over B = A∪A with nonterminals X. Set N := |X|. We further assume
that G is nonnegative, and that we have computed for every nonterminal X of G
a word rX ∈ A∗ (represented as an SLP) s.t. |rX | = dX and rX ∈ Prf(ρ(LX)).1 In
order to decide whether G is wf we compute the languages ρ(rXL≤h

X ) modulo ≈lcs

for increasing derivation height h using fixed-point iteration. Assume inductively
that (i) rXL≤h

X is wf and (ii) that we have computed T≤h
X := Tlcs(ρ(rXL≤h

X )) ≈lcs

ρ(rXL≤h
X ) for all X ∈ X up to height h. Then we can compute Tlcs(ρ(rXL≤h+1

X ))
for each nonterminal as follows:

ρ(rXL≤h+1
X )

= ρ(rXL≤h
X ) ∪ ⋃

X→GY ρ(rXrY rY L≤h
Y ) ∪ ⋃

X→GY Z ρ(rXrY rY L≤h
Y rZ rZL≤h

Z )

≈lcs T
≤h
X ∪ ⋃

X→GY ρ(rXrY T≤h
Y ) ∪ ⋃

X→GY Z ρ(rXrY T≤h
Y rZ T≤h

Z )

≈lcs Tlcs

(
ρ
(
T≤h

X ∪ ⋃
X→GY rXrY T≤h

Y ∪ ⋃
X→GY Z rXrY T≤h

Y rZ T≤h
Z

))
=: T≤h+1

X

1 rX is (after reduction) a longest word of closing brackets in ρ(LX) (if G is wf, then
rX is unique). An SLP encoding rX can be computed in polynomial time while
checking that G is nonnegative; see Definition 2 and the subsequent explanations,
and the proof of Lemma 3 in the appendix of the extended version [4]. All required
operations on words run in time polynomial in the size of the SLPs representing the
words, see e.g. [6].
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Note that, if all constants rXrY and all T≤h
X are wf, but G is not wf, then the

computation has to fail while computing rXrY T≤h
Y rZ ; see the following example.

Example 4. Consider the nonnegative context-free grammar G given by the rules
(with the parameter n ∈ N fixed)

S → Uc U → AV | Wn V → UB Wi → Wi−1Wi−1 (2 ≤ i ≤ n)
A → a B → b B → b W1 → BB

with axiom S. Except for B all nonterminals generate nonnegative languages.
Note that the nonterminals Wn to W1 form an SLP that encodes the word b2

n

by
means of iterated squaring which only becomes productive at height h = n + 1.
For h ≥ n + 3 we have:

L≤h
S = {akb2

n

b kc | k ≤ �h−(n+3)
2 �}

L≤h
U = {akb2

n

b k | k ≤ �h−(n+2)
2 �} L≤h

Wi
= {b2

i} L≤h
B = {b}

L≤h
V = {akb2

n

b k+1 | k ≤ �h−(n+3)
2 �} L≤h

A = {a} L≤h

B
= {b }

Here the words rX used to cancel the longest prefix of closing brackets (after
reduction) are rS = rU = rV = rW = rA = rB = ε and rB = b. Note that rXL≤h

X

is wf for all nonterminals X up to h ≤ h0 = 2n+1+(n+2) s.t. Tlcs(ρ(rSL≤h
S )) ≈lcs

T≤h
S = {b2

n

c, akb2
n−k(h)c} for k(h) = �(h − (n + 3))/2� and n + 3 ≤ h ≤ h0; in

particular, the lcs of T≤h
S has already converged to c at h = n+3, only its maximal

extension lcsx changes for n + 3 ≤ h ≤ h0. We discover the first counterexample
a2nb that G is not wf while computing T≤h0+1

V = Tlcs(ρ(T≤h0
U b )).

As illustrated in Example 4, if G is not wf, then the minimal derivation height
h0 + 1 at which we discover a counterexample might be exponential in the size
of the grammar. The following lemma states that up to this derivation height
h0 the representations T≤h

X cannot have converged (modulo ≈lcs).

Lemma 6. If L = L(G) is not wf, then there is some least h0 s.t. rXL≤h0
Y rZ is

not wf with X →G Y Z. For h ≤ h0, all rXL≤h
X are wf s.t. T≤h

X ≈lcs ρ(rXL≤h
X ).

If h0 ≥ 4N +1, then at least for one nonterminal X we have T≤4N+1
X �≈lcs T

≤4N
X .

The following Lemma 7 states the complementary result, i.e. if G is wf then the
representations T≤h

X have converged at the latest for h = 4N modulo ≈lcs. The
basic idea underlying the proof of Lemma7 is similar to [7]: we show that from
every derivation tree of height at least 4N +1 we can construct a derivation tree
of height at most 4N such that both trees carry the same information w.r.t. the
lcs (after reduction). In contrast to [7] we need not only to show that T≤4N

X has
the same lcs as ρ(rXL≤4N

X ), but that T≤4N
X has converged modulo ≈lcs if G is wf;

to this end, we need to explicitly consider lcsx, and re-prove stronger versions of
the results regarding the combinatorics on words which take the involution into
account (see A.6 in the appendix of the extended version [4]).
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Lemma 7. Let G be a context-free grammar with N nonterminals and L(G) be
wf. For every nonterminal X let rX ∈ A∗ s.t. |rX | = dX and rXLX wf. Then
ρ(rXLX) ≈lcs ρ(rXL≤4N

X ), and T≤4N
X ≈lcs T

≤4N+1
X for every nonterminal X.

The following example sketches the main idea underlying the proof of Lemma7.

Example 5. The central combinatorial observation2 is that for any well-formed
language L ⊆ B∗ of the form

L = (α, β)[(μ1, ν1) + (μ2, ν2)]∗γ := {αμi1 . . . μilγνil . . . νi1β | i1 . . . il ∈ {1, 2}∗}

we have that its longest common suffix after reduction lcsρ(L) := lcs(ρ(L))
is determined by the reduced longest common suffix of αγβ and either
(α, β)(μi, νi)γ = αμiγνiβ or (α, β)(μi, νi)(μj , νj)γ = αμiμjγνjνiβ for some
i ∈ {1, 2} but arbitrary j ∈ {1, 2} in the latter case.3

Assume now we are given a context-free grammar G with N variables. Further
assume that L := L(G) is well-formed. W.l.o.g. G is in Chomsky normal form
and reduced to the productive nonterminals reachable from the axiom of G. Let
L≤4N denote the sublanguage of words generated by G with a derivation tree
of height at most 4N . Pick a shortest (before reduction) word κ0 ∈ L := L(G).
Then there is some κ1 ∈ L with R := lcsρ(L) = lcsρ(κ0, κ1); we will call any
such word a witness (w.r.t. κ0) in the following. If R ∈ L, then κ0

ρ
= R, and

any word in L is a witness. In particular, there is a witness in L≤4N . So assume
R �∈ L. Then we may factorize (in a unique way) κ0 = κ′′

0aκ′
0 and κ1 = κ′′

1bκ′
1

such that ρ(κ′
0) = R = ρ(κ′

1) where a, b ∈ A with a �= b. Then ρ(κ0) = z′
0aR and

ρ(κ1) = z′
1bR. Further assume that κ1 �∈ L≤4N , otherwise we are done. Fix any

derivation tree t of κ1, and fix within t the main path from the root of t to the
last letter b of the suffix bκ′

1 of ρ(κ1) (the dotted path in Fig. 1). We may assume
that any path starting at a node on this main path and then immediately turning
left towards a letter within the prefix κ′′

1 consists of at most N nonterminals: if
any nonterminal occurs twice the induced pumping tree can be pruned without
changing the suffix bκ′

1; as the resulting tree is still a valid derivation tree w.r.t.
G, we obtain another witness w.r.t. κ0. Thus consider any path (including the
main path) in t that leads from its root to a letter within the suffix bκ′

1. If every
such path consists of at most 3N nonterminals, then every path in t consists
of at most 4N nonterminals so that κ1 ∈ L≤4N follows. Hence, assume there is
at least one such path consisting of 3N + 1 nonterminals. Then there is some
nonterminal X occurring at least four times on this path. Fix four occurrences
of X and factorize κ1 accordingly

κ1 = us1s2s3wτ3τ2τ1v =: (u, v)(s1, τ1)(s2, τ2)(s3, τ3)w
2 This observation strengthens the combinatorial results in [7] and also allows to

greatly simplify the original proof of convergence given there.
3 To clarify notation, we set (α, β)(μ, ν) := (αμ, νβ) and (α, β)γ := αγβ, i.e. the

pair (α, β) is treated as a word with a “hole” into which the pair or word on the
right-hand side is substituted.
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Fig. 1. Factorization of a witness κ1 = (u, v)(s1, t1)(s2, t2)(s3, t3)w = κ′′
1 bκ′

1 w.r.t. a
nonterminal X occurring at least four times a long the dashed path in a derivation tree
of κ1 leading to a letter within the suffix bκ′

1. The dotted path depicts the main path
leading to the lcsρ-delimiting occurrence of the letter b.

In the proof of Lemma7 we show that we may assume—as L is well-formed—
that u, v, w, s1, s2, s3 ∈ A∗ with only τ1, τ2, τ3 ∈ B∗. From this factorization we
obtain the sublanguage L′ := (u, v)[(s1, τ1) + (s2, τ2) + (s3, τ3)]∗w. Our goal
is to show that (u, v)w or (u, v)(si, τi)w or (u, v)(si, τi)(sj , τj)w (for i �= j)
is a witness w.r.t. κ0: note that each of these words result from pruning at
least one pumping tree from t which inductively leads to a procedure to reduce
t to a derivation tree of height at most 4N that still yields a witness for
R = lcsρ(L) w.r.t. κ0. Assume thus specifically that neither (u, v)w = uwv nor
(u, v)(s3, τ3)w = us3wτ3v nor (u, v)(si, τi)(s3, τ3)w = usis3wτ3τiv for i ∈ {1, 2}
is a witness w.r.t. κ0, i.e. each of these words end on aR after reduction.
Apply now the result mentioned at the beginning of this example to the lan-
guage L′′ := (u, v)[(s1, τ1) + (s2, τ2)]∗(s3, τ3)w: by our assumptions κ1 ∈ L′′

is a witness w.r.t. us3wτ3v ∈ L′′ so that both lcsρ(L′′) = lcsρ(L) and also
(u, v)(s1, τ1)2(s3, τ3)w is a witness w.r.t. us3wτ3v as we may choose j = 1.
Thus also lcsρ(L) = lcsρ(L′′′) for L′′′ := (u, v)[(s1, τ1) + (s3, τ3)]∗w as L′′′ ⊆ L
and both (u, v)w ∈ L′′′ and (u, v)(s1, τ1)(s1, τ1)(s3, τ3)w ∈ L′′′. Applying the
same argument now to L′′′, but choosing j �= i it follows that (u, v)(s1, τ1)w or
(u, v)(s3, τ3)(s1, τ1)w has to be a witness w.r.t. κ0.

The sketched argument can be adapted so that it also allows to conclude the
maximal extension after reduction lcsx(ρ(L)) has to have converged at derivation
height 4N the latest, if L is well-formed. For details, see the proof of Lemma 7
in the appendix of the extended version [4].

As |T≤h
X | ≤ 3, a straight-forward induction also shows that every word in T≤h

X

can be represented by an SLP that we can compute in time polynomial in G for
h ≤ 4N + 1; together with the preceding Lemmas 7 and 6 we thus obtain the
main result of this section:
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Theorem 2. Given a context-free grammar G over B we can decide in time
polynomial in the size of G whether G is wf.

5 Conclusion

We have shown that well-formedness for context-free languages is decidable in
polynomial time. This allowed us to decide in polynomial time whether or not a
2-TW is balanced. The presented techniques, however, are particularly tailored
for 2-TWs. It is unclear how a generalization to transducers processing three or
more copies of the input would look like. Thus, the question remains whether
balancedness is decidable for general MSO definable transductions. It is also open
whether even the single bracket case can be generalized beyond MSO definable
transduction, e.g. to output languages of top-down tree-to-word transducers [12].

Acknowledgements. We also like to thank the anonymous reviewers for their
detailed comments and valuable advice.
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4. Löbel, R., Luttenberger, M., Seidl, H.: On the balancedness of tree-to-word trans-
ducers. CoRR abs/1911.13054 (2019). http://arxiv.org/abs/1911.13054
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