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Abstract. In 1985, Restivo and Salemi presented a list of five problems
concerning power free languages. Problem 4 states: Given α-power-free
words u and v, decide whether there is a transition from u to v. Problem
5 states: Given α-power-free words u and v, find a transition word w, if
it exists.

Let Σk denote an alphabet with k letters. Let Lk,α denote the α-power
free language over the alphabet Σk, where α is a rational number or a
rational “number with +”. If α is a “number with +” then suppose k ≥ 3
and α ≥ 2. If α is “only” a number then suppose k = 3 and α > 2 or
k > 3 and α ≥ 2. We show that: If u ∈ Lk,α is a right extendable word
in Lk,α and v ∈ Lk,α is a left extendable word in Lk,α then there is a
(transition) word w such that uwv ∈ Lk,α. We also show a construction
of the word w.

Keywords: Power free languages · Transition property · Dejean’s
conjecture

1 Introduction

The power free words are one of the major themes in the area of combinatorics
on words. An α-power of a word r is the word rα = rr . . . rt such that |rα|

|r| = α

and t is a prefix of r, where α ≥ 1 is a rational number. For example (1234)3 =
123412341234 and (1234)

7
4 = 1234123. We say that a finite or infinite word w

is α-power free if w has no factors that are β-powers for β ≥ α and we say
that a finite or infinite word w is α+-power free if w has no factors that are
β-powers for β > α, where α, β ≥ 1 are rational numbers. In the following, when
we write “α-power free” then α denotes a number or a “number with +”. The
power free words, also called repetitions free words, include well known square
free (2-power free), overlap free (2+-power free), and cube free words (3-power
free). Two surveys on the topic of power free words can be found in [8] and [13].

One of the questions being researched is the construction of infinite power
free words. We define the repetition threshold RT(k) to be the infimum of all
rational numbers α such that there exists an infinite α-power-free word over an
alphabet with k letters. Dejean’s conjecture states that RT(2) = 2, RT(3) = 7

4 ,
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RT(4) = 7
5 , and RT(k) = k

k−1 for each k > 4 [3]. Dejean’s conjecture has been
proved with the aid of several articles [1–3,5,6,9].

It is easy to see that α-power free words form a factorial language [13]; it
means that all factors of a α-power free word are also α-power free words. Then
Dejean’s conjecture implies that there are infinitely many finite α-power free
words over Σk, where α > RT(k).

In [10], Restivo and Salemi presented a list of five problems that deal with the
question of extendability of power free words. In the current paper we investigate
Problem 4 and Problem 5:

– Problem 4: Given α-power-free words u and v, decide whether there is a
transition word w, such that uwu is α-power free.

– Problem 5: Given α-power-free words u and v, find a transition word w, if it
exists.

A recent survey on the progress of solving all the five problems can be found
in [7]; in particular, the problems 4 and 5 are solved for some overlap free (2+-
power free) binary words. In addition, in [7] the authors prove that: For every
pair (u, v) of cube free words (3-power free) over an alphabet with k letters, if
u can be infinitely extended to the right and v can be infinitely extended to the
left respecting the cube-freeness property, then there exists a “transition” word
w over the same alphabet such that uwv is cube free.

In 2009, a conjecture related to Problems 4 and Problem 5 of Restivo and
Salemi appeared in [12]:

Conjecture 1. [12, Conjecture 1] Let L be a power-free language and let e(L) ⊆ L
be the set of words of L that can be extended to a bi-infinite word respecting
the given power-freeness. If u, v ∈ e(L) then uwv ∈ e(L) for some word w.

In 2018, Conjecture 1 was presented also in [11] in a slightly different form.
Let N denote the set of natural numbers and let Q denote the set of rational

numbers.

Definition 1. Let

Υ = {(k, α) | k ∈ N and α ∈ Q and k = 3 and α > 2}
∪{(k, α) | k ∈ N and α ∈ Q and k > 3 and α ≥ 2}

∪{(k, α+) | k ∈ N and α ∈ Q and k ≥ 3 and α ≥ 2}.

Remark 1. The definition of Υ says that: If (k, α) ∈ Υ and α is a “number with
+” then k ≥ 3 and α ≥ 2. If (k, α) ∈ Υ and α is “just” a number then k = 3
and α > 2 or k > 3 and α ≥ 2.

Let L be a language. A finite word w ∈ L is called left extendable (resp., right
extendable) in L if for every n ∈ N there is a word u ∈ L with |u| = n such that
uw ∈ L (resp., wu ∈ L).

In the current article we improve the results addressing Problems 4 and
Problem 5 of Restivo and Salemi from [7] as follows. Let Σk denote an alphabet
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with k letters. Let Lk,α denote the α-power free language over the alphabet Σk.
We show that if (k, α) ∈ Υ , u ∈ Lk,α is a right extendable word in Lk,α, and
v ∈ Lk,α is a left extendable word in Lk,α then there is a word w such that
uwv ∈ Lk,α. We also show a construction of the word w.

We sketch briefly our construction of a “transition” word. Let u be a right
extendable α-power free word and let v be a left extendable α-power free word
over Σk with k > 2 letters. Let ū be a right infinite α-power free word having u
as a prefix and let v̄ be a left infinite α-power free word having v as a suffix. Let
x be a letter that is recurrent in both ū and v̄. We show that we may suppose
that ū and v̄ have a common recurrent letter. Let t be a right infinite α-power
free word over Σk \ {x}. Let t̄ be a left infinite α-power free word such that the
set of factors of t̄ is a subset of the set of recurrent factors of t. We show that
such t̄ exists. We identify a prefix ũxg of ū such that g is a prefix of t and ũxt
is a right infinite α-power free word. Analogously we identify a suffix ḡxṽ of v̄
such that ḡ is a suffix of t̄ and t̄xṽ is a left infinite α-power free word. Moreover
our construction guarantees that u is a prefix of ũxt and v is a suffix of t̄xṽ.
Then we find a prefix hp of t such that pxṽ is a suffix of t̄xṽ and such that both
h and p are “sufficiently long”. Then we show that ũxhpxṽ is an α-power free
word having u as a prefix and v as a suffix.

The very basic idea of our proof is that if u, v are α-power free words and x is
a letter such that x is not a factor of both u and v, then clearly uxv is α-power
free on condition that α ≥ 2. Just note that there cannot be a factor in uxv
which is an α-power and contains x, because x has only one occurrence in uxv.
Our constructed words ũxt, t̄xṽ, and ũxhpxṽ have “long” factors which does not
contain a letter x. This will allow us to apply a similar approach to show that
the constructed words do not contain square factor rr such that r contains the
letter x.

Another key observation is that if k ≥ 3 and α > RT(k − 1) then there is an
infinite α-power free word w̄ over Σk \{x}, where x ∈ Σk. This is an implication
of Dejean’s conjecture. Less formally said, if u, v are α-power free words over
an alphabet with k letters, then we construct a “transition” word w over an
alphabet with k − 1 letters such that uwv is α-power free.

Dejean’s conjecture imposes also the limit to possible improvement of our
construction. The construction cannot be used for RT(k) ≤ α < RT(k − 1),
where k ≥ 3, because every infinite (or “sufficiently long”) word w over an
alphabet with k − 1 letters contains a factor which is an α-power. Also for
k = 2 and α ≥ 1 our technique fails. On the other hand, based on our research,
it seems that our technique, with some adjustments, could be applied also for
RT(k−1) ≤ α ≤ 2 and k ≥ 3. Moreover it seems to be possible to generalize our
technique to bi-infinite words and consequently to prove Conjecture 1 for k ≥ 3
and α ≥ RT(k − 1).

2 Preliminaries

Recall that Σk denotes an alphabet with k letters. Let ε denote the empty word.
Let Σ∗

k denote the set of all finite words over Σk including the empty word ε, let
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ΣN,R
k denote the set of all right infinite words over Σk, and let ΣN,L

k denote the
set of all left infinite words over Σk. Let ΣN

k = ΣN,L
k ∪ ΣN,R

k . We call w ∈ ΣN

k an
infinite word.

Let occur(w, t) denote the number of occurrences of the nonempty factor
t ∈ Σ∗

k \ {ε} in the word w ∈ Σ∗
k ∪ ΣN

k . If w ∈ ΣN

k and occur(w, t) = ∞, then we
call t a recurrent factor in w.

Let F(w) denote the set of all finite factors of a finite or infinite word w ∈
Σ∗

k ∪ ΣN

k . The set F(w) contains the empty word and if w is finite then also
w ∈ F(w). Let Fr(w) ⊆ F(w) denote the set of all recurrent nonempty factors
of w ∈ ΣN

k .
Let Prf(w) ⊆ F(w) denote the set of all prefixes of w ∈ Σ∗

k ∪ ΣN,R
k and let

Suf(w) ⊆ F(w) denote the set of all suffixes of w ∈ Σ∗
k ∪ ΣN,L

k . We define that
ε ∈ Prf(w) ∩ Suf(w) and if w is finite then also w ∈ Prf(w) ∩ Suf(w).

We have that Lk,α ⊆ Σ∗
k . Let LN

k,α ⊆ ΣN

k denote the set of all infinite α-power
free words over Σk. Obviously LN

k,α = {w ∈ ΣN

k | F(w) ⊆ Lk,α}. In addition we
define LN,R

k,α = LN

k,α ∩ΣN,R
k and LN,L

k,α = LN

k,α ∩ΣN,L
k ; it means the sets of right

infinite and left infinite α-power free words.

3 Power Free Languages

Let (k, α) ∈ Υ and let u, v be α-power free words. The first lemma says that uv
is α-power free if there are no word r and no nonempty prefix v̄ of v such that
rr is a suffix of uv̄ and rr is longer than v̄.

Lemma 1. Suppose (k, α) ∈ Υ , u ∈ Lk,α, and v ∈ Lk,α ∪LN,R
k,α . Let

Π = {(r, v̄) | r ∈ Σ∗
k \ {ε} and v̄ ∈ Prf(v) \ {ε} and

rr ∈ Suf(uv̄) and |rr| > |v̄|}.

If Π = ∅ then uv ∈ Lk,α ∪LN,R
k,α .

Proof. Suppose that uv is not α-power free. Since u is α-power free, then there
are t ∈ Σ∗

k and x ∈ Σk such that tx ∈ Prf(v), ut ∈ Lk,α and utx 
∈ Lk,α. It means
that there is r ∈ Suf(utx) such that rβ ∈ Suf(utx) for some β ≥ α or β > α if
α is a “number with +”; recall Definition 1 of Υ . Because α ≥ 2, this implies
that rr ∈ Suf(rβ). If follows that (tx, r) ∈ Π. We proved that uv 
∈ Lk,α ∪LN,R

k,α

implies that Π 
= ∅. The lemma follows. ��
The following technical set Γ (k, α) of 5-tuples (w1, w2, x, g, t) will simplify

our propositions.

Definition 2. Given (k, α) ∈ Υ , we define that (w1, w2, x, g, t) ∈ Γ (k, α) if

1. w1, w2, g ∈ Σ∗
k ,

2. x ∈ Σk,
3. w1w2xg ∈ Lk,α,
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4. t ∈ LN,R
k,α ,

5. occur(t, x) = 0,
6. g ∈ Prf(t),
7. occur(w2xgy, xgy) = 1, where y ∈ Σk is such that gy ∈ Prf(t), and
8. occur(w2, x) ≥ occur(w1, x).

Remark 2. Less formally said, the 5-tuple (w1, w2, x, g, t) is in Γ (k, α) if w1w2xg
is α-power free word over Σk, t is a right infinite α-power free word over Σk, t
has no occurrence of x (thus t is a word over Σk \ {x}), g is a prefix of t, xgy
has only one occurrence in w2xgy, where y is a letter such that gy is a prefix
of t, and the number of occurrences of x in w2 is bigger than the number of
occurrences of x in w1, where w1, w2, g are finite words and x is a letter.

The next proposition shows that if (w1, w2, x, g, t) is from the set Γ (k, α)
then w1w2xt is a right infinite α-power free word, where (k, α) is from the set Υ .

Proposition 1. If (k, α) ∈ Υ and (w1, w2, x, g, t) ∈ Γ (k, α) then w1w2xt ∈
LN,R

k,α .

Proof. Lemma 1 implies that it suffices to show that there are no u ∈ Prf(t)
with |u| > |g| and no r ∈ Σ∗

k \ {ε} such that rr ∈ Suf(w1w2xu) and |rr| > |u|.
Recall that w1w2xg is an α-power free word, hence we consider |u| > |g|. To
get a contradiction, suppose that such r, u exist. We distinguish the following
distinct cases.

– If |r| ≤ |u| then: Since u ∈ Prf(t) ⊆ Lk,α it follows that xu ∈ Suf(r2) and
hence x ∈ F(r2). It is clear that occur(r2, x) ≥ 1 if and only if occur(r, x) ≥ 1.
Since x 
∈ F(u) and thus x 
∈ F(r), this is a contradiction.

– If |r| > |u| and rr ∈ Suf(w2xu) then: Let y ∈ Σk be such that gy ∈ Prf(t).
Since |u| > |g| we have that gy ∈ Prf(u) and xgy ∈ Prf(xu). Since |r| > |u|
we have that xgy ∈ F(r). In consequence occur(rr, xgy) ≥ 2. But Property 7
of Definition 2 states that occur(w2xgy, xgy) = 1. Since rr ∈ Suf(w2xu), this
is a contradiction.

– If |r| > |u| and rr 
∈ Suf(w2xu) and r ∈ Suf(w2xu) then:
Let w11, w12, w13, w21, w22 ∈ Σ∗

k be such that w1 = w11w12w13, w2 = w21w22,
w12w13w21 = r, w12w13w2xu = rr, and w13w21 = xu; see Figure below.

xu

w11 w12 w13 w21 w22 x u

r r

It follows that w22xu = r and w22 = w12. It is easy to see that w13w21 =
xu. From occur(u, x) = 0 we have that occur(w2, x) = occur(w22, x)
and occur(w13, x) = 1. From w22 = w12 it follows that occur(w1, x) >
occur(w2, x). This is a contradiction to Property 8 of Definition 2.
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– If |r| > |u| and rr 
∈ Suf(w2xu) and r 
∈ Suf(w2xu) then: Let w11, w12, w13 ∈
Σ∗

k be such that w1 = w11w12w13, w12 = r and w13w2xu = r; see Figure
below.

w11 w12 w13 w2 x u

r r

It follows that

occur(w12, x) = occur(w13, x) + occur(w2, x) + occur(xu, x).

This is a contradiction to Property 8 of Definition 2.

We proved that the assumption of existence of r, u leads to a contradiction.
Thus we proved that for each prefix u ∈ Prf(t) we have that w1w2xu ∈ Lk,α.
The proposition follows. ��
We prove that if (k, α) ∈ Υ then there is a right infinite α-power free word over
Σk−1. In the introduction we showed that this observation could be deduced
from Dejean’s conjecture. Here additionally, to be able to address Problem 5
from the list of Restivo and Salemi, we present in the proof also examples of
such words.

Lemma 2. If (k, α) ∈ Υ then the set LN,R
k−1,α is not empty.

Proof. If k = 3 then |Σk−1| = 2. It is well known that the Thue Morse word is a
right infinite 2+-power free word over an alphabet with 2 letters [11]. It follows
that the Thue Morse word is α-power free for each α > 2.

If k > 3 then |Σk−1| ≥ 3. It is well known that there are infinite 2-power free
words over an alphabet with 3 letters [11]. Suppose 0, 1, 2 ∈ Σk. An example is
the fixed point of the morphism θ defined by θ(0) = 012, θ(1) = 02, and θ(2) = 1
[11]. If an infinite word t is 2-power free then obviously t is α-power free and
α+-power free for each α ≥ 2.

This completes the proof. ��
We define the sets of extendable words.

Definition 3. Let L ⊆ Σ∗
k . We define

lext(L) = {w ∈ L | w is left extendable in L}

and
rext(L) = {w ∈ L | w is right extendable in L}.

If u ∈ lext(L) then let lext(u,L) be the set of all left infinite words ū such that
Suf(ū) ⊆ L and u ∈ Suf(ū). Analogously if u ∈ rext(L) then let rext(u,L) be the
set of all right infinite words ū such that Prf(ū) ⊆ L and u ∈ Prf(ū).
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We show the sets lext(u,L) and rext(v,L) are nonempty for left extendable and
right extendable words.

Lemma 3. If L ⊆ Σ∗
k and u ∈ lext(L) (resp., v ∈ rext(L)) then lext(u,L) 
= ∅

(resp., rext(v,L) 
= ∅).
Proof. Realize that u ∈ lext(L) (resp., v ∈ rext(L)) implies that there are
infinitely many finite words in L having u as a suffix (resp., v as a prefix).
Then the lemma follows from König’s Infinity Lemma [4,8]. ��
The next proposition proves that if (k, α) ∈ Υ , w is a right extendable α-power
free word, w̄ is a right infinite α-power free word having the letter x as a recurrent
factor and having w as a prefix, and t is a right infinite α-power free word over
Σk\{x}, then there are finite words w1, w2, g such that the 5-tuple (w1, w2, x, g, t)
is in the set Γ (k, α) and w is a prefix of w1w2xg.

Proposition 2. If (k, α) ∈ Υ , w ∈ rext(Lk,α), w̄ ∈ rext(w,Lk,α), x ∈ Fr(w̄) ∩
Σk, t ∈ LN,R

k,α , and occur(t, x) = 0 then there are finite words w1, w2, g such that
(w1, w2, x, g, t) ∈ Γ (k, α) and w ∈ Prf(w1w2xg).

Proof. Let ω = F(w̄) ∩ Prf(xt) be the set of factors of w̄ that are also prefixes
of the word xt. Based on the size of the set ω we construct the words w1, w2, g
and we show that (w1, w2, x, g, t) ∈ Γ (k, α) and w1w2xg ∈ Prf(w̄) ⊆ Lk,α. The
Properties 1, 2, 3, 4, 5, and 6 of Definition 2 are easy to verify. Hence we explicitly
prove only properties 7 and 8 and that w ∈ Prf(w1w2xg).

– If ω is an infinite set. It follows that Prf(xt) = ω. Let g ∈ Prf(t) be such that
|g| = |w|; recall that t is infinite and hence such g exists. Let w2 ∈ Prf(w̄) be
such that w2xg ∈ Prf(w̄) and occur(w2xg, xg) = 1. Let w1 = ε.
Property 7 of Definition 2 follows from occur(w2xg, xg) = 1. Property 8 of
Definition 2 is obvious, because w1 is the empty word. Since |g| = |w| and
w ∈ Prf(w̄) we have that w ∈ Prf(w1w2xg).

– If ω is a finite set. Let ω̄ = ω ∩ Fr(w̄) be the set of prefixes of xt that are
recurrent in w̄. Since x is recurrent in w̄ we have that x ∈ ω̄ and thus ω̄ is
not empty. Let g ∈ Prf(t) be such that xg is the longest element in ω̄. Let
w1 ∈ Prf(w) be the shortest prefix of w̄ such that if u ∈ ω\ω̄ is a non-recurrent
prefix of xt in w̄ then occur(w1, u) = occur(w̄, u). Such w1 obviously exists,
because ω is a finite set and non-recurrent factors have only a finite number of
occurrences. Let w2 be the shortest factor of w̄ such that w1w2xg ∈ Prf(w̄),
occur(w1, x) < occur(w2, x), and w ∈ Prf(w1w2xg). Since xg is recurrent in
w̄ and w ∈ Prf(w̄) it is clear such w2 exists.
We show that Property 7 of Definition 2 holds. Let y ∈ Σk be such that
gy ∈ Prf(t). Suppose that occur(w2xg, xgy) > 0. It would imply that xgy
is recurrent in w̄, since all occurrences of non-recurrent words from ω are
in w1. But we defined xg to be the longest recurrent word ω. Hence it is
contradiction to our assumption that occur(w2xg, xgy) > 0.
Property 8 of Definition 2 and w ∈ Prf(w1w2xg) are obvious from the con-
struction of w2.
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This completes the proof. ��
We define the reversal wR of a finite or infinite word w = Σ∗

k ∪ ΣN

k as
follows: If w ∈ Σ∗

k and w = w1w2 . . . wm, where wi ∈ Σk and 1 ≤ i ≤ m, then
wR = wmwm−1 . . . w2w1. If w ∈ ΣN,L

k and w = . . . w2w1, where wi ∈ Σk and
i ∈ N, then wR = w1w2 · · · ∈ ΣN,R

k . Analogously if w ∈ ΣN,R
k and w = w1w2 . . . ,

where wi ∈ Σk and i ∈ N, then wR = . . . w2w1 ∈ ΣN,L
k .

Proposition 1 allows one to construct a right infinite α-power free word with
a given prefix. The next simple corollary shows that in the same way we can
construct a left infinite α-power free word with a given suffix.

Corollary 1. If (k, α) ∈ Υ , w ∈ lext(Lk,α), w̄ ∈ lext(w,Lk,α), x ∈ Fr(w̄) ∩ Σk,
t ∈ LN,L

k,α , and occur(t, x) = 0 then there are finite words w1, w2, g such that
(wR

1 , wR
2 , x, gR, tR) ∈ Γ (k, α), w ∈ Suf(gxw2w1), and txw2w1 ∈ LN,L

k,α .

Proof. Let u ∈ Σ∗
k ∪ ΣN

k . Realize that u ∈ Lk,α ∪LN

k,α if and only if uR ∈
Lk,α ∪LN

k,α. Then the corollary follows from Proposition 1 and Proposition 2. ��

Given k ∈ N and a right infinite word t ∈ ΣN,R
k , let Φ(t) be the set of all

left infinite words t̄ ∈ ΣN,L
k such that F(t̄) ⊆ Fr(t). It means that all factors of

t̄ ∈ Φ(t) are recurrent factors of t. We show that the set Φ(t) is not empty.

Lemma 4. If k ∈ N and t ∈ ΣN,R
k then Φ(t) 
= ∅.

Proof. Since t is an infinite word, the set of recurrent factors of t is not empty. Let
g be a recurrent nonempty factor of t; g may be a letter. Obviously there is x ∈ Σk

such that xg is also recurrent in t. This implies that the set {h | hg ∈ Fr(t)} is
infinite. The lemma follows from König’s Infinity Lemma [4,8]. ��

The next lemma shows that if u is a right extendable α-power free word
then for each letter x there is a right infinite α-power free word ū such that x is
recurrent in ū and u is a prefix of ū.

Lemma 5. If (k, α) ∈ Υ , u ∈ rext(Lk,α), and x ∈ Σk then there is ū ∈
rext(u,Lk,α) such that x ∈ Fr(ū).

Proof. Let w ∈ rext(u,Lk,α); Lemma 3 implies that rext(u,Lk,α) is not empty.
If x ∈ Fr(w) then we are done. Suppose that x 
∈ Fr(w). Let y ∈ Fr(w) ∩ Σk.
Clearly x 
= y. Proposition 2 implies that there is (w1, w2, y, g, t) ∈ Γ (k, α) such
that u ∈ Prf(w1w2yg). The proof of Lemma 2 implies that we can choose t in such
a way that x is recurrent in t. Then w1w2yt ∈ rext(u,Lk,α) and x ∈ Fr(w1w2yt).
This completes the proof. ��

The next proposition shows that if u is left extendable and v is right extend-
able then there are finite words ũ, ṽ, a letter x, a right infinite word t, and a
left infinite word t̄ such that ũxt, t̄xṽ are infinite α-power free words, t has no
occurrence of x, every factor of t̄ is a recurrent factor in t, u is a prefix of ũxt,
and v is a suffix of t̄xṽ.
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Proposition 3. If (k, α) ∈ Υ , u ∈ rext(Lk,α), and v ∈ lext(Lk,α) then there are
ũ, ṽ ∈ Σ∗

k , x ∈ Σk, t ∈ ΣN,R
k , and t̄ ∈ ΣN,L

k such that ũxt ∈ LN,R
k,α , t̄xṽ ∈ LN,L

k,α ,
occur(t, x) = 0, F(t̄) ⊆ Fr(t), u ∈ Prf(ũxt), and v ∈ Suf(t̄xṽ).

Proof. Let ū ∈ rext(u,Lk,α) and v̄ ∈ lext(v,Lk,α) be such that Fr(ū) ∩ Fr(v̄) ∩
Σk 
= ∅. Lemma 5 implies that such ū, v̄ exist. Let x ∈ Fr(ū) ∩ Fr(v̄) ∩ Σk. It
means that the letter x is recurrent in both ū and v̄.

Let t be a right infinite α-power free word over Σk \ {x}. Lemma 2 asserts
that such t exists. Let t̄ ∈ Φ(t); Lemma 4 shows that Φ(t) 
= ∅. It is easy to see
that t̄ ∈ LN,L

k,α , because F(t̄) ⊆ Fr(t) and t ∈ LN,R
k,α .

Proposition 2 and Corollary 1 imply that there are u1, u2, g, v1, v2, ḡ ∈ Lk,α

such that

– (u1, u2, x, g, t) ∈ Γ (k, α),
– (vR

1 , vR
2 , x, ḡR, t̄R) ∈ Γ (k, α),

– u ∈ Prf(u1u2xg), and
– vR ∈ Prf(vR

1 vR
2 xḡR); it follows that v ∈ Suf(ḡxv2v1).

Proposition 1 implies that u1u2xt, vR
1 vR

2 xt̄R ∈ LN,R
k,α . It follows that t̄xv2v1 ∈

LN,L
k,α . Let ũ = u1u2 and ṽ = v2v1. This completes the proof. ��

The main theorem of the article shows that if u is a right extendable α-power free
word and v is a left extendable α-power free word then there is a word w such
that uwv is α-power free. The proof of the theorem shows also a construction of
the word w.

Theorem 1. If (k, α) ∈ Υ , u ∈ rext(Lk,α), and v ∈ lext(Lk,α) then there is
w ∈ Lk,α such that uwv ∈ Lk,α.

Proof. Let ũ, ṽ, x, t, t̄ be as in Proposition 3. Let p ∈ Suf(t̄) be the shortest suffix
such that |p| > max{|ũx|, |xṽ|, |u|, |v|}. Let h ∈ Prf(t) be the shortest prefix such
that hp ∈ Prf(t) and |h| > |p|; such h exists, because p is a recurrent factor of t;
see Proposition 3. We show that ũxhpxṽ ∈ Lk,α.

We have that ũxhp ∈ Lk,α, since hp ∈ Prf(t) and Proposition 3 states that
ũxt ∈ LN,R

k,α . Lemma 1 implies that it suffices to show that there are no g ∈ Prf(ṽ)
and no r ∈ Σ∗

k \ {ε} such that rr ∈ Suf(ũxhpxg) and |rr| > |xg|. To get a
contradiction, suppose there are such r, g. We distinguish the following cases.

– If |r| ≤ |xg| then rr ∈ Suf(pxg), because |p| > |xṽ| and xg ∈ Prf(xṽ). This is
a contradiction, since pxṽ ∈ Suf(t̄xṽ) and t̄xṽ ∈ LN,L

k,α ; see Proposition 3.
– If |r| > |xg| then |r| ≤ 1

2 |ũxhpxg|, otherwise rr cannot be a suffix of ũxhpxg.
Because |h| > |p| > max{|ũx|, |xṽ|} we have that r ∈ Suf(hpxg). Since
occur(hp, x) = 0, |h| > |p| > |xṽ|, and xg ∈ Suf(r) it follows that there are
words h1, h2 such that ũxhpxg = ũxh1h2pxg, r = h2pxg and r ∈ Suf(ũxh1).
It follows that xg ∈ Suf(ũxh1) and because occur(h1, x) = 0 we have that
|h1| ≤ |g|. Since |p| > |ũx| we get that |h2pxg| > |ũxg| ≥ |ũxh1|; hence
|r| > |ũxh1|. This is a contradiction.
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We conclude that there is no word r and no prefix g ∈ Prf(ṽ) such that rr ∈
Suf(ũxhpxg). Hence ũxhpxṽ ∈ Lk,α. Due to the construction of p and h we have
that u ∈ Prf(ũxhpxṽ) and v ∈ Suf(ũxhpxṽ). This completes the proof. ��
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