
Context-Freeness of Word-MIX
Languages

Ryoma Sin’Ya(B)

Akita University, Akita, Japan
ryoma@math.akita-u.ac.jp

Abstract. In this paper we provide a decidable characterisation of
the context-freeness of a Word-MIX language LA(w1, . . . , wk), where
LA(w1, . . . , wk) is the set of all words over A that contain the same
number of subword occurrences of parameter words w1, . . . , wk.

1 Introduction

Counting occurrences of letters in words is a major topic in formal language
theory. In particular, much ink has been spent on investigating the counting
ability of some language classes. For example, Joshi et al. [1] suggested that
the language MIX = {w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c} should not be in
the class of so-called mildly context-sensitive languages since it allows too much
freedom in word order, so that relations between MIX and several language
classes have been investigated (e.g., indexed languages [2], range concatenation
languages [3], tree-adjoining languages [4], multiple context-free languages [5],
etc.). The Parikh map is another rich example on this topic (counting occurrences
of letters) [6].

In the recent work [7] by Colbourn et al., the counting feature of MIX is gen-
eralised from counting letter occurrences to counting word occurrences. They
considered several problems for languages of the form LA(w1, . . . , wk) = {w ∈
A∗ | |w|w1 = · · · = |w|wk

} (where |u|v is the number of occurrences of v in
w) which we call Word-MIX languages (WMIX for short) in this paper. While
LA(w1, w2) is always deterministic context-free, it can also be regular (LA(ab, ba)
is regular if A = {a, b}, while it is not regular if A = {a, b, c}, for example) [7].
This kind of generalisation – from letter occurrences to word occurrences – is
also considered in the context of the Parikh map through so-called Parikh matri-
ces [8] and subword histories [9,10] (in this setting they have considered scattered
subword occurrences instead of subword occurrences).

Colbourn et al. [7] provided a necessary and sufficient condition for w1 and
w2 for the WMIX language LA(w1, w2) to be regular, and gave a polynomial
time algorithm for testing that condition. For the fully general case, the decid-
ability of the regularity problem for WMIX languages can be derived from some
known results on unambiguous constrained automata (UnCA for short), since

The author is also with RIKEN AIP.

c© Springer Nature Switzerland AG 2020
N. Jonoska and D. Savchuk (Eds.): DLT 2020, LNCS 12086, pp. 304–318, 2020.
https://doi.org/10.1007/978-3-030-48516-0_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48516-0_23&domain=pdf
https://doi.org/10.1007/978-3-030-48516-0_23

Context-Freeness of Word-MIX Languages 305

LA(w1, . . . , wk) is always recognised by an UnCA, and the regularity for UnCA
languages is decidable due to [11].

In this paper, we show that context-freeness is decidable for WMIX languages.
We also give an alternative decidability proof for the regularity of WMIX lan-
guages. As we mentioned above, the regularity for WMIX languages is already
known to be decidable thanks to the decidability results on UnCA languages
(which include all WMIX languages) given by Cadilhac et al. [11]. But the alter-
native proof of the regularity for WMIX languages given in this paper gives
more structural information of WMIX languages, and the proof can be naturally
extended into the context-freeness. We introduce a new notion called dimension,
which represents certain structural information of WMIX languages, and prove
that a WMIX language is (1) regular if and only if its dimension is at most
one, and (2) context-free if and only if its dimension is at most two. To the
best of our knowledge, there has been no research on the context-freeness for
WMIX languages or UnCA languages. As far as we know, a language class with
such a decidable context-freeness property is very rare. We are only aware of
such examples in some subclasses of bounded languages [12–14] and languages
associated with vector addition systems [15].

For the space restriction, we omit some definitions and proofs; see the full
version [16] for details.

2 Preliminaries

For a set X, we denote by #(X) the cardinality of X. We denote by N the set
of natural numbers including 0. We call a mapping M : X → N multiset over
X. For a set X, we write 2X for the power set of X.

We assume that the reader has a basic understanding of automata and linear
algebra.

2.1 Words and Word-MIX Languages

For an alphabet A, we denote the set of all words (resp. all non-empty words)
over A by A∗ (resp. A+). We write An (resp. A<n) for the set of all words of
length n (resp. less than n), and write N

≤c for the set of all natural numbers
less than or equal c for c ∈ N. For a pair of words v, w ∈ A∗, |w|v denotes the
number of subword occurrences of v in w

|w|v def== #({(w1, w2) ∈ A∗ × A∗ | w1vw2 = w}) .

We write u � v if u is a subword of v, and write u �sc v if u is a scattered
subword of v. For words w1, . . . , wk ∈ A∗, we define

LA(w1, . . . , wk) def== {w ∈ A∗ | |w|w1 = · · · = |w|wk
}

and call it the Word-MIX (WMIX for short) language of k-parameter words
w1, . . . , wk over A. For a word w ∈ A∗, we denote the set of prefixes and suffixes
of w by pref(w) and suff(w), and denote the length-n (n ≤ |w|) prefix and suffix
of w by prefn(w) and suffn(w), respectively.

306 R. Sin’Ya

2.2 Graphs and Walks

Let G = (V,E) be a (directed) graph. We call a sequence of vertices ω =
(v1, . . . , vn) ∈ V n (n ≥ 1) walk (from v1 into vn in G) if (vi, vi+1) ∈ E for
each i ∈ {1, . . . , n − 1}, and define the length of ω as n − 1 and denote it
by |ω|. We denote by from(ω) and into(ω) the source from(ω) def== v1 and the
target into(ω) def== vn of ω. ω is called an empty walk if |ω| = 0. If two walks
ω1 = (v1, . . . , vm), ω2 = (v′

1, . . . , v
′
n) are connectable (i.e., into(ω1) = from(ω2)),

we write ω1 � ω2 for the connecting walk ω1 � ω2
def== (v1, . . . , vm, v′

2, . . . , v
′
n). A

non-empty walk ω is called loop (on from(ω)) if from(ω) = into(ω). A walk
(v1, . . . , vn) is called path if vi �= vj for every i, j ∈ {1, . . . , n} with i �= j. A loop
(v, v1, . . . , vn, v) is called cycle if (v, v1, . . . , vn) is a path. We use the metavari-
able π for a path, and the metavariable γ for a cycle. For a cycle γ and n ≥ 1,
we write γn for the loop which is an n-times repetition of γ. We denote by
W(G),P(G), and by C(G) the set of all walks, paths and cycles in G. Note that
W(G) is infinite in general, but P(G) and C(G) are both finite if G is finite.

The N -dimensional de Bruijn graph GN
A = (AN , E) over A is a graph whose

vertex set AN is the set of words of length N and the edge set E is defined by

E
def== {(av, vb) | a, b ∈ A, v ∈ AN−1}.

The case N = 2 is depicted in Fig. 1.

Fig. 1. The 2-dimensional de Bruijn graph G2
A over A = {a, b}, a walk

(ba, aa, aa, ab, bb, ba) (dotted red arrow) on G2
A and its corresponding word baaabba.

(Color figure online)

Let v be a vertex of GN
A . A word w = a1 · · · am ∈ A+ induces the walk

(v, v1, . . . , vm) (where vi = suffn(v prefi(w))) in GN
A , and we denote it by

walkGN
A

(v, w). Conversely, a walk ω = (v1, . . . , vn) in GN
A induces the word

v1suff1(v2) · · · suff1(vn) ∈ A∗, and we denote it by wordGN
A

(ω) (see Fig. 1). For
words w,w1, . . . , wk ∈ A∗ and a walk ω = (v0, v1, . . . , vn) ∈ W(GN

A), we define
the following vectors in N

k:

Context-Freeness of Word-MIX Languages 307

|w|(w1,...,wk)
def
== (|w|w1 , . . . , |w|wk)

|ω|(w1,...,wk)
def
==

n∑

i=1

(ci,1, . . . , ci,k) where ci,j = 1 if wj ∈ suff(vi), ci,j = 0 otherwise.

We call |w|(w1,...,wk) (resp. |ω|(w1,...,wk)) the occurrence vector of w (resp. ω).
We notice that the range of the summation in the above definition of |ω|(w1,...,wk)

does not contain 0, hence |ω|(w1,...,wk) = (0, . . . , 0) if ω is an empty walk ω = (v0).
The next proposition states a basic property of GN

A , which can be shown by a
straightforward induction on the length of w.

Proposition 1. Let w1, . . . , wk ∈ A∗ and N = max(|w1|, . . . , |wk|). For any
pair of words v, w ∈ A∗ such that |v| = N and ω = walkGN

A
(v, w), we have

|vw|(w1,...,wk) = |v|(w1,...,wk) + |ω|(w1,...,wk).

2.3 Well-Quasi-Orders

A quasi order ≤ on a set X is called well-quasi-order (wqo for short) if any infinite
sequence (xi)i∈N (xi ∈ X) contains an increasing pair xi ≤ xj with i < j. Let ≤1

be a quasi order on a set X1 and ≤2 be a quasi order on a set X2. The product
order ≤1,2 is a quasi order on X1 × X2 defined by

(x1, y1) ≤1,2 (x2, y2)
def⇐⇒ x1 ≤1 x2 and y1 ≤2 y2.

Proposition 2 (cf.Proposition 6.1.1 in [17]). Let ≤1 be a wqo on a set X1

and ≤2 be a wqo on a set X2. The product order ≤1,2 is again a wqo on X1×X2.

We list some examples of wqos below:

(1) The identity relation = on any finite set X is a wqo (the pigeonhole princi-
ple).

(2) The usual order ≤ on N is a wqo.
(3) The product order ≤m on N

m is a wqo for any m ≥ 1 (Dickson’s lemma),
which is a direct corollary of Proposition 2.

(4) The point-wise order ≤pt on the multisets N
X (M ≤pt M ′ def⇐⇒ M(x) ≤

M ′(x) for all x ∈ X) over a finite set X is a wqo (just a paraphrase of
Dickson’s lemma).

3 Path-Cycle Decomposition of Walks

In this section, we provide a simple method which decomposes, in left-to-right
manner, a walk ω into a (possibly empty) path π and a sequence of cycles Γ
(Fig. 2). This decomposition, and its inverse operation (composition), are prob-
ably folklore, and the contents in this section appeared already in the author’s
unpublished note [18]. A similar method is also used in [11].

308 R. Sin’Ya

Let G = (V,E) be a graph. For a pair of sequences of cycles Γ1 = (γ1, . . . , γn),
Γ2 = (γ′

1, . . . , γ
′
m), we write Γ1.Γ2 for the concatenation (γ1, . . . , γn, γ′

1, . . . , γ
′
m).

When Γ1 = (γ) we simply write γ.Γ2 for Γ1.Γ2 We write ∅ for the empty sequence
of cycles. For Γ = (γ1, . . . , γn), we denote by Γ (i) for the i-th component γi of
Γ , and denote by |Γ |γ the number #({i | Γ (i) = γ}) of occurrences of γ in Γ .
For a walk ω = (v1, . . . , vn), we denote by V (ω) the set of all vertices appearing
in ω: V (ω) def== {v1, . . . , vn}.

Fig. 2. Computation of ΦK4 and ΨK4

We then define a decomposition function ΦG inductively as follows:
ΦG((v)) def== ((v), ∅) and

ΦG(ω � (v, v′)) def==

{
(π � (v, v′), Γ) if v′ /∈ V (π),
(π1, Γ.(π2 � (v, v′))) if π = π1 � (v′) � π2

where (π, Γ) = ΦG(ω).

It is clear by definition that, for any ω and (ω′, Γ) = ΦG(ω), ω′ is a path and Γ is
a sequence of cycles, i.e., ΦG : W(G) → P(G) × C(G)∗. Conversely, we can define
a composition (partial) function ΨG as an inverse of ΦG , i.e., ω = ΨG(ΦG(ω)).
The formal definition of ΨG can be found in the full version [16].

Example 1. Consider the complete graph K4 = (V4 = {1, 2, 3, 4}, E4 = V4 × V4)
of order 4 and a walk ω = (1, 2, 3, 2, 3, 4, 3, 4, 2, 4). The result of decomposition
is ΦK4(ω) = (π = (1, 2, 4), Γ = ((2, 3, 2), (3, 4, 3), (2, 3, 4, 2))). All intermediate
computation steps of ΦK4(ω) and ΨK4(ΦK4(ω)) are drawn in Fig. 2 (in the figure
we denote by π&Γ a pair (π, Γ) for visibility).

Context-Freeness of Word-MIX Languages 309

3.1 Multi-traces and Traces

For a walk ω in a graph G, we define the multi-trace NTr(ω) : P(G) ∪ C(G) → N

of a walk ω as the following multiset over paths and cycles:

(NTr(ω))(π) def==

{
1 if π = πω

0 otherwise
(NTr(ω))(γ) def== |Γ |γ

where (πω, Γ) = ΦG(ω).

We define the trace Tr(ω) of a walk ω in G as the following set of paths and
cycles:

Tr(ω) def== {π ∈ P(G) | (NTr(ω))(π) �= 0} ∪ {γ ∈ C(G) | (NTr(ω))(γ) �= 0}.

Intuitively, the multi-trace of ω in G is obtained by forgetting the ordering of
the decomposition result (ω, Γ) = ΦG(ω) of ω, and the trace of ω is obtained
by forgetting the multiplicity from the original multi-trace (see Fig. 3 for the
relation).

Fig. 3. Relations between words, walks and (multi-)traces (N = 2 for the examples).

The following proposition states that the occurrences of parameter words of
a walk are completely determined from its multi-trace (see the full version [16]
for details).

Proposition 3. Let w1, . . . , wk ∈ A∗ and N = max(|w1|, . . . , |wk|). For any ω
in W(GN

A), we have

|ω|(w1,...,wk) =
∑

π∈P(GN
A

)

(NTr(ω))(π) · |π|(w1,...,wk) +
∑

γ∈C(GN
A

)

(NTr(ω))(γ) · |γ|(w1,...,wk).

4 Main Results

In this section we first introduce a new notion for WMIX languages called dimen-
sion. Afterwards, we state our main results that characterise both regularity and
context-freeness of WMIX languages.

310 R. Sin’Ya

Definition 1. Let w1, . . . , wk ∈ A∗ and N = max(|w1|, . . . , |wk|). Let T =
{π} ∪ {γ1, . . . , γm} be a trace of a walk ω in GN

A . A subset S of {γ1, . . . , γm} is
called pumpable in T of LA(w1, . . . , wk) if, for any number n ≥ 1, there exists a
word uv ∈ LA(w1, . . . , wk) with ω = walkGN

A
(u, v) such that (1) Tr(ω) = T and

(2) (NTr(ω))(γ) ≥ n for each γ ∈ S. We further say S is maximal if no proper
superset of S included in {γ1, . . . , γm} is pumpable.

Remark 1. The emptyset ∅ is always pumpable in a trace T of LA(w1, . . . , wk)
such that Tr(walkGN

A
(u, v)) = T for some uv ∈ LA(w1, . . . , wk). Moreover, it is

decidable whether S is pumpable or not in T of LA(w1, . . . , wk) (see the full
version [16]).

Recall that a vector space is a set V ⊆ R
k such that 0 ∈ V ,V + V ⊆ V and

RV = {α · v | v ∈ V , α ∈ R} ⊆ V where 0 is the vector with all zeros.

Definition 2. Let w1, . . . , wk ∈ A∗, N = max(|w1|, . . . , |wk|). The dimension
of L = LA(w1, . . . , wk) is the natural number defined as

max{dim(V) | V =span({|γ|(w1,...,wk) | γ ∈ S}), S is pumpable in some T of L}

where dim(V) is the dimension of the vector space V and span(B) is the vector
space spanned by B (where span(∅) def== {0}).

Fig. 4. The 1-dimensional de Bruijn graph G1
A over A = {a, b, c}.

The dimension of a WMIX language L is, roughly speaking, the minimum
number of cycles (in the de Bruijn graph) that should be counted independently.
We describe this intuition more rigorously by using MIX = LA(a, b, c) for A =
{a, b, c} as a simple example.

Example 2. Since max(|a|, |b|, |c|) = 1, it is enough to consider the 1-dimensional
de Bruijn graph G1

A over A = {a, b, c} (see Fig. 4). One can easily observe that
the set of cycles S = {γ1 = (a, a), γ2 = (b, b), γ3 = (c, c)}, each γi is depicted in
Fig. 4, is pumpable in the trace T = {(a, b, c)}∪S: for any n > 0, the word awn =

Context-Freeness of Word-MIX Languages 311

an+1bn+1cn+1 is in MIX and it satisfies the two conditions in the Definition 1
as (1) Tr(walkGN

A
(a,wn)) = T and (2) (NTr(walkGN

A
(a,wn)))(γi) = n for each

γi ∈ S. The occurrence vectors corresponding to γ1, γ2, γ3 are v1 = (1, 0, 0),v2 =
(0, 1, 0),v3 = (0, 0, 1), respectively. Since those occurrence vectors are linearly
independent, the vector space spanned by them is R3 and thus the dimension of
MIX is three.

By considering dimensions of WMIX languages, we can nicely characterise
both regularity and context-freeness as follows.

Theorem 1 (regularity). LA(w1, . . . , wk) is regular if and only if its dimen-
sion is at most one.

Theorem 2 (context-freeness). LA(w1, . . . , wk) is context-free if and only if
its dimension is at most two.

Some pushdown automaton A can recognise LA(a, b) since, by using its stack,
A can track the number |w|a − |w|b. However, no pushdown automaton A can
recognise MIX = LA(a, b, c) since, for that purpose, one should track the numbers
|w|a−|w|b and |w|b−|w|c simultaneously. This is a rough intuition why a language
with dimension greater than or equal three is never to be context-free (the formal
proof is in the next section).

The set P(GN
A) ∪ C(GN

A) of paths and cycles in the N -dimensional de Bruijn
graph is finite, hence we can effectively enumerate all traces of all walks in GN

A

(see the full version [16] for details). Moreover, as we mentioned in Remark 1,
we can also effectively enumerate all pumpable sets in a trace. For a pumpable
set S, computing the dimension of the vector space spanned by the occurrence
vectors S is just counting the maximum number of linearly independent ones
from the occurrence vectors of S. Combining these facts and Theorem 1–2, we
can effectively compute the dimension of LA(w1, . . . , wk) and hence we have the
following decidability result.

Corollary 1. Regularity and context-freeness are decidable for WMIX
languages.

5 Proof of the Main Results

The proof structure of Theorem 1 is similar with one of Theorem 2, albeit that
the latter is more complicated. In this section, we firstly investigate some struc-
tural properties of pumpable sets, which play crucial role in the main proof. We
secondly give a proof of Theorem 1 which would give a good intuition for the
latter proof. Finally, we give a proof of Theorem 2.

5.1 Properties of Pumpable Sets

For a vector v = (c1, . . . , ck) ∈ R
k, we define diff(v) def==

∑k
i=1(max{c1, . . . , ck}

− ci). Observe that w ∈ LA(w1, . . . , wk) if and only if diff(|w|(w1,...,wk)) = 0.

312 R. Sin’Ya

Lemma 1. Let w1, . . . , wk ∈ A∗ and N = max(|w1|, . . . , |wk|). For any
maximum pumpable set S in T = {π} ∪ S′ of LA(w1, . . . , wk), if V =
span({|γ|(w1,...,wk) | γ ∈ S}) has a non-zero dimension, then V contains the
vector 1.

Proof. Let u = from(π). Since S is pumpable, there exists an infinite sequence
(uvi)i∈N, where u ∈ AN , of words that satisfies:

(1) Tr(walkGN
A

(u, vi)) = T for all i ∈ N.
(2) uvi ∈ LA(w1, . . . , wk) for all i ∈ N.
(3) NTr(walkGN

A
(u, vi))(γ) < NTr(walkGN

A
(u, vj))(γ) for all i, j ∈ N with i < j

and for all γ ∈ S.

Now consider an infinite sequence of multi-traces of the above sequence

(Mi)i∈N

def== (NTr(walkGN
A

(u, vi)))i∈N.

Since the point-wise order on the multisets over any finite set is a wqo (thanks
to Dickson’s lemma) and P(GN

A) ∪ C(GN
A) is finite, (Mi)i∈N contains an infinite

increasing subsequence (Mj)j∈J (J ⊆ N). Let S = (S′ \ S). Because S is maxi-
mum, the number of maximum occurrence of any non-pumpable cycle γ ∈ S is
bounded, i.e., there is some constant c ∈ N such that (NTr(walkGN

A
(u, vi)))(γ) <

c for any γ ∈ S and i ∈ N. By using pigeonhole principle, we can deduce that, in
the infinite sequence (Mj)j∈J , there exists a pair (i1, i2) ∈ J2 with i1 < i2 such
that (Mi1)(γ) = (Mi2)(γ) for all γ ∈ S. Let C =

∑
γ∈S Mi1(γ) · |γ|(w1,...,wk).

Combining the above observation and the condition (3) of (uvi)i∈N, we have

Mi1(γ) = Mi2(γ) for all γ ∈ S Mi1(γ) < Mi2(γ) for all γ ∈ S. (�)

Because uvi1 , uvi2 ∈ LA(w1, . . . , wk), by Proposition 1 and Proposition 3, we
have

diff(|uvi1 |(w1,...,wk)) = diff(|uvi2 |(w1,...,wk)) = 0

= diff

⎛
⎝|u|(w1,...,wk) + |π|(w1,...,wk) + C +

∑
γ∈S

Mi1(γ) · |γ|(w1,...,wk)

⎞
⎠

= diff

⎛
⎝|u|(w1,...,wk) + |π|(w1,...,wk) + C +

∑
γ∈S

Mi2(γ) · |γ|(w1,...,wk)

⎞
⎠ .

Moreover, from the above equation we obtain

diff

⎛
⎝∑

γ∈S

(Mi2(γ) − Mi1(γ)) · |γ|(w1,...,wk)

⎞
⎠ = 0 (1)

Context-Freeness of Word-MIX Languages 313

because for any v such that diff(v) = 0, diff(v + v′) = 0 if and only if
diff(v′) = 0. By Condition (�), the vector

v =
∑
γ∈S

(Mi2(γ) − Mi1(γ)) · |γ|(w1,...,wk)

is not the zero vector 0. Thus v is of the form n · 1 (n �= 0), i.e., 1 ∈ span(V). ��
Lemma 2. Let w1, . . . , wk ∈ A∗ and N = max(|w1|, . . . , |wk|). For any trace T
of some walk in GN

A , if Tr(walkGN
A

(u, v)) = T for some uv ∈ LA(w1, . . . , wk),
then there exists a unique maximal (i.e., the maximum) pumpable set S in T of
LA(w1, . . . , wk).

Proof. Let S1, S2 be two maximal pumpable sets in T of LA(w1, . . . , wk) and
S1 = {γ1, . . . , γm}. We now prove that S1 ∪ S2 is also pumpable in T , which
implies S1 = S2 by the maximality of S1 and S2. By Condition (�) and Equa-
tion (1) in the proof of Lemma 1, we can deduce that there exist n1, . . . , nm ∈ N

such that ni > 0 for all i ∈ {1, . . . , m} and diff(
∑m

i=1 ni · |γi|(w1,...,wk)) = 0. Let
(uvi)i∈N be an infinite sequence that ensures the pumpability of S2, namely,

(1) Tr(walkGN
A

(u, vi)) = T for all i ∈ N.
(2) uvi ∈ LA(w1, . . . , wk) for all i ∈ N.
(3) NTr(walkGN

A
(u, vi))(γ) ≥ i for all i ∈ N and for all γ ∈ S2.

Let uv′
i be a word that satisfying Tr(walkGN

A
(u, v′

i)) = T , NTr(walkGN
A

(u, v′
i))(γj)

= NTr(walkGN
A

(u, vi))(γj)+i×nj for all i ∈ N and γj ∈ S1. Such word uv′
i always

exists because we can just pump an occurrence of γj ∈ S1 in walkGN
A

(u, vi)
(i × nj)-times repeatedly. Then the infinite sequence (uv′

i)i∈N satisfies uv′
i ∈

LA(w1, . . . , wk) and NTr(walkGN
A

(u, v′
i))(γ) ≥ i for all i ∈ N and for all γ ∈

S1 ∪ S2, because diff(
∑m

j=1 nj · |γj |(w1,...,wk)) = 0. Which means that (uv′
i)i∈N

ensures the pumpability of S1 ∪ S2, this ends the proof. ��
Lemma 3. Let w1, . . . , wk ∈ A∗ and N = max(|w1|, . . . , |wk|). For any maxi-
mum pumpable set S of LA(w1, . . . , wk),

(1) if the vector space V spanned by the occurrence vectors of S is of dimension
one, then V = span({1}) where 1 is the k-dimensional vector with entries
all 1, i.e., any occurrence vector v of S satisfies diff(v) = 0.

(2) if the vector space V spanned by the occurrence vectors of S is of dimension
greater than or equal two, then we can choose a basis B ⊆ {|γ|(w1,...,wk) |
γ ∈ S} of V such that any element v of B satisfies diff(v) �= 0.

Proof. Condition (1) is a direct consequence of Lemma 1. Condition (2) is also
from Lemma 1. Let γ ∈ S be a pumpable cycle such that diff(γ) �= 0. Such γ
always exists since S contains at least two cycles whose occurrence vectors are
linearly independent. Moreover, by Condition (�) in the proof of Lemma 1, we
can deduce that there exists B′ ⊆ S such that the occurrence vectors of B′ ∪{γ}
are linearly independent and 1 ∈ span(B′ ∪ {γ}). Thus any vector of the form
n · 1 (n �= 0) is not in the occurrence vectors of B′ ∪ {γ}, we can take a desired
basis B as an extension of B′ ∪ {γ} (B′ ∪ {γ} ⊆ B). ��

314 R. Sin’Ya

5.2 Proof of Theorem 1

To prove “only if” part, we modify standard Pumping Lemma as follows and call
it Shrinking Lemma. Shrinking Lemma (see the full version [16] for the proof).

Lemma 4 (Shrinking Lemma for regular languages). Let L ⊆ A∗ be a
regular language. Then there exists a constant c ∈ N such that, for any number
n ≥ c and for any word w ∈ L with |w| ≥ n, for any factorisation w = xyz such
that |y| = n ≥ c, there exists a word y′ such that (1) y′ �sc y, (2) |y′| ≤ c and
(3) xy′z ∈ L.

Now we prove Theorem 1. Let N = max(|w1|, . . . , |wk|). The “only if” part is
shown by contraposition. Assume that the dimension of L = LA(w1, . . . , wk) is
two (higher-dimensional case can be shown similarly). Because L is of dimension
two, there exists a maximum pumpable set S = {γi1 , . . . , γij

} in some trace
T = {π} ∪ {γ1, . . . , γm} in GN

A such that two occurrence vectors |γα|(w1,...,wk)

and |γβ |(w1,...,wk) of two cycles γα and γβ in S are linearly independent and any
occurrence vector of an element of S can be represented as a linear combination
of |γα|(w1,...,wk) and |γβ |(w1,...,wk). By Condition (2) of Lemma 3, we can assume
that diff(|γα|(w1,...,wk)) �= 0 and diff(|γβ |(w1,...,wk)) �= 0. Since S is a maximum
pumpable set and the dimension of L is two, there exists a constant cT ∈ N such
that for any n ∈ N there exists a word uvn ∈ L with Tr(walkGN

A
(u, vn)) = T ,

(NTr(u, vn))(γα) = nα, (NTr(u, v))(γβ) = nβ ≥ n and (NTr(u, vn))(γi) ≤ cT for
each i ∈ ({1, . . . ,m} \ {α, β}). By Proposition 3, we can assume that the walk
walkGN

A
(u, vn) is of the form

walkGN
A

(u, vn) = ω1 � γnα
α � ω2 � γ

nβ

β � ω3.

Intuitively, walkGN
A

(u, vn) firstly moves to from(γα) (part of ω1), and secondly
passes γα repeatedly nα-times and moves to from(γβ) (part of γnα

α � ω2), and
lastly passes γβ repeatedly nβ-times and moves to the end (part of γ

nβ

β � ω3). If
L is regular, then by Lemma 4, there exists a constant c such that for any n ≥ c
and the factorisation uvn = xynzn, where x, yn and zn are words corresponding
to the first, second and last part of walks described above, there exists a word
y′

n satisfying conditions (1)–(3) in Lemma 4. Because diff(|γβ |(w1,...,wk)) �= 0,
we have |γβ |wj

< |γβ |wj′ for some 1 ≤ j, j′ ≤ k. However, since the length of
x and y′

n are fixed by constant but zn can be arbitrarily large, the gap of the
occurrences |zn|wj′ − |zn|wj

can be arbitrarily large (thus |xy′
nzn|w′

j
− |xy′

nzn|wj

can be arbitrarily large, too). It means that xy′
nzn �∈ L for sufficiently large n, a

contradiction.
The “if” part is achieved by showing that the language LT = {uv ∈ L | |u| =

N,Tr(walkGN
A

(u, v)) = T} is regular for each trace T = {π} ∪ {γ1, . . . , γm} in
GN

A . It implies that L is regular because L = L<N ∪ ⋃
T :trace LT (notice that

L<N = {w ∈ L | |w| < N} is finite and thus regular). One can observe that
L = {w ∈ L | |w| < N}∪⋃

T : trace in GN
A

LT , hence if every LT is regular then L is
also regular. To achieve it, we construct a deterministic automaton AT,S , where

Context-Freeness of Word-MIX Languages 315

S is the maximum pumpable set in T , so that LT = L(AT,S). Let S = (T \S\{π})
and define

cT
def== max{(NTr(walkGN

A
(u, v)))(γ) ∈ N | uv ∈ L,Tr(walkGN

A
(u, v)) = T, γ ∈ S}

(notice that max ∅ def== 0 as usual). cT is well-defined natural number, because,
by the definition of pumpable set and S being maximum, for any cycle γ in T
but not in S, the maximum number of occurrences of γ in a walk of some word
in L is bounded. We denote by F the set of all functions from S to N

≤cT . Notice
that both S and N

≤cT are finite, F is also finite. Let f0 ∈ F be the constant
map to 0. Then the construction is as follows: AT,S = (Q, δ, ε, F) where each
component is defined in Fig. 5.

Fig. 5. The construction of AT,S = (Q, δ, ε, F).

Although the formal definition in Fig. 5 could look complex, the behavior of
AT,S is simple: it computes path-cycle decomposition and counts the number
of occurrences of each non-pumpable cycle γ ∈ S. The main part of states is
Q′ which consists of the path part P(GN

A), pumpable-cycles part 2S and non-
pumpable-cycles part F . While reading an input word w, AT,S extends the path
part (Case 1©) if the next vertex wb is not in the current path. If the next
vertex wb is already in the current path, there are four possibilities (Case 2©–
5©). If the induced cycle γ on wb is in S (Case 2©), AT,S updates the pumpable
cycle part. The number of occurrences of such cycle γ ∈ S is not necessary to
be memorised, since by Condition (1) of Lemma 3 diff(|γ|(w1,...,wk)) = 0. If
γ is not in T (Case 3©), AT,S goes to the rejecting state qrej, since the trace

316 R. Sin’Ya

of w is never to be T . If γ is in S, there are two possibilities further: if the
current number of occurrences of γ is less than cT (Case 4©), AT,S increments
it, otherwise (Case 5©), AT,S goes to qrej because w is never to be in L by the
definition of cT . ��

5.3 Proof of Theorem 2

The proof structure is similar with the regular case (Theorem 1). The following
lemma is a context-free variant of Lemma 4. Lemma 4 (see the full version [16]
for the proof).

Lemma 5 (Shrinking Lemma for context-free languages). Let L ⊆ A∗

be a context-free language. Then there exists a constant c ∈ N such that, for any
number n ≥ c and for any word w ∈ L with |w| ≥ n, there exists a factorisation
w = xyz and a word y′ such that (0) 2n > |y| ≥ n ≥ c, (1) y′ �sc y, (2) |y′| ≤ c
and (3) xy′z ∈ L.

Now we prove Theorem 2. Let N = max(|w1|, . . . , |wk|). The “only if” part
is shown by contraposition. Assume that the dimension of L = LA(w1, . . . , wk)
is three (higher-dimensional case can be shown similarly). Because L is of
dimension three, there exists a maximum pumpable set S = {γi1 , . . . , γij

} in
some trace T = {π} ∪ {γ1, . . . , γm} in GN

A such that three occurrence vectors
B = {|γα|(w1,...,wk), |γβ |(w1,...,wk), |γδ|(w1,...,wk)} of three cycles γα, γβ and γδ in
S are linearly independent and any occurrence vector of an element of S can
be represented as a linear combination of B. By Condition (2) of Lemma 3,
we can assume that any vector v in B satisfies diff(v) �= 0. Since S is a
maximum pumpable set and the dimension of L is three, there exists a con-
stant cT ∈ N such that for any n ∈ N there exists a word uvn ∈ L with
Tr(walkGN

A
(u, vn)) = T , (NTr(walkGN

A
(u, vn)))(γi) = ni ≥ n for each i ∈

{α, β, δ} and (NTr(walkGN
A

(u, vn)))(γi) ≤ c for each i ∈ ({1, . . . , m} \ {α, β, δ}).
By Proposition 3, we can assume that the walk walkGN

A
(u, vn) is of the form

walkGN
A

(u, vn) = ω1 � γnα
α � ω2 � γ

nβ

β � ω3 � γnδ

δ � ω4.

Let un,1, un,2 and un,3 be words corresponding to ω1 � γnα
α , ω2 � γ

nβ

β and ω3 �
γnδ

δ � ω4, respectively (thus uvn = un,1un,2un,3). Let Mn = min{nα · |γα|, nβ ·
|γβ |, nδ · |γδ|}. If L is context-free, then by Lemma 5, there exists a constant c
such that for any n ≥ c, there is a factorisation uvn = xnynzn and a word y′

n

satisfying conditions (0)–(3) in Lemma 5. Take n ∈ N that satisfies Mn ≥ c.
Then, the word y in the factorisation uvn = xnynzn above can cross at most two
words from un,1, un,2, un,3. It means that xny′

nzn �∈ L for sufficiently large n, a
contradiction.

The “if” part is achieved in a similar way as the regular case: we can construct
a pushdown automaton AT,S , where S is the maximum pumpable set in T , so
that LT = L(AT,S). The only difference is that AT,S uses its stack for checking
the consistency the occurrences of two linearly independent occurrence vectors.
AT,S achieves it as some pushdown automaton recognises LA(a, b). ��

Context-Freeness of Word-MIX Languages 317

6 Conclusion and Future Work

In this paper, we provided decidable, necessary and sufficient conditions of the
regularity and context-freeness for WMIX languages by using the notion of
dimensions. Complexity issues on these problems (tight lower/upper bounds,
more efficient algorithm, etc.) are untouched and could be future work.

The author’s main interest is how to generalise the main result into more
richer language classes, e.g., UnCA languages [11]. From WMIX languages (rep-
resented by de Bruijn graphs and diagonals {n·1 | n ∈ N}) into UnCA languages
(represented by unambiguous automata and semilinear sets), although we should
modify the notion of dimensions and some part of the proof strategy, the author
conjectures that the context-freeness is still decidable for UnCA languages.

Acknowledgement. The author would like to thank Thomas Finn Lidbetter for
telling me this topic in DLT 2018. Special thanks also go to my colleague Fazekas
Szilard whose helpful discussion were an enormous help to me. The author also thank
to anonymous reviewers for many valuable comments. This work was supported by
JSPS KAKENHI Grant Number JP19K14582.

References

1. Joshi, A., Vijay-Shanker, K., Weir, D.: The convergence of mildly context-sensitive
grammar formalisms. Foundational Issues in Natural Language Processing, pp. 31–
82 (1991)

2. Marsh, W.: Some conjectures on indexed languages. Abstract Appears J. Symb.
Log. 51(3), 849 (1985)

3. Boullier, P.: Chinese numbers, mix, scrambling, and concatenation grammars
range. In: EACL 1999, 9th Conference of the European Chapter of the Associa-
tion for Computational Linguistics, 8–12 June 1999, University of Bergen, Bergen,
Norway, pp. 53–60. The Association for Computer Linguistics (1999)

4. Kanazawa, M., Salvati, S.: MIX is not a tree-adjoining language. In: The 50th
Annual Meeting of the Association for Computational Linguistics, Proceedings of
the Conference, 8–14 July 2012, Jeju Island, Korea - Volume 1: Long Papers, pp.
666–674. The Association for Computer Linguistics (2012)

5. Salvati, S.: MIX is a 2-MCFL and the word problem in Z
2 is captured by the IO

and the OI hierarchies. J. Comput. Syst. Sci. 81(7), 1252–1277 (2015)
6. Parikh, R.: On context-free languages. J. ACM 13(4), 570–581 (1966)
7. Colbourn, C.J., Dougherty, R.E., Lidbetter, T.F., Shallit, J.: Counting subwords

and regular languages. In: Hoshi, M., Seki, S. (eds.) DLT 2018. LNCS, vol. 11088,
pp. 231–242. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98654-
8 19

8. Mateescu, A., Salomaa, A., Salomaa, K., Yu, S.: A sharpening of the Parikh map-
ping. Theor. Inf. Appl. 35(6), 551–564 (2001)

9. Mateescu, A., Salomaa, A., Yu, S.: Subword histories and Parikh matrices. J. Com-
put. Syst. Sci. 68(1), 1–21 (2004)

10. Seki, S.: Absoluteness of subword inequality is undecidable. Theoret. Comput. Sci.
418, 116–120 (2012)

https://doi.org/10.1007/978-3-319-98654-8_19
https://doi.org/10.1007/978-3-319-98654-8_19

318 R. Sin’Ya

11. Cadilhac, M., Finkel, A., McKenzie, P.: Unambiguous constrained automata. In:
Yen, H.-C., Ibarra, O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 239–250. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31653-1 22

12. Ginsburg, S.: The Mathematical Theory of Context-Free Languages. McGraw-Hill,
Inc., New York (1966)

13. Kászonyi, L.: A pumping lemma for DLI-languages. Discrete Math. 258(1), 105–
122 (2002)

14. Leroux, J., Penelle, V., Sutre, G.: The context-freeness problem is coNP-complete
for flat counter systems. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS,
vol. 8837, pp. 248–263. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11936-6 19

15. Schwer, S.R.: The context-freeness of the languages associated with vector addition
systems is decidable. Theoret. Comput. Sci. 98(2), 199–247 (1992)

16. Sin’ya, R.: Context-freeness of word-mix languages (full version) (2020). http://
www.math.akita-u.ac.jp/∼ryoma/misc/dlt2020full.pdf

17. de Luca, A., Varricchio, S.: Finiteness and Regularity in Semigroups and For-
mal Languages. Monographs in Theoretical Computer Science. An EATCS Series.
Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-59849-4

18. Sin’ya, R.: Note on the infiniteness of L(w1, . . . , wk). CoRR abs/1812.02600 (2018)

https://doi.org/10.1007/978-3-642-31653-1_22
https://doi.org/10.1007/978-3-319-11936-6_19
https://doi.org/10.1007/978-3-319-11936-6_19
http://www.math.akita-u.ac.jp/~ryoma/misc/dlt2020full.pdf
http://www.math.akita-u.ac.jp/~ryoma/misc/dlt2020full.pdf
https://doi.org/10.1007/978-3-642-59849-4

	Context-Freeness of Word-MIX Languages
	1 Introduction
	2 Preliminaries
	2.1 Words and Word-MIX Languages
	2.2 Graphs and Walks
	2.3 Well-Quasi-Orders

	3 Path-Cycle Decomposition of Walks
	3.1 Multi-traces and Traces

	4 Main Results
	5 Proof of the Main Results
	5.1 Properties of Pumpable Sets
	5.2 Proof of Theorem 1
	5.3 Proof of Theorem 2

	6 Conclusion and Future Work
	References

