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Abstract. Tree substitution grammars are formal models that are used
extensively in natural language processing. It is demonstrated that their
expressive power is located strictly between the local tree grammars and
the regular tree grammars. A decision procedure for the problem of deter-
mining whether a tree substitution grammar generates a local tree lan-
guage is provided. Unfortunately, the class of tree substitution languages
is neither closed under union, nor intersection, nor complements. Indeed
unions of tree substitution languages even generate an infinite hierarchy.
However, all finite and all co-finite tree languages are tree substitution
languages.

1 Introduction

Trees are a fundamental data structure in computer science and are used in many
application areas like natural language processing [12], database theory [1], and
compiler construction [17]. All the mentioned applications as well as others [6,7]
require effective representations of sets of trees, also called tree languages. These
requirements triggered detailed investigations of various classes of tree languages
since the 1960s and by now there exists an abundance of models [5].

The most robust of those classes of tree languages are the regular tree lan-
guages [6,7], which are generated by finite-state tree automata, which are a
natural extension of the finite-state string automata that generate the regular
string languages [18]. Most standard problems are decidable for the regular tree
languages and they generally enjoy the same nice algorithmic properties as the
regular string languages. The main feature of those automata are their finitely
many states, which enable most of the positive properties. However, these states
are not exhibited directly in the trees generated. In application areas like nat-
ural language processing, in which representations of tree languages have to be
inferred from finite sets of trees, practitioners often resorted to simpler models,
in which the representation can more readily be induced from the sample.

Tree substitution grammars were originally introduced as a special case of
tree-adjoining grammars [9,11], in which no adjunction is allowed. This restric-
tion proved useful in the lexicalization of context-free grammars [10]. However,
tree substitution grammar soon became popular in the parsing community [15]
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under the approach called data-oriented parsing [3] and were the formal model
of many state-of-the-art parsers [16]. Similarly, synchronous tree substitution
grammars, which are the same as the syntax-directed translation schemes of [2],
are used in many statistical machine translation models [4,8,13,14]. Despite the
multitude of applications, a fundamental study of their expressive power is miss-
ing. Rather they are attributed properties like “extended domain of locality”,
which provides some intuition, but has no formal definition.

A tree substitution grammar G is essentially a finite set F of tree fragments
together with a set R of permissible root labels. Those tree fragments can be
arbitrarily tall or large, which distinguishes tree substitution grammars from
local tree grammars [6,7]. In addition, the fragments can contain leaves that
are labeled by internal symbols. Leaves with such labels are called open and
can be expanded further by fragments of F that have the same symbol as root
label. Indeed G generates trees from a permissible root label of R by successively
expanding open leaves with fragments of F until no open leaves remain. The set
of all trees derivable in this manner is called the tree language generated by G.
The tree languages that can be generated by some tree substitution grammar
are called the tree substitution languages.

In this contribution we start a fundamental study of the expressive power
of tree substitution grammars. We show that tree substitution grammars are
strictly more expressive than local tree grammars [6,7], but strictly less expres-
sive than finite-state tree automata (see Corollary 10). This, in particular, yields
that most standard decision problems are also decidable for tree substitution
languages because they are regular. In addition, it is decidable to determine
whether a given tree substitution language is local (see Theorem 8). The decid-
ability status of the related question whether a given regular tree language is a
tree substitution language remains open. It is interesting to note that all finite
and co-finite tree languages are tree substitution languages (see Theorem6),
which makes them much more useful for the approximation of finite samples of
trees than the local tree languages, which do not contain all finite tree languages.

We also investigate the closure properties of the tree substitution languages.
Unfortunately, they are neither closed under union (see Theorem9), nor under
intersection (see Theorem 13), nor under complement (see Theorem 14). In fact,
unions of tree substitution languages even form a strict hierarchy (see Theo-
rem 11), so unions of k tree substitution languages are strictly less expressive
than unions of k + 1 tree substitution languages. A similar hierarchy is sig-
nificantly more difficult to prove for intersections and remains an open prob-
lem because intersections break the “extended domain of locality” (as shown in
the proof of Theorem13) and can manage a non-explicit information transport
over unbounded distances in the trees. Indeed the trivial union construction,
which just takes the union of the fragments of the individual tree substitu-
tion grammars G1, . . . , Gn, does yield a tree substitution grammar G that can
generate each tree that can be generated by some Gi. However, G might over-
generalize in the sense that it may also generate trees that cannot be generated
by any G1, . . . , Gn. This property is utilized in grammar induction to generalize
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beyond the seen data. Overall, the expressive power of tree substitution gram-
mars is interesting and offers new challenging problems because they are used
extensively in real-world applications despite their brittle expressive power. It
is exactly this absence of good closure properties, which requires separate argu-
ments for each individual problem and thus makes several problems challenging
as outlined in the open problems section.

2 Preliminaries

We denote the set of nonnegative integers (including 0) by N. For every k ∈ N,
we use the subset [k] = {i ∈ N | 1 ≤ i ≤ k}. An alphabet A is simply a finite set
and A∗ =

⋃
k∈N Ak is the set of all finite words over A, where Ak = A × · · · × A

containing k factors A and A0 = {ε}, of which ε is called the empty word. The
length |w| of a word w = a1 · · · ak ∈ A∗ with a1, . . . , ak ∈ A is |w| = k; i.e. the
number of symbols making up w. Given words v, w ∈ A∗, their concatenation
is written v.w or simply vw. We write v � w provided that there exists u ∈ A∗

such that vu = w. The relation � is actually a partial order, called the prefix
order.

Let S be a set and R ⊆ S × S be a relation. The identity on S is the rela-
tion idS = {(s, s) | s ∈ S}. Given another relation R′ ⊆ S × S, the composition
R ; R′ is given by R ; R′ = {(s1, s3) | ∃s2 ∈ S : (s1, s2) ∈ R, (s2, s3) ∈ R′}.
The relation R is reflexive if idS ⊆ R, and it is transitive if R ; R ⊆ R. The
reflexive, transitive closure of R is R∗ =

⋃
k∈N Rk and the transitive closure of R

is R+ =
⋃

k≥1 Rk, where R0 = idS and Rk = R ; · · · ; R containing k times the
relation R.

A ranked alphabet (Σ, rk) is a pair consisting of an alphabet Σ and a map-
ping rk: Σ → N that assigns a rank to each symbol of Σ. We usually denote
a ranked alphabet (Σ, rk) by just Σ alone when the ranks are clear. We also
write σ(k) to indicate that rk(σ) = k. Moreover, for every k ∈ N, we let
Σk = {σ ∈ Σ | rk(σ) = k}. Given a ranked alphabet Σ and a set Z, the
set TΣ(Z) of Σ” trees indexed by Z is the smallest set T such that Z ⊆ T and
σ(t1, . . . , tk) ∈ T for every k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ T . We abbrevi-
ate TΣ(∅) simply to TΣ , and any subset L ⊆ TΣ is called tree language. It is
co-finite if TΣ \ L is finite.

Next, we recall some common notions and notations for trees. In the fol-
lowing, let t ∈ TΣ(Z) be a tree for a ranked alphabet Σ and a set Z. The
set pos(t) of positions of t is inductively defined by pos(z) = {ε} for all z ∈ Z,
and pos(σ(t1, . . . , tk)) = {ε}∪{i.p | i ∈ [k], p ∈ pos(ti)} for every k ∈ N, σ ∈ Σk,
and t1, . . . , tk ∈ TΣ(Z). The height of t is defined by ht(t) = maxp∈pos(t) |p|, and
the size of t is defined by |t| = |pos(t)|. A leaf is a position p ∈ pos(t) such
that p.1 /∈ pos(t). We denote the subset of leaves of pos(t) by leaf(t). Given a
position p ∈ pos(t), the label t(p) of t at p and the subtree t|p of t at p are
defined by z(ε) = z|ε = z for all z ∈ Z, and
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Fig. 1. Fragments of the TSG of Example 2.

(
σ(t1, . . . , tk)

)
(p) =

{
σ if p = ε

ti(p′) if p = i.p′ with i ∈ N and p′ ∈ pos(ti)

σ(t1, . . . , tk)|p =

{
σ(t1, . . . , tk) if p = ε

ti|p′ if p = i.p′ with i ∈ N and p′ ∈ pos(ti)

for all k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ(Z). Finally, the replacement t[u]p
of the leaf p ∈ leaf(t) by another tree u ∈ TΣ(Z) is given by α[u]ε = u for
every α ∈ Z ∪Σ0, and σ(t1, . . . , tk)[u]i.p′ = σ(t1, . . . , ti−1, ti[u]p′ , ti+1, . . . , tk) for
every k ∈ N, i ∈ [k], σ ∈ Σk, t1, . . . , tk ∈ TΣ(Z), and p′ ∈ pos(ti).

We reserve the use of the special symbol �. A tree t ∈ TΣ(Z ∪ {�}) is a
context, if there exists exactly one p ∈ pos(t) with t(p) = �; i.e., there is exactly
one occurrence of � in t. The set of all such contexts is denoted by CΣ(Z). Given
a context c ∈ CΣ(Z) and a tree t ∈ TΣ(Z ∪ {�}), the substitution c[t] of t into c
yields the tree c[t]p, where p is the unique position p ∈ pos(c) with c(p) = �.
Note that given c, c′ ∈ CΣ(Z), also c[c′] ∈ CΣ(Z). Similarly, we write ck[t] for
c[c[· · · c[t] · · · ]] containing the context c a total of k times.

Finally, let us recall regular tree grammars (RTGs) [6,7]. An RTG is a tuple
G = (Q,Σ,Q0, P ), where Q is a finite set of states such that Q ∩ Σ = ∅,
Σ is a ranked alphabet of input symbols, Q0 ⊆ Q is a set of initial states, and
P ⊆ Q×TΣ(Q) is a finite set of productions. We also write productions (q, t) as
q → t. The derivation relation for ξ, ζ ∈ TΣ(Q) is defined for every ξ, ζ ∈ TΣ(Q)
by ξ ⇒G ζ if and only if there exists a production q → t ∈ P and a context c ∈
CΣ(Q) such that ξ = c[q] and ζ = c[t]. The tree language generated by G is
L(G) =

⋃
q∈Q0

{t ∈ TΣ | q ⇒+
G t}. A tree language L is regular if there exists

an RTG G such that L(G) = L. The class of regular tree languages is denoted
by RTL. We note that RTL coincides with the class of tree languages generated
by tree automata [6,7].
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Fig. 2. Example derivation steps using the TSG G of Example 2.

3 Tree Substitution Grammars

Let us start with the formal definition of tree substitution grammars (TSGs)
taken essentially from the natural language processing community [10,11]. TSGs
have been applied to various tasks including parsing [16] and machine transla-
tion [19]. Consequently, the definitions of TSGs vary, but our definition captures
the essence of the notion, while still being convenient to work with.

Definition 1. A tree substitution grammar (TSG) is a tuple G = (Σ,R, F ), in
which Σ is a ranked alphabet of input symbols, R ⊆ Σ is a set of root labels,
and F ⊆ TΣ(Σ) \ Σ is a finite set of fragments. The TSG G is a local tree
grammar (LTG) if ht(f) ≤ 1 for all f ∈ F .

Example 2. Consider the ranked alphabet Σ = {σ(2), δ(2), α(0), β(0)} and the
TSG G = (Σ, {σ}, F ) with the fragments displayed in Fig. 1. Clearly, this TSG
is not an LTG due to the third and fourth fragment.

Next we present the derivation semantics for a TSG G = (Σ,R, F ). Essen-
tially we start the derivation process with a tree consisting solely of a root label
of R and then iteratively replace a leaf by a fragment of F with the same root
label. This process can be repeated until no replacements are possible anymore. If
the such obtained tree t contains only leaves that are labeled by nullary symbols,
then t is part of the tree language generated by G.

Definition 3. Let G = (Σ,R, F ) be a TSG. For any two trees ξ, ζ ∈ TΣ(Σ),
we write ξ ⇒G ζ if there exists a fragment f ∈ F and a context c ∈ CΣ(Σ)
such that ξ = c[f(ε)] and ζ = c[f ]. The TSG G generates the tree language
L(G) = {t ∈ TΣ | ∃σ ∈ R : σ ⇒∗

G t}.

Example 4. Let Σ = {σ(2), γ(1), α(0)} and consider the TSG G = (Σ, {σ}, F )
with the fragments displayed in Fig. 3. The derivation presented in Fig. 3 illus-
trates that a derived tree can contain several leaves that still need to be inde-
pendently replaced. More precisely, both occurrences of γ in the tree σ(γ, γ) are
independently replaced in the displayed derivation.
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Fig. 3. Fragments of the TSG G of Example 4 and example derivation steps.

Example 5. Consider the TSG G from Example 2. A few derivation steps are
displayed in Fig. 2. Let cα = δ(α, δ(α, �)) and cβ = δ(β, δ(β, �)). Overall, this
TSG generates the tree language

{
σ(x, c1[· · · cn[δ(y, α)] · · · ]) | x, y ∈ {α, β}, n ∈ N, ∀i ∈ [n] : ci ∈ {cα, cβ}}

.

Two TSGs G and G′ are equivalent if L(G) = L(G′). A tree language L is
a tree substitution language if there exists a TSG G such that L = L(G), and
it is local [6,7] if there exists a local tree grammar G such that L = L(G). The
classes of all tree substitution languages and all local tree languages are denoted
by TSL and LTL, respectively.

4 Expressive Power

In this section, we investigate the expressive power of tree substitution grammars
and start with some simple tree languages that are contained in TSL. To this
end, let FIN and co-FIN be the classes of all finite and all co-finite tree languages,
respectively.

Theorem 6. FIN ∪ co-FIN ⊆ TSL.

Proof. Every finite tree language L ⊆ TΣ is trivially a tree substitution language
via the TSG (Σ,R,L) with R = {t(ε) | t ∈ L}.

Now, let L ⊆ TΣ be a co-finite tree language and TΣ \L = {t1, . . . , tk} be the
finitely many trees outside L. Moreover, let n > maxi∈[k] ht(ti) be larger than
the height of the tallest tree from {t1, . . . , tk}. We construct the TSG (Σ,R, F )
with

– R = {t(ε) | t ∈ L} and
– F = {t ∈ L | ht(t) ≤ 2n} ∪ {t ∈ TΣ(Σ) | n ≤ ht(t) ≤ 2n}.

Clearly, F is finite. Now we prove L(G) = L. For L(G) ⊆ L it is sufficient to
show that ti /∈ L(G) for every i ∈ [k]. Obviously, the fragments of F are either
in L or have height at least n, which proves L(G) ⊆ L. We prove the converse
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L ⊆ L(G) by contradiction, so suppose that there exists t ∈ L with t /∈ L(G).
Then there also exists a smallest t′ ∈ L with t′ /∈ L(G). Since all trees t′ ∈ L
with ht(t′) ≤ 2n can be generated directly using a single fragment from F , we
must have ht(t′) > 2n. Let

P = {p ∈ pos(t′) | |p| ≤ n, ∃p′ ∈ pos(t′) : p � p′, |p′| > 2n}
be the short positions that are prefixes to long positions, and let C = max� P
be the maximal (with respect to �) elements of P . We construct the unique
tree f ∈ TΣ(Σ) with positions

pos(f) = {p ∈ pos(t′) | |p| ≤ 2n} \ {p ∈ pos(t′) | ∃c ∈ C : c ≺ p}
and labels f(p) = t′(p) for all p ∈ pos(f). In other words, we obtain f by cutting
all paths in t′ that have length more than 2n at length n. Obviously, f ∈ F .
In addition, we observe that ht(t′|p) > n for all p ∈ C. For every p ∈ C, we
thus obtain t′|p ∈ L and t′|p ∈ L(G) since |t′|p| < |t′| and t′ is the smallest
counterexample. However, this yields that t′(ε) ⇒G f as well as f(p) ⇒∗

G t′|p
for all p ∈ C. Altogether t′(ε) ⇒∗

G t′, which proves that t′ ∈ L(G) contradicting
the assumption. ��

Next we relate the class of tree substitution languages to the well-known
classes of local and regular tree languages, respectively. Unsurprisingly, they are
situated strictly between them, but the second strictness will be established later
(see Corollary 10).

Theorem 7. LTL � TSL ⊆ RTL.

Proof. The first inclusion holds by definition. For the latter, let G = (Σ,R, F ) be
a TSG and S /∈ Σ a new symbol. We construct an RTG G′ = (Σ ∪{S}, Σ, S, P )
such that L(G′) = L(G). To this end, we use copies Σ = {σ | σ ∈ Σ} of the
input symbols of Σ as states. The productions are given by P = PS ∪ P ′ with

PS = {S → rel(σ) | σ ∈ R}
P ′ = {f(ε) → rel(f) | f ∈ F},

where rel : TΣ(Σ) → TΣ(Σ) is inductively defined by

rel(σ) =

{
σ if σ ∈ Σ0

σ otherwise

for every σ ∈ Σ and rel(σ(t1, . . . , tk)) = σ(rel(t1), . . . , rel(tk)) for all k ∈ N\{0},
σ ∈ Σk, and t1, . . . , tk ∈ TΣ(Σ). Clearly any derivation ξ0 ⇒G ξ1 ⇒G · · · ⇒G ξn

of G yields a corresponding derivation rel(ξ0) ⇒G′ rel(ξ1) ⇒G′ · · · ⇒G′ rel(ξn)
of G′. Together with rel(t) = t for all t ∈ TΣ and the new initial states, we obtain
L(G) ⊆ L(G′). The converse is proved similarly.

The first inclusion is strict because FIN ⊆ TSL by Theorem 6, but it is well-
known [6,7] that FIN �⊆ LTL. ��
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Fig. 4. The tree languages L(G1) and L(G2) used in the proof of Theorem9.

The inclusion TSL ⊆ RTL immediately yields that most interesting prob-
lems are decidable for tree substitution languages. For example, the emptiness,
finiteness, inclusion, and equivalence problems are all decidable because they are
decidable for regular tree languages [6,7]. We proceed with a subclass definabil-
ity problem: Is it decidable whether an effectively presented tree substitution
language is local? Whenever we speak about an effectively presented tree sub-
stitution language L, we assume that we are actually given a tree substitution
grammar G such that L(G) = L. Let G = (Σ,R, F ) be a TSG. A fragment f ∈ F
is useless if G and (Σ,R, F \ {f}) are equivalent. The TSG G is reduced if no
fragment f ∈ F is useless. Clearly, for every TSG we can construct an equivalent
reduced TSG.

Theorem 8. For every effectively presented L ∈ TSL, it is decidable whether
L ∈ LTL.

Proof. Let G = (Σ,R, F ) be a reduced tree substitution grammar such that
L(G) = L. We construct the local tree grammar G′ = (Σ,R, F ′) with

F ′ = {f(p)(f(p.1), . . . , f(p.k)) | f ∈ F, k ∈ N, p ∈ pos(f) \ leaf(f), f(p) ∈ Σk}.

Obviously, L = L(G) ⊆ L(G′) and all fragments of F ′ are essential for this prop-
erty. Consequently, L is local if and only if L(G′) ⊆ L. Since both L(G′) and L are
regular by Theorem7 and inclusion is decidable for regular tree languages [6,7],
we obtain the desired statement. ��

5 Closure Properties

In this section, we investigate the closure properties of the class of tree substitu-
tion languages. More specifically, we investigate the Boolean operations and the
hierarchy for union. Unfortunately, the results are all negative, but they and,
in particular, their proofs shed additional light on the expressive power of tree
substitution languages. Let us start with union.

Theorem 9. TSL is not closed under union.
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Proof. Consider the ranked alphabet Σ = {σ(2), γ(1), α(0), β(0)} and the LTGs

G1 =
(
Σ, {σ}, {σ(γ, α), γ(γ), γ(α)})

G2 =
(
Σ, {σ}, {σ(γ, β), γ(γ), γ(β)}),

which generate the local tree languages (see Fig. 4)

L(G1) =
{
σ
(
cn[α], α

) | n ∈ N
}

and L(G2) =
{
σ
(
cn[β], β

) | n ∈ N
}

with c = γ(�). Now suppose that their union L = L(G1) ∪ L(G2) is a tree
substitution language; i.e., L ∈ TSL. Hence there exists a TSG G = (Σ,R, F )
such that L(G) = L. Let n ∈ N be such that n > maxf∈F ht(f). Since t =
σ(cn[α], α) ∈ L, there must exist a derivation σ ⇒∗

G t and σ ∈ R. Since ht(t) >
n at least two derivation steps are required, so σ ⇒G σ(ck[γ], α) ⇒+

G t for
some 0 ≤ k < n, which yields the subderivation γ ⇒+

G cn−k[α]. In the same
manner we consider the tree t′ = σ(cn[β], β) ∈ L, for which the derivation
σ ⇒G σ(c�[γ], β) ⇒+

G t′ for some 0 ≤ � < n and the subderivation γ ⇒+
G cn−�[β]

must exist. However, exchanging the subderivations yields the derivation

σ ⇒G σ(ck[γ], α) ⇒+
G σ(ck[cn−�[β]], α),

which shows σ(cn−�+k[β], α) ∈ L(G) = L contradicting L = L(G1) ∪ L(G2). ��
Since the class of regular tree languages is closed under union [6,7], we obtain

the following corollary from Theorems 7 and 9.

Corollary 10. LTL � TSL � RTL.

We demonstrated that the union of two tree substitution languages need
not be a tree substitution language. Next, we ask ourselves whether additional
unions increase the expressive power even further. For every k ∈ N let

∪k-TSL = {L1 ∪ · · · ∪ Lk | L1, . . . , Lk ∈ TSL}

be the class of those tree languages that can be presented as unions of k tree
substitution languages. Since ∅ ∈ TSL (see Theorem 6), we obtain ∪0-TSL = ∅,
∪1-TSL = TSL, and ∪k-TSL ⊆ ∪k+1-TSL for every k ∈ N. Next, we show that
the mentioned inclusion is actually strict, so that we obtain an infinite hierarchy.

Theorem 11. ∪k-TSL � ∪k+1-TSL for all k ∈ N.

Proof. The statement is clear for k = 0, so let k ≥ 1. Consider the ranked
alphabet Σ = {σ(2), δ(2), α(0)} and the TSG Gi = (Σ, {σ}, Fi) for every i ∈
[k + 1], where

Fi = {σ(δ, si), si, δ(δ, α), δ(si, α)}
and si = ci

r[α] with cr = δ(α, �). Clearly, L(Gi) = {σ(cn
� [si], si) | n ∈ N} with

c� = δ(�, α). The tree substitution language L(Gi) and the tree si are illustrated
in Fig. 5.



246 A. Maletti and K. Stier

Fig. 5. Illustration of the tree substitution languages used in the proof of Theorem11.

Obviously, L = L(G1) ∪ · · · ∪ L(Gk+1) ∈ ∪k+1-TSL and those individual
tree languages are infinite and pairwise disjoint. For the sake of a contradiction,
assume that L ∈ ∪k-TSL; i. e. there exist L′

1, . . . , L
′
k ∈ TSL such that L = L′

1 ∪
· · · ∪ L′

k. The pigeonhole principle establishes that there exist i ∈ [k] and m,n ∈
[k+1] with m �= n such that Lm∩L′

i and Ln∩L′
i are infinite. Let G = (Σ,R, F ) be

a TSG such that L(G) = L′
i. Let z > maxf∈F ht(f). Since Lm ∩L(G) is infinite,

there exists x > z such that σ(cx
� [sm], sm) ∈ L(G). Similarly, there exists y > z

such that σ(cy
� [sn], sn) ∈ L(G) because Ln ∩ L(G) is infinite. Inspecting the

derivations for those trees there exist x′, y′ ∈ N such that

σ ⇒G σ(cx′
� [δ], sm) ⇒∗

G σ(cx
� [sm], sm) with subderivation δ ⇒+

G cx−x′
� [sm]

σ ⇒G σ(cy′
� [δ], sn) ⇒∗

G σ(cy
� [sn], sn) with subderivation δ ⇒+

G cy−y′
� [sn]

Exchanging the subderivations we obtain

σ ⇒G σ(cx′
� [δ], sm) ⇒∗

G σ(cx′+y−y′
� [sn], sm)

and thus σ(cx′+y−y′
� [sn], sm) ∈ L(G) ⊆ L, which is a contradiction because

m �= n. ��
Corollary 12 (of Theorem 11).

∪0-TSL � ∪1-TSL � ∪2-TSL � ∪3-TSL � ∪4-TSL � · · ·
Let us move on to intersection. Unfortunately, TSL is not closed under inter-

section, but intersections of TSL become quite powerful. In particular, they allow
information to be transported over unbounded distances, which can be observed
from the proof.

Theorem 13. TSL is not closed under intersection.

Proof. Recall the ranked alphabet Σ = {σ(2), δ(2), α(0), β(0)} and the TSG G of
Example 2 as well as the contexts cα = δ(α, δ(α, �)) and cβ = δ(β, δ(β, �)) from
Example 5. Additionally, let G′ = (Σ, {σ}, F ′) with F ′ displayed in Fig. 6. The
generated tree substitution languages L(G) and L(G′) are

{
σ(x, c1[· · · cn[δ(y, α)] · · · ]) | x, y ∈ {α, β}, n ∈ N, ∀i ∈ [n] : ci ∈ {cα, cβ}}

{
σ(x, δ(x, c1[· · · cn[α] · · · ]) | x ∈ {α, β}, n ∈ N, ∀i ∈ [n] : ci ∈ {cα, cβ}}
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Fig. 6. Fragments of the TSG G′ used in the proof of Theorem13.

Fig. 7. Tree substitution languages L(G) and L(G′) used in the proof of Theorem13.

respectively, which are also illustrated in Fig. 7. Their intersection

L(G) ∩ L(G′) =
{
σ(α, δ(α, cα[· · · cα[α] · · · ]) | n ∈ N

} ∪
{
σ(β, δ(β, cβ [· · · cβ [α] · · · ]) | n ∈ N}

contains only trees, in which all left children along the spine carry the same label.
This tree language is not a tree substitution language, which can be proved using
the subderivation exchange technique used in the proof of Theorem9. ��

Note how the intersection achieves a global synchronization in the proof
of Theorem 13. This power makes the investigation of the intersection hierarchy
difficult. We leave the strictness of the intersection hierarchy as an open problem
and conclude by considering the complement.

Theorem 14. TSL is not closed under complements.

Proof. Consider the ranked alphabet Σ = {γ(1), A(1), B(1), α(0), β(0)} and the
LTG G = (Σ, {γ}, F ) with fragments

F = {γ(A), A(A), A(α)} ∪ {γ(B), B(B), B(β)}.
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Fig. 8. Trees used in the proof of Theorem14.

The generated tree language is illustrated in Fig. 8. Now suppose that its com-
plement L = TΣ(Σ)\L(G) is a tree substitution language; i.e., L ∈ TSL. Hence
there exists a TSG G′ = (Σ,R, F ) such that L = L(G′). Let n ∈ N be such
that n > maxf∈F ht(f). Since t = γ(An(β)) ∈ L (see Fig. 8) there must exist
a derivation γ ⇒∗

G t and γ ∈ R. Since ht(t) > n at least two derivation steps
are required, so γ ⇒G γ(Ak) ⇒+

G t for some 0 ≤ k < n, which yields the sub-
derivation A ⇒+

G An−k(β). Similarly, we consider the tree t′ = γ(B(An(α))) ∈ L
(see Fig. 8), for which the derivation γ ⇒+

G γ(B(A�)) ⇒+
G t′ for some 0 ≤ � < n

and the subderivation A ⇒+
G An−�(α) must exist. However, exchanging the sub-

derivations yields the derivation

γ ⇒G γ(Ak) ⇒+
G γ(Ak(An−�(α)),

which shows γ(Ak(An−�(α)) ∈ L(G′) = L contradicting L = TΣ(Σ) \ L(G). ��

6 Open Problems

We showed that it is decidable whether a given tree substitution language is
local. It remains open if we can also decide whether a given regular tree lan-
guage is a tree substitution language. Progress on this problem will probably
provide additional fine-grained insight into the expressive power of tree substi-
tution grammars in comparison to the regular tree grammars.

Another open problem concerns the intersection hierarchy. We showed that
unions of tree substitution languages can progressively express more and more
tree languages. A similar hierarchy also exists for intersections of tree substi-
tution languages and we showed that the intersection of two tree substitution
languages is not necessarily a tree substitution languages. However, it remains
open whether there is an infinite intersection hierarchy or whether it collapses
at some level.
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