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Abstract. In 1985, Restivo and Salemi presented a list of five problems
concerning power free languages. Problem 4 states: Given a-power-free
words v and v, decide whether there is a transition from u to v. Problem
5 states: Given a-power-free words u and v, find a transition word w, if
it exists.

Let X% denote an alphabet with k letters. Let Ly, denote the a-power
free language over the alphabet Y, where « is a rational number or a
rational “number with +”. If « is a “number with 4+” then suppose k > 3
and o > 2. If a is “only” a number then suppose £k = 3 and o > 2 or
k > 3 and o > 2. We show that: If u € Ly o is a right extendable word
in Lo and v € Lo is a left extendable word in L o then there is a
(transition) word w such that uwv € Ly . We also show a construction
of the word w.

Keywords: Power free languages - Transition property - Dejean’s
conjecture

1 Introduction

The power free words are one of the major themes in the area of combinatorics

on words. An a-power of a word r is the word r®* = rr...rt such that |‘T:|‘ =«

and t is a prefix of r, where a > 1 is a rational number. For example (1234)3 =
123412341234 and (1234)7 = 1234123. We say that a finite or infinite word w
is a-power free if w has no factors that are -powers for 8 > a and we say
that a finite or infinite word w is at-power free if w has no factors that are
(G-powers for 3 > «, where a, 3 > 1 are rational numbers. In the following, when
we write “a-power free” then « denotes a number or a “number with +”. The
power free words, also called repetitions free words, include well known square
free (2-power free), overlap free (2+-power free), and cube free words (3-power
free). Two surveys on the topic of power free words can be found in [8] and [13].

One of the questions being researched is the construction of infinite power
free words. We define the repetition threshold RT (k) to be the infimum of all
rational numbers « such that there exists an infinite a-power-free word over an
alphabet with k letters. Dejean’s conjecture states that RT(2) = 2, RT(3) = 7
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RT(4) = £, and RT(k) = £ for each k > 4 [3]. Dejean’s conjecture has been
proved with the aid of several articles [1-3,5,6,9].

It is easy to see that a-power free words form a factorial language [13]; it
means that all factors of a a-power free word are also a-power free words. Then
Dejean’s conjecture implies that there are infinitely many finite a-power free
words over Xy, where a > RT(k).

In [10], Restivo and Salemi presented a list of five problems that deal with the
question of extendability of power free words. In the current paper we investigate

Problem 4 and Problem 5:

— Problem 4: Given a-power-free words uw and v, decide whether there is a
transition word w, such that uwu is a-power free.

— Problem 5: Given a-power-free words u and v, find a transition word w, if it
exists.

A recent survey on the progress of solving all the five problems can be found
in [7]; in particular, the problems 4 and 5 are solved for some overlap free (27-
power free) binary words. In addition, in [7] the authors prove that: For every
pair (u,v) of cube free words (3-power free) over an alphabet with k letters, if
u can be infinitely extended to the right and v can be infinitely extended to the
left respecting the cube-freeness property, then there exists a “transition” word
w over the same alphabet such that uwv is cube free.

In 2009, a conjecture related to Problems 4 and Problem 5 of Restivo and
Salemi appeared in [12]:

Conjecture 1. [12, Conjecture 1] Let L be a power-free language and let e(L) C L
be the set of words of L that can be extended to a bi-infinite word respecting
the given power-freeness. If u, v € e(L) then uwv € e(L) for some word w.

In 2018, Conjecture 1 was presented also in [11] in a slightly different form.
Let N denote the set of natural numbers and let Q denote the set of rational
numbers.

Definition 1. Let

Y={(k,a)|[keNanda € Q and k =3 and a > 2}
U{(k,a) | keNand a € Q and k > 3 and o > 2}
U{(k,a™) |k €N and o € Q and k > 3 and a > 2}.

Remark 1. The definition of 7" says that: If (k,«) € 7" and « is a “number with
+” then £k > 3 and a > 2. If (k,a) € 7 and « is “just” a number then k = 3
and o >2or k>3 and a > 2.

Let L be a language. A finite word w € L is called left extendable (resp., right
extendable) in L if for every n € N there is a word v € L with |u| = n such that
uw € L (resp., wu € L).

In the current article we improve the results addressing Problems 4 and
Problem 5 of Restivo and Salemi from [7] as follows. Let X, denote an alphabet
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with k letters. Let Ly o denote the a-power free language over the alphabet Y.
We show that if (k,a) € T, u € Ly o is a right extendable word in Ly o, and
v € Li o is a left extendable word in Ly , then there is a word w such that
uwv € Ly . We also show a construction of the word w.

We sketch briefly our construction of a “transition” word. Let uw be a right
extendable a-power free word and let v be a left extendable a-power free word
over X}, with k& > 2 letters. Let @ be a right infinite a-power free word having u
as a prefix and let v be a left infinite a-power free word having v as a suffix. Let
x be a letter that is recurrent in both @ and v. We show that we may suppose
that @ and v have a common recurrent letter. Let ¢ be a right infinite a-power
free word over Xy \ {z}. Let ¢ be a left infinite a-power free word such that the
set of factors of  is a subset of the set of recurrent factors of t. We show that
such t exists. We identify a prefix azg of @ such that g is a prefix of ¢ and axt
is a right infinite a-power free word. Analogously we identify a suffix gzd of ©
such that g is a suffix of £ and #z? is a left infinite a-power free word. Moreover
our construction guarantees that u is a prefix of 4xt and v is a suffix of tzv.
Then we find a prefix hp of t such that pxo is a suffix of £z and such that both
h and p are “sufficiently long”. Then we show that uzhpzv is an a-power free
word having u as a prefix and v as a suffix.

The very basic idea of our proof is that if u, v are a-power free words and x is
a letter such that x is not a factor of both v and v, then clearly uzv is a-power
free on condition that o > 2. Just note that there cannot be a factor in uxzv
which is an a-power and contains x, because x has only one occurrence in uzv.
Our constructed words uxt, tx®, and @xhprv have “long” factors which does not
contain a letter x. This will allow us to apply a similar approach to show that
the constructed words do not contain square factor rr such that r contains the
letter x.

Another key observation is that if k > 3 and o > RT(k — 1) then there is an
infinite a-power free word w over Xy \ {z}, where x € Y. This is an implication
of Dejean’s conjecture. Less formally said, if u,v are a-power free words over
an alphabet with k letters, then we construct a “transition” word w over an
alphabet with k — 1 letters such that uwv is a-power free.

Dejean’s conjecture imposes also the limit to possible improvement of our
construction. The construction cannot be used for RT(k) < a < RT(k — 1),
where k£ > 3, because every infinite (or “sufficiently long”) word w over an
alphabet with k& — 1 letters contains a factor which is an a-power. Also for
k =2 and a > 1 our technique fails. On the other hand, based on our research,
it seems that our technique, with some adjustments, could be applied also for
RT(k—1) < a < 2and k > 3. Moreover it seems to be possible to generalize our
technique to bi-infinite words and consequently to prove Conjecture 1 for k > 3
and o > RT(k —1).

2 Preliminaries

Recall that Y, denotes an alphabet with k letters. Let € denote the empty word.
Let X7 denote the set of all finite words over X, including the empty word ¢, let
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E,Ij’R denote the set of all right infinite words over X, and let ES’L denote the
set of all left infinite words over Xj,. Let E}? = ZS’L U ZS’R. We call w € EEI an
infinite word.

Let occur(w,t) denote the number of occurrences of the nonempty factor
t € X7\ {e} in the word w € X} U XY, If w € XY and occur(w,t) = oo, then we
call t a recurrent factor in w.

Let F(w) denote the set of all finite factors of a finite or infinite word w €
Xy u XN, The set F(w) contains the empty word and if w is finite then also
w € F(w). Let F,.(w) C F(w) denote the set of all recurrent nonempty factors
of we XN,

Let Prf(w) C F(w) denote the set of all prefixes of w € X} U E,Ij’R and let
Suf(w) C F(w) denote the set of all suffixes of w € X} U ZE’L. We define that
€ € Prf(w) N Suf(w) and if w is finite then also w € Prf(w) N Suf(w).

We have that Ly o C X} Let Lga - ZEI denote the set of all infinite a-power
free words over Y. Obviously Lfa ={w € X} | F(w) C Ly o}. In addition we
define LN — L o N ZN R and ngi = L o N ZN L; it means the sets of right
infinite and left 1nﬁn1te Q-power free Words

3 Power Free Languages

Let (k,«) € T and let u,v be a-power free words. The first lemma says that uv
is a-power free if there are no word r and no nonempty prefix ¥ of v such that
rr is a suffix of uv and rr is longer than o.

Lemma 1. Suppose (k,a) €Y, w € Ly o, and v € Ly o ULg’f. Let

I ={(r,0) | r € i\ {e} and v € Prf(v) \ {€} and
rr € Suf(uv) and |rr| > |v]}.

If IT = then uv € Ly o UL Y.

Proof. Suppose that uv is not a-power free. Since u is a-power free, then there
aret € X} and x € Xy such that tx € Prf(v), ut € Ly o and utz & Li, . It means
that there is r € Suf(utz) such that 77 € Suf(utz) for some 3 > a or 3 > « if
« is a “number with +7; recall Definition 1 of 7. Because « > 2, this implies
that 7 € Suf(r?). If follows that (tz,r) € II. We proved that uv ¢ Ly o UL,
implies that IT # (). The lemma follows. O

The following technical set I'(k, «) of 5-tuples (w1, ws,x,g,t) will simplify
our propositions.

Definition 2. Given (k,a) € T, we define that (w1, ws,x,g,t) € I'(k,a) if

1. wy,wa,g9 € X%,
2. x € X,
3. wiwazg € Li o,
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4o teLyl,

5. occur(t,z) =0,

6. g € Pri(t),

7. oceur(wexgy, xgy) = 1, where y € Xy is such that gy € Prf(¢), and
8. occur(ws, x) > occur(wy, ).

Remark 2. Less formally said, the 5-tuple (w1, we, x, g,t) is in I'(k, ) if wywazg
is a-power free word over Xy, t is a right infinite a-power free word over Xy, ¢
has no occurrence of x (thus ¢ is a word over Xy \ {z}), g is a prefix of ¢, zgy
has only one occurrence in wexgy, where y is a letter such that gy is a prefix
of t, and the number of occurrences of z in wsy is bigger than the number of
occurrences of x in wy, where wy,ws, g are finite words and z is a letter.

The next proposition shows that if (wy,ws,x,g,t) is from the set I'(k, @)
then wywsyxt is a right infinite a-power free word, where (k, o) is from the set 7.

Proposition 1. If (k,a) € T and (w1, ws,x,g,t) € I'(k,a) then wiwaxt €
N,R

Lyo-

Proof. Lemma 1 implies that it suffices to show that there are no u € Prif(t)

with |u| > |g| and no r € X} \ {€} such that rr € Suf(wywezu) and |rr| > |ul.

Recall that wywexg is an a-power free word, hence we consider |u| > |g|. To

get a contradiction, suppose that such r,u exist. We distinguish the following
distinct cases.

— If |r| < |u| then: Since u € Prf(t) C Ly, it follows that zu € Suf(r?) and
hence z € F(r?). It is clear that occur(r?, z) > 1 if and only if occur(r, z) > 1.
Since x ¢ F(u) and thus = ¢ F(r), this is a contradiction.

— If |r| > |u| and rr € Suf(wozu) then: Let y € X% be such that gy € Prf(¢).
Since |u| > |g| we have that gy € Prf(u) and xgy € Prf(zu). Since |r| > |u|
we have that zgy € F(r). In consequence occur(rr, zgy) > 2. But Property 7
of Definition 2 states that occur(wszgy, zgy) = 1. Since rr € Suf(wezu), this
is a contradiction.

— If |r| > |u| and rr & Suf(wazu) and r € Suf(wezu) then:

Let w11, W12, W13, W21, W2 € E; be such that W1 = W11W12W13, W2 = W21W22,
W1aW13Wa1 = T, WiowWiswexu = 7, and wisws; = zu; see Figure below.

Tru

W11 | W12 | W13 | W21 w22‘1“u

T T

It follows that woszu = 7 and wos = wye. It is easy to see that wizwe; =
zu. From occur(u,z) = 0 we have that occur(ws,z) = occur(wasz,x)
and occur(wis,z) = 1. From wee = wis it follows that occur(wq,z) >
occur(ws, z). This is a contradiction to Property 8 of Definition 2.
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— If |r| > |u| and rr & Suf(wozu) and r & Suf(wezu) then: Let wiy, wia, w1z €
2% be such that wy = wiiwiawiz, wiz = r and wigwezu = 7; see Figure
below.

w11 | W12 wlS‘“&‘f‘u

T T

It follows that
occur(wig, x) = occur(wis, x) + occur(we, ) + occur(zu, x).
This is a contradiction to Property 8 of Definition 2.

We proved that the assumption of existence of r,u leads to a contradiction.
Thus we proved that for each prefix u € Prf(t) we have that wiwszu € Ly 4.
The proposition follows. a

We prove that if (k,) € T then there is a right infinite a-power free word over
2);_1. In the introduction we showed that this observation could be deduced
from Dejean’s conjecture. Here additionally, to be able to address Problem 5
from the list of Restivo and Salemi, we present in the proof also examples of
such words.

Lemma 2. If (k,a) € T then the set LE;RLQ is not empty.

Proof. If k = 3 then |X)_1| = 2. It is well known that the Thue Morse word is a
right infinite 27 -power free word over an alphabet with 2 letters [11]. It follows
that the Thue Morse word is a-power free for each o > 2.

If & > 3 then | X} _1| > 3. It is well known that there are infinite 2-power free
words over an alphabet with 3 letters [11]. Suppose 0,1,2 € Y. An example is
the fixed point of the morphism 6 defined by 6(0) = 012, (1) = 02, and (2) =1
[11]. If an infinite word ¢ is 2-power free then obviously ¢ is a-power free and
at-power free for each o > 2.

This completes the proof. a

We define the sets of extendable words.
Definition 3. Let L C X}. We define

lext(L) = {w € L | w is left extendable in L}

and
rext(L) = {w € L | w is right extendable in L}.

If u € lext(L) then let lext(u, L) be the set of all left infinite words u such that
Suf(@) CL and u € Suf(@). Analogously if u € rext(L) then let rext(u,L) be the
set of all right infinite words @ such that Prf(a) C L and u € Prf(a).
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We show the sets lext(u, L) and rext(v,L) are nonempty for left extendable and
right extendable words.

Lemma 3. If L C X} and u € lext(L) (resp., v € rext(L)) then lext(u,L) # 0
(resp., rext(v,L) # 0).

Proof. Realize that u € lext(L) (resp., v € rext(L)) implies that there are
infinitely many finite words in L having u as a suffix (resp., v as a prefix).
Then the lemma follows from Konig’s Infinity Lemma [4,8]. O

The next proposition proves that if (k,«) € T, w is a right extendable a-power
free word, w is a right infinite a-power free word having the letter x as a recurrent
factor and having w as a prefix, and ¢ is a right infinite a-power free word over
X \{x}, then there are finite words w1, wa, g such that the 5-tuple (w1, we, x, g, t)
is in the set I'(k,«) and w is a prefix of wiwsxg.

Proposition 2. If (k,a) € T, w € rext(Ly,qo), @ € rext(w,Li.q), € F.(w) N
Y, te LE’S, and occur(t,x) = 0 then there are finite words wy,wa, g such that
(w1, wsq,x,9,t) € I'(k,a) and w € Prf(wijwexg).

Proof. Let w = F(w) N Prf(xt) be the set of factors of w that are also prefixes
of the word zt. Based on the size of the set w we construct the words wi,ws, g
and we show that (w1, ws,x,g,t) € I'(k, @) and wywezg € Prf(w) C Ly o. The
Properties 1, 2, 3, 4, 5, and 6 of Definition 2 are easy to verify. Hence we explicitly
prove only properties 7 and 8 and that w € Prf(wywazg).

— If w is an infinite set. It follows that Prf(zt) = w. Let g € Prf(¢) be such that
|g| = |w|; recall that ¢ is infinite and hence such g exists. Let wy € Prf(w) be
such that wazg € Prf(w) and occur(wazg, zg) = 1. Let wy = e.

Property 7 of Definition 2 follows from occur(wszg,xg) = 1. Property 8 of
Definition 2 is obvious, because w; is the empty word. Since |g| = |w| and
w € Prf(w) we have that w € Prf(wjwazg).

— If w is a finite set. Let @ = w N F,.(w) be the set of prefixes of zt that are
recurrent in w. Since x is recurrent in w we have that * € @ and thus @ is
not empty. Let g € Prf(¢) be such that xg is the longest element in ©. Let
wy € Prf(w) be the shortest prefix of @ such that if u € w\@ is a non-recurrent
prefix of xt in w then occur(wy,u) = occur(w, u). Such w; obviously exists,
because w is a finite set and non-recurrent factors have only a finite number of
occurrences. Let we be the shortest factor of w such that wiwezg € Prf(w),
occur(wy, z) < occur(ws, z), and w € Prf(wjwezg). Since g is recurrent in
w and w € Prf(w) it is clear such wy exists.

We show that Property 7 of Definition 2 holds. Let y € X\ be such that
gy € Prf(t). Suppose that occur(wszg,xgy) > 0. It would imply that zgy
is recurrent in w, since all occurrences of non-recurrent words from w are
in wy. But we defined xg to be the longest recurrent word w. Hence it is
contradiction to our assumption that occur(wsxg, zgy) > 0.

Property 8 of Definition 2 and w € Prf(wjwsexg) are obvious from the con-
struction of ws.
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This completes the proof. O

We define the reversal w® of a finite or infinite word w = 2nuJ Z}? as
follows: If w € X} and w = wiwy ... Wy, where w; € X and 1 < ¢ < m, then
Wl = W W1 ... wowy. If w € E,Ij’L and w = ...wowi, where w; € X} and
i € N, then wf = wjwy--- € E,Ij’R. Analogously if w € E,I:I’R and w = wywy ...,
where w; € X, and ¢ € N, then wf = ... wow; € ZE’L.

Proposition 1 allows one to construct a right infinite a-power free word with
a given prefix. The next simple corollary shows that in the same way we can
construct a left infinite a-power free word with a given suffix.

Corollary 1. If (k,a) € T, w € lext(Lg o), @ € lext(w,Lg o), © € Fp.(w) N X,

t e Lil”i, and occur(t,x) = 0 then there are finite words wy,ws,g such that

(wh, wl, z, gt t7) € I'(k,a), w € Suf(grwow, ), and trwaw; € LI,j’(f,

Proof. Let u € Xy U X} Realize that u € Ly, ULy, if and only if uf €
LU Ll,ja. Then the corollary follows from Proposition 1 and Proposition 2. O

Given k € N and a right infinite word ¢ € E,Ij’R, let @(t) be the set of all

left infinite words £ € X" such that F(f) C F,.(t). It means that all factors of
t € &(t) are recurrent factors of t. We show that the set @(¢) is not empty.

Lemma 4. IfkcNandtc E,T’R then ®(t) # 0.

Proof. Since t is an infinite word, the set of recurrent factors of ¢ is not empty. Let
g be a recurrent nonempty factor of ¢; g may be a letter. Obviously there is z € X,
such that g is also recurrent in ¢. This implies that the set {h | hg € F,.(¢)} is
infinite. The lemma follows from Konig’s Infinity Lemma [4,8]. O

The next lemma shows that if « is a right extendable a-power free word
then for each letter x there is a right infinite a-power free word @ such that z is
recurrent in @ and wu is a prefix of @.

Lemma 5. If (k,a) € T, u € rext(Lgq), and © € Xy then there is u €
rext(u, Ly o) such that x € F,.(a).

Proof. Let w € rext(u, Ly, q); Lemma 3 implies that rext(u,Lg o) is not empty.
If z € F,.(w) then we are done. Suppose that x ¢ F,.(w). Let y € F,.(w) N Xy.
Clearly x # y. Proposition 2 implies that there is (w1, ws,y, g,t) € I'(k, ) such
that u € Prf(wiwayg). The proof of Lemma 2 implies that we can choose ¢ in such
a way that z is recurrent in ¢. Then wiwayt € rext(u, Ly o) and z € F,.(wiwayt).
This completes the proof. O

The next proposition shows that if u is left extendable and v is right extend-
able then there are finite words @, 7, a letter x, a right infinite word ¢, and a
left infinite word £ such that @xt,tx? are infinite a-power free words, ¢ has no
occurrence of x, every factor of £ is a recurrent factor in ¢, u is a prefix of uxt,
and v is a suffix of txv.
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Proposition 3. If (k,a) € T, u € rext(Ly,o), and v € lext(Lg, o) then there are
wve X, re X, te E§’R, and t € ES’L such that uxt € Ll,j’ txv € Lga,
occur(t,z) = 0, F(t) C F.(¢), u € Prf(axt), and v € Suf(txv).

Proof. Let @ € rext(u, L ) and 0 € lext(v, Ly o) be such that F,.(@) N F,.(7) N
Xy # 0. Lemma 5 implies that such @, v exist. Let z € F,.(a) N F.(9) N Xg. It
means that the letter x is recurrent in both @ and v.

Let t be a right infinite a-power free word over X}, \ {z}. Lemma 2 asserts
that such ¢ exists Let ¢ € &(t); Lemma 4 shows that &(¢) # 0. It is easy to see
that ¢ € Lk ., because F(t) C F,.(t) and t € Llljlf

Proposmon 2 and Corollary 1 imply that there are uy,us2,g,v1,v2,9 € L o
such that

Ui, 2,1‘ 9, ) (k O‘)v

{% U2 y Ly g tR> (kva)

- u 6 Prf(ulugxg) and

— vt € Prf(vftoltzg!); it follows that v € Suf(grvgvy).

A/_\

Proposition 1 implies that ujusxt, vivfat? € Lg’f. It follows that txvev; €

Llljj Let 4 = ujus and © = vovy. This completes the proof. O

The main theorem of the article shows that if w is a right extendable a-power free
word and v is a left extendable a-power free word then there is a word w such
that uwv is a-power free. The proof of the theorem shows also a construction of
the word w.

Theorem 1. If (k,a) € T, u € rext(L,o), and v € lext(Ly o) then there is
w € Ly o such that uwv € Ly, 4.

Proof. Let 4, 0,x,t,t be as in Proposition 3. Let p € Suf (%) be the shortest suffix
such that |p| > max{|az|, |z?|, |u|, |v|}. Let h € Prf(t) be the shortest prefix such
that hp € Prf(t) and |h| > |p|; such h exists, because p is a recurrent factor of ¢;
see Proposition 3. We show that azhpzt € Ly, 4.

We have that dzhp € Ly o, since hp € Prf(t) and Proposition 3 states that
uxt € LN % Lemma 1 implies that it suffices to show that there are no g € Prf (0)
and 1o € X5\ {€} such that rr € Suf(axhpzg) and |rr| > |zg|. To get a
contradiction, suppose there are such r,g. We distinguish the following cases.

— If |r| <|zg| then rr € Suf(pzg), because |p| > \xf}| and zg € Prf(z0). This is
a contradiction, since pzxd € Suf(fz?0) and tzv € Lk -; see Proposition 3.

— If |r| > |zg| then |r| < |azhpzg|, otherwise rr cannot be a suffix of zhpzg.
Because |h| > [p| > max{|az|,|x0|} we have that r € Suf(hpzg). Since
occur(hp,z) = 0, |h| > |p| > |z0|, and zg € Suf(r) it follows that there are
words hq, hg such that dxhpxrg = txhihoprg, v = hopxg and r € Suf(azhy).
It follows that xg € Suf(@xhi) and because occur(hi,z) = 0 we have that
|hi] < |g|. Since |p| > |ax| we get that |hopxrg| > |Uxg| > |axhi|; hence
|r| > |@zhi|. This is a contradiction.
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We conclude that there is no word r and no prefix g € Prf(v) such that rr €
Suf(txhpzg). Hence axhpxrt € Ly, o. Due to the construction of p and h we have
that u € Prf(dzhpxt) and v € Suf(azhprd). This completes the proof. O
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