
A Study of a Simple Class of Modifiers:
Product Modifiers

Pascal Caron, Edwin Hamel-de-le-court(B), and Jean-Gabriel Luque

LITIS, Université de Rouen, Avenue de l’Université,
76801 Saint-Étienne du Rouvray Cedex, France

{Pascal.Caron,Jean-Gabriel.Luque}@univ-rouen.fr,
Edwin.Hamel-de-le-court@etu.univ-rouen.fr

Abstract. A modifier is a k-ary operator acting on DFAs and producing
a DFA. Modifiers are involved in the theory of state complexity. We define
and study a class of simple modifiers, called product modifiers, and we
link closely the regular operations they encode to boolean operations.

1 Introduction

State complexity is a measure of complexity defined on regular operations. It
allows to write the size of the minimal automaton recognizing the output as
a function of the sizes of the minimal automata recognizing the inputs. The
topic dates back to the 70s, from the seminal paper of Maslov [14] describing,
explicitly but without any proof, the state complexities of several operations.
Since the 90s, this area of research became very active and the state complexity
of numerous operations has been computed. See, for example, [6,11–13,15] and
[8] for a survey of the subject.

However, a few general methods are commonly used in order to compute
state complexities. The most common method consists in providing a witness,
which is a specific example reaching what is proven to be an upper bound. The
witness itself is, in general, found by trial and error, sometimes using a witness
that worked for a number of other operations and modifying it to fit the specific
needs of the operation considered. In many cases, for example [1,7] or [4], the
witness is constructed by considering, explicitly or implicitly, the whole monoid
of the transformations acting on the states of the minimal automata recogniz-
ing the input languages. This method has been theorized in two independently
written papers [2,5]. More precisely, the approach consists, on the one hand,
in describing states as combinatorial objects and finding upper bounds using
combinatorial tools, and, on the other hand, in building a huge witness, called
a monster, chosen in a set of automata having as many transition functions as
possible. This method can be applied to obtain the state complexity to the wide
range of 1-uniform operations that are associated to operators, called modifiers,
that act on automata to produce an automaton in a certain restrictive way. In
this paper, we examine the regular operations described by the class of some
very simple modifiers called product modifiers. These modifiers are characterized
c© Springer Nature Switzerland AG 2020
N. Jonoska and D. Savchuk (Eds.): DLT 2020, LNCS 12086, pp. 110–121, 2020.
https://doi.org/10.1007/978-3-030-48516-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48516-0_9&domain=pdf
https://doi.org/10.1007/978-3-030-48516-0_9


A Study of a Simple Class of Modifiers: Product Modifiers 111

by the fact that they build the Cartesian product automaton with the tran-
sitions took from the input automata. We investigate many properties of this
class and in particular we completely describe the set of the regular operations
that can be encoded by product modifiers. The paper is organized as follows.
Section 2 gives definitions and notations about automata. In Sect. 3, we partially
recall the monster approach. Finally, in Sect. 4, we define product modifiers and
characterize the regular operations they encode in Sect. 5.

2 Preliminaries

2.1 Operations over Sets

The set of subsets of E is denoted by 2E and the set of mappings of E into itself
is denoted by EE . The symmetric difference of two sets E1 and E2 is denoted
by ⊕ and defined by E1 ⊕ E2 = (E1 ∪ E2)\(E1 ∩ E2).

Let (E1, . . . , Ek) be a k-tuple of finite sets, and let (δ1, . . . , δk) be a k-
tuple such that δi is a function from Ei to Ei for every i ∈ {1, . . . , k}. For
any k-tuple (e1, . . . , ek) such that ei ∈ Ei for all i ∈ {1, . . . , k}, we denote by
(δ1, . . . , δk)(e1, . . . , ek) the k-tuple (δ1(e1), . . . , δk(ek)).

Let E be a set, f : Ej → E and g : Ek → E for some j, k ∈ N \ {0}. A
composition is a function f ◦p g : Ej+k−1 → E defined for some 1 ≤ p ≤ j by

f ◦p g(e1, . . . , ej+k−1) = f(e1, . . . , ep−1, g(ep, . . . , ep+k−1), ep+k, . . . , ej+k−1),

for any e1, . . . , ej+k−1 ∈ E.

2.2 Languages and Automata

Let Σ be a finite alphabet. A word w over Σ is a finite sequence of symbols of
Σ. The set of all finite words over Σ is denoted by Σ∗. A language over Σ is a
subset of Σ∗. We define the complement of a language L ⊆ Σ∗ by Lc = Σ∗ \ L.

A complete and deterministic finite automaton (DFA) is a 5-tuple A =
(Σ,Q, i, F, δ) where Σ is the input alphabet, Q is a finite set of states, i ∈ Q is
the initial state, F ⊂ Q is the set of final states and δ is the transition function
from Q×Σ to Q that is defined for every q ∈ Q and every a ∈ Σ. We can extend
transition functions in a natural way to functions from Q × Σ∗ to Q, and again
to functions from 2Q × Σ∗ to Q. For any word w, we denote by δw the function
q → δ(q, w).

Let A = (Σ,Q, i, F, δ) be a DFA. A word w ∈ Σ∗ is recognized by the DFA
A if δ(i, w) ∈ F . The language recognized by a DFA A is the set L(A) of words
recognized by A. By Kleene’s theorem, a language is regular if and only if it is
recognized by a DFA. It is well known that for any DFA, there exists a unique
minimal one (up to isomorphism) among all DFAs recognizing the same language
([10]).



112 P. Caron et al.

2.3 State Complexity

A unary regular operation is a function from regular languages of Σ into regular
languages of Σ. A k-ary regular operation is a function from the set of k-tuples
of regular languages over Σ into regular languages over Σ.

The state complexity of a regular language L denoted by sc(L) is the number
of states of its minimal DFA. This notion extends to regular operations: the state
complexity of a unary regular operation ⊗ is the function sc⊗ such that, for all
n ∈ N, sc⊗(n) is the maximum of all the state complexities of ⊗(L) when L is
of state complexity n, i.e.

sc⊗(n) = max{sc(⊗(L))|sc(L) = n}.

This can be generalized, and the state complexity of a k-ary operation ⊗ is
the k-ary function sc⊗ such that, for all (n1, . . . , nk) ∈ (N)k,

sc⊗(n1, . . . , nk) = max{sc(⊗(L1, . . . , Lk)) | for all i ∈ {1, . . . , k}, sc(Li) = ni}.

Then, a witness for ⊗ is a way to assign to each (n1, . . . , nk), where each ni is
assumed sufficiently big, a k-tuple of languages (L1, . . . , Lk) with sc(Li) = ni,
for all i ∈ {1, . . . , k}, satisfying sc⊗(n1, . . . , nk) = sc(⊗(L1, . . . , Lk)).

3 Modifiers and 1-uniform Operations

We describe a class of regular operations, called 1-uniform which are interesting
for the study of state complexity [3,5]. We then define operations on DFA called
modifiers, and describe a subset of these operations that correspond to the set
of 1-uniform regular operations.

3.1 Definition and First Properties

Definition 1. Let Σ and Γ be two alphabets. A morphism is a function φ from
Σ∗ to Γ ∗ such that, for all w, v ∈ Σ∗, φ(wv) = φ(w)φ(v). Notice that φ is
completely defined by its value on letters. A morphism φ is 1-uniform if the
image by φ of any letter is a letter.

The preimage φ−1(L) of a regular language L by a morphism φ is regular, see,
e.g., [9]. This allows us to introduce the notion of 1-uniform regular operation.

Definition 2. A k-ary regular operation ⊗ is 1-uniform if, for any k-tuple
of regular languages (L1, . . . , Lk), for any 1-uniform morphism φ, we have
⊗(φ−1(L1), . . . , φ−1(Lk)) = φ−1(⊗(L1, . . . , Lk)).

Obviously, 1-uniformity is stable by composition. Many well-known regular oper-
ations are 1-uniform. See [5] for a non-exhaustive list of examples like the com-
plement, the Kleene star, the reverse, the cyclic shift, and the mirror, all boolean
operations and catenation among others.

Each 1-uniform regular k-ary operation corresponds to a construction over
DFAs, which is handy when we need to compute the state complexity of its
elements. Such a construction on DFAs has some constraints that are described
in the following definitions.



A Study of a Simple Class of Modifiers: Product Modifiers 113

Definition 3. The state configuration of a DFA A = (Σ,Q, i, F, δ) is the triplet
(Q, i, F ).

Definition 4. A k-modifier is a k-ary operation acting on a k-tuple of DFAs
(A1, . . . , Ak), on the same alphabet Σ, and producing a DFA m(A1, ..., Ak) such
that

– its alphabet is Σ,
– its state configuration depends only on the state configurations of the DFAs

A1, . . . , Ak,
– for any letter a ∈ Σ, the transition function of a in m(A1, . . . , Ak) depends

only on the state configurations of the DFAs A1, . . . , Ak and on the transition
functions of a in each of the DFAs A1, ..., Ak.

Example 1. For any DFA A = (Σ,Q, i, F, δ), define Star(A) = (Σ, 2Q, ∅, {E|E∩
F 
= ∅} ∪ {∅}, δ1), where for any a ∈ Σ, δa1 (∅) = δa(i) if δa(i) /∈ F and δa1 (∅) =
δa(i) otherwise, and, for all E 
= ∅, δa1 (E) = δa(E) if δa(E) ∩ F = ∅ and
δa1 (E) = δa(E) ∪ {i} otherwise. The modifier Star describes a construcion on
DFA associated to the Star operation on languages, i.e. for all DFA A, L(A)∗ =
L(Star(A)).

Example 2. For any DFAs A = (Σ,Q1, i1, F1, δ1) and B = (Σ,Q2, i2, F2, δ2), let
Xor(A,B) = (Σ,Q1 ×Q2, (i1, i2), (F1 × (Q2 \F2)∪ (Q1 \F1)×F2), (δ1, δ2)). The
modifier Xor describes the classical construction associated to the symmetrical
difference, i.e for all DFAs A and B, L(A) ⊕ L(B) = L(Xor(A,B)).

Definition 5. A k-modifier m is 1-uniform if, for every pair of k-tuples of DFAs
(A1, . . . , Ak) and (B1, . . . , Bk) such that L(Aj) = L(Bj) for all j ∈ {1, . . . , k},
we have L(m(A1, . . . , Ak)) = L(m(B1, . . . , Bk)). In that case, there exists a reg-
ular operation ⊗m such that, for all k-tuples (A1, . . . , Ak) of DFAs, we have
⊗m(L(A1), . . . ,L(Ak)) = L(m(A1, . . . , Ak)). We say that m describes the opera-
tion ⊗m.

We easily check that, for modifiers, the 1-uniformity is stable by composition.

Claim. Let m1 and m2 be respectively a j-modifier and a k-modifier describing,
respectively, operations ⊗1 and ⊗2. The modifier m1 ◦p m2 describes ⊗1 ◦p ⊗2.

The correspondence between 1-uniform modifiers and 1-uniform operations
is stated in the following Theorem proved in [3].

Theorem 1. A k-ary operation ⊗ is 1-uniform if and only if there exists a
k-modifier m such that ⊗ = ⊗m.

Modifiers have been defined, for the first time, in [2] as a tool to compute state
complexity of 1-uniform operations.



114 P. Caron et al.

3.2 Functional Notations

When there is no ambiguity, for any character X and any integer k given by the
context, we write X for (X1, · · · , Xk). The number k will often be the arity of the
regular operation or of the modifier we are considering.

From Definition 4, any k-modifier m can be seen as a 4-tuple of mappings
(Q, i, f, d) acting on k DFAs A with Aj = (Σ,Qj , ij , Fj , δj) to build a DFA
mA = (Σ,Q, i, F, δ), where Q = Q(Q, i, F ), i = i(Q, i, F ), F = f(Q, i, F )
and ∀a ∈ Σ, δa = d(i, F , δa). For the sake of clarity, we do not write explicitly
the domains of the 4-tuple of mappings but the reader can derive them easily
from the above equalities. Notice that we do not need to point out explicitly
the dependency of d on Q because the information is already contained in δa.
We identify modifiers and such 4-tuples of mappings with each other. Below we
revisit the definition of Xor according to this formalism.

Example 3. Xor = (Q, i, f, d) where

Q((Q1, Q2), (i1, i2), (F1, F2)) = Q1 × Q2, i((Q1, Q2), (i1, i2), (F1, F2)) = (i1, i2),
f((Q1, Q2), (i1, i2), (F1, F2)) = F1 × (Q2 \ F2) ∪ (Q1 \ F1) × F2,

d((i1, i2), (F1, F2), (δ1, δ2)) = (δ1, δ2).

4 Product Modifiers

In this section, we study a kind of simple modifier called product modifiers and
show that they are closely linked to boolean operations.

Definition 6. A k-modifier m = (Q, i, f, d) is a product modifier if, for any
k-tuple of finite sets Q, for any k-tuple of finite sets F such that Fj ⊆ Qj for all
j, and for any i ∈ Q1 × · · · × Qk

1. Q(Q, i, F ) = Q1 × · · · × Qk.
2. ∀a ∈ Σ, d(i, F , δa) = δa, with δa(q) = (δa1 (q1), δa2 (q2), ..., δak(qk)).

In other words, if m is a product modifier, then mA is the product automaton
of the Aj , but with final states f(Q, i, F ) and initial state i(Q, i, F ). Intuitively,
product modifiers do not change the transition functions of the automata they
act on, but seek only to change their final and initial states. We can easily check
that the class of product modifiers is stable by composition.

For the sake of simplicity, in this section, m denotes any k-ary product
(but not necessarily 1-uniform) modifier and A = (A1, . . . , Ak) any sequence
of k DFAs, with Aj = (Σ,Qj , ij , Fj , δj). Recall that i = (i1, . . . , ik), Q =
(Q1, . . . , Qk) and F = (F1, . . . , Fk). We also denote mA = (Σ,Q′, i′, F ′, δ).

We define the complementary product to get an easier access to the intersec-
tion of languages and their complement.

Definition 7. For any k-tuple P of finite sets, for any k-tuple G of finite sets
such that Gj ⊆ Pj for all j, and for any d ⊆ {1, 2, ..., k}, we define cp(d,G, P ) =
X1 × · · · × Xk, where Xi = Pi\Gi if i ∈ d and Xi = Gi otherwise.



A Study of a Simple Class of Modifiers: Product Modifiers 115

Example 4. cp({1, 3}, ({1}, {2, 3}, {2}), ({1, 2}, {1, 2, 3, 4}, {1, 2, 3})) = {2} ×
{2, 3} × {1, 3}.

Lemma 1. The set {cp(d, F ,Q) | d ⊆ {1, . . . , k}} is a partition of Q′.

Proof. Let d 
= d′ and suppose that there exists j ∈ d \ d′. For any element
q ∈ cp(d, F ,Q), we have qj 
∈ Fj and, for any element q′ ∈ cp(d′, F ,Q), we have
q′
j ∈ Fj . It follows that cp(d, F ,Q) ∩ cp(d′, F ,Q) = ∅.

Furthermore, consider an element q ∈ Q′ and set d = {j | qj 
∈ Fj}. Obvi-
ously, q ∈ cp(d, F ,Q). This proves our result. ��

The following lemma sets a restriction on the form of f on each of its entries,
given that i does not change the initial states in its entries.

Lemma 2. Assume i′ = i. If m is 1-uniform then there exists E ⊆ 2{1,2,...,k}

such that F ′ =
⋃

d∈E

cp(d, F ,Q).

Proof. Let us prove the contrapositive statement and assume that there is no
set E ⊆ 2{1,2,...,k} such that F ′ =

⋃

d∈E

cp(d, F ,Q). From Lemma 1, there exists

d ⊆ {1, 2, ..., k} such that F ′ ∩ cp(d, F ,Q) /∈ {∅, cp(d, F ,Q)}. Let d be such a set
and let G = cp(d, F ,Q). The idea of the proof is to construct, with the states
in G, two k-tuple of automata B and C that recognize the same languages, and
such that L(mB) and L(mC) are different.

We distinguish two cases :

• First, suppose that i ∈ G. If i ∈ F ′ then we choose j ∈ G\F ′, otherwise we
choose j ∈ G ∩ F ′. Consider the two k-tuples of DFAs B and C such that
Bl = ({a}, Ql, il, Fl, βl) and Cl = ({a}, Ql, il, Fl, γl), where, for all positive
integer l ≤ k, βa

l (il) = jl if x = il, βa
l (x) = x if x ∈ Qil \ {il}, and γa

l (x) = x,
for any x ∈ Qil . Let us remark that, as i, j ∈ G = cp(d, F ,Q), il and jl are
either both in Fl (if l /∈ d), or both not in Fl (if l ∈ d) by definition of cp.
Therefore, il and jl have the same finality in Bl, which is also their finality
in Cl, and either Bl and Cl recognize a∗, or Bl and Cl recognize ∅.
As described in Fig. 1, the transition functions β of mB and γ of mC satisfy
βa(i) = j and γa(i) = i.
The finality of i is the same in mB and mC. However, it is not the same
finality as j in mB and mC. Therefore, we have (a ∈ L(mB) ∧ a /∈ L(mC))
or (a /∈ L(mB) ∧ a ∈ L(mC)). As a consequence, L(mB) 
= L(mC) and this
implies that m is not 1-uniform.

• Suppose now that i /∈ G. Let j ∈ G\F ′, and let j′ ∈ G ∩ F ′. Consider
the two k-tuple of DFAs B and C such that Bl = ({a, b}, Ql, il, Fl, βl) and
Cl = ({a, b}, Ql, il, Fl, γl), where, for all letters u ∈ {a, b}, for all positive
integer l ≤ k and all x ∈ Ql,

βu
l (x) =

⎧
⎨

⎩

jl if x = il ∧ u = a
j′
l if x = jl ∧ u = b

x otherwise.
and γu

l (x) =

⎧
⎨

⎩

j′
l if x = il ∧ u = a

jl if x = j′
l ∧ u = b

x otherwise.



116 P. Caron et al.

Fig. 1. Part of mB and mC.

Fig. 2. Parts of Bl and Cl.

For any positive integer l ≤ k, Bl and Cl recognize the same language. Indeed,
from Fig. 2, as j, j′ ∈ G = cp(d, F ,Q), jl and j′

l have the same finality in Bl and
Cl by definition of cp, we distinguish the cases :

– il ∈ Fl and jl ∈ Fl. L(Bl) = L(Cl) = (a + b)∗
– il ∈ Fl and jl /∈ Fl. L(Bl) = L(Cl) = b∗
– il /∈ Fl and jl ∈ Fl. L(Bl) = L(Cl) = b∗a(a + b)∗
– il /∈ Fl and jl /∈ Fl. L(Bl) = L(Cl) = ∅
As mB and mC are cartesian products of the Bl and the Cl respectively, if we
call β the transition function of mB and γ the transition function of mC, we
have βa(i) = j, βb(j) = j′, γa(i) = j′, and γb(j′) = j.

The finality of j is the same in mB and mC. However, it is different from the
finality of j′ in mB and mC. Therefore, we have (ab ∈ L(mB) ∧ ab /∈ L(mC)) or
(ab /∈ L(mB) ∧ ab ∈ L(mC)). As a consequence, L(mB) 
= L(mC) which implies
that m is not 1-uniform. ��

The following two lemmas state that, for product modifiers, we can set i′ = i
without changing the regular operation associated to m.

Lemma 3. If m is 1-uniform then i′ and i have the same finality.

Proof. Let us prove the contrapositive of our statement. Assume that i′ and
i do not have the same finality, i.e. (i /∈ F ′ ∧ i′ ∈ F ′) or (i ∈ F ′ ∧ i′ /∈ F ′).
Consider the two k-tuples of DFAs B and C such that Bl = ({a}, Ql, il, Fl, βl)
and Cl = ({a}, Ql, il, Fl, γl), where, for any l ∈ {1, . . . , k}, βa

l (i′l) = il, βa
l (q) = q

when q 
= i′l and γa
l (q) = q. Let us remark that Bl and Cl recognize {a}∗ if

il ∈ Fl, and ∅ otherwise. In any case, they recognize the same language.
If we denote by β the transition function of mB and by γ the transition

function of mC, we have βa(i′) = i and γa(i′) = i′. Recall that i′ is the initial
state of mB and mC. Since i and i′ do not have the same finality, the word a
belongs to one of the languages L(mB) or L(mC) but not both (see Fig. 3). Hence
the two automata do not recognize the same language and, as a consequence, m
is not 1-uniform. ��



A Study of a Simple Class of Modifiers: Product Modifiers 117

Fig. 3. Part of mB and mC.

We define an equivalence relation on states of the output of product modifiers
whose relationship with the finality of states is examined in Lemma 4.

Definition 8. Let j and j′ be two k-tuples. We define the equivalence relation
∼j,j′ on k-tuples by (x1, . . . , xk) ∼j,j′ (y1, . . . , yk) if and only if for all l ∈
{1, . . . , k}, jl = j′

l implies xl = yl.

Example 5. We have (3, 3, 2, 5, 1) ∼(1,4,3,2,3),(2,4,2,2,6) (1, 3, 5, 5, 2).
We do not have (3, 3, 2, 5, 1) ∼(1,4,3,2,3),(2,4,2,2,6) (1, 3, 5, 1, 2) .

Lemma 4. If m is 1-uniform then L(mA) = L((Σ,Q′, i, F ′, δ)).

Proof. One has to investigate the two complementary cases:

• There exists two states q ∈ F ′, q′ ∈ Q′ \ F ′ such that q ∼i,i′ q′.
In this case we prove that i = i′, in other words mA = (Σ,Q′, i, F ′, δ). Let
us show the contrapositive of the property. Suppose i 
= i′. We have to show
that m is not 1-uniform. By Lemma 3, i ∈ F ′ ∧ i′ ∈ F ′ or i /∈ F ′ ∧ i′ /∈ F ′.
Consider the two k-tuples of DFAs B and C such that Bl = ({a}, Ql, il, Fl, βl)
and Cl = ({a}, Ql, il, Fl, γl), where for all l ∈ {1, . . . , k} and all q ∈ Ql,

βa
l (q) =

{
ql if q = i′l
q otherwise and γa

l (q) =
{

q′
l if q = i′l

q otherwise.

Let us remark that either i′l = il, which implies ql = q′
l, and Bl = Cl, or i′l 
= il,

and Bl and Cl recognize {a}∗ if il ∈ Fl and ∅ otherwise. In any case, they
recognize the same language. Recall that β is the transition function of mB
and γ is the transition function of mC. We have βa(i′) = q and γa(i′) = q′.
Thus we have a ∈ L(mB) and a /∈ L(mC). Therefore, L(mB) 
= L(mC) and
m is not 1-uniform.

• For any two states q, q′ ∈ Q′, q ∼i,i′ q′ implies that q and q′ have the same
finality.

First, for any letter a ∈ Σ, any two states q, q′ ∈ Q′, the equivalence q ∼i,i′ q′

implies

δa(q) = (δa1 (q1), δa2 (q2), . . . , δak(qk)) ∼i,i′ (δa1 (q′
1), δ

a
2 (q′

2), . . . , δ
a
k(q′

k)) = δa(q′).

This property extends inductively to any word w ∈ Σ∗, i.e. q ∼i,i′ q′ implies
δw(q) ∼i,i′ δw(q′). In particular, applying this to q = i and q′ = i′, we have
δw(i′) ∈ F ′ if and only if δw(i) ∈ F ′. As a direct consequence, the languages
recognized by the two automata are the same. ��



118 P. Caron et al.

From Lemma 4, one can assume without loss of generality that i = i′. Hence,
applying Lemma 2, we obtain

Corollary 1. If m is 1-uniform then there exists E ⊆ 2{1,2,...,k} such that F ′ =⋃

d∈E

cp(d, F ,Q).

5 Quasi-boolean Operations

Before stating our main result, we need to clarify what is meant by a boolean oper-
ation. A boolean operation is an operation associated to an expression involving
only the operators union, intersection and complement. It is well known that
such an expression is equivalent to one written as a union of intersection of
languages or their complement. More formally,

Definition 9. A k-ary boolean operation ⊗ over regular languages L1, . . . , Lk

is defined as

⊗L =
⋃

d∈E

⎛

⎝
⋂

i∈d

Li ∩
⋂

i�∈d

Li
c

⎞

⎠ ,

for some E ⊆ 2{1,...,k}. Notice that there is a one-to-one correspondence between
the boolean k-ary operations and the sets E ⊆ 2{1,...,k}. So we denote E⊗ = E.

Example 6. The classical boolean operation union can be written this way: for
any two regular languages L1 and L2,

L1 ∪ L2 = (L1 ∩ L2
c) ∪ (L1 ∩ L2) ∪ (L1

c ∩ L2) =
⋃

d∈E

⎛

⎝
⋂

i∈d

Li ∩
⋂

i�∈d

Li
c

⎞

⎠ ,

with E = {{1}, {2}, {1, 2}}.

We easily check that boolean operations are 1-uniform and can be associated to
some product modifiers. More formally,

Lemma 5. Assume that ⊗ is a k-ary boolean operation. Then ⊗ = ⊗m, where
m = (Q, i, f, d) is a product modifier such that i(Q, i, F ) = i and

f(Q, i, F ) =
⋃

d∈E⊗

cp(d, F ,Q).

From Definition 9, we construct a wider class of operators that we prove to
be in correspondence with product modifiers.

Definition 10. For any k-ary regular operation ⊗, for any v ∈ {0, 1}k, we
denote by ⊗v the restriction of ⊗ to the set

Lv = {(L1, . . . , Lk) | ∀i ∈ {1, . . . , k}, Li is regular and vi = 0 ⇔ ε ∈ Li} .

We say that ⊗ is a k-ary quasi-boolean operation if for all v ∈ {0, 1}k, ⊗v is
a boolean operation, i.e. for any v, there exists a boolean operation ⊗1 such that
for any L ∈ Lv we have ⊗1L = ⊗vL.



A Study of a Simple Class of Modifiers: Product Modifiers 119

Example 7. Consider the unary operator defined by ⊗L = L if ε ∈ L and Lc

otherwise. This operation is clearly not boolean. Nevertheless, since for each
L ∈ L(0) we have ⊗L = L and for each L ∈ L(1) we have ⊗L = Lc, the
operation ⊗ is quasi-boolean.

These operations do not have a higher state complexity than boolean operations,
as we show in the following statement.

Proposition 1. For any quasi-boolean k-ary operation ⊗, we have

sc⊗(n1, . . . , nk) ≤ n1 · · · nk.

Proof. Lemma 5 implies that sc⊗(n1, . . . , nk) ≤ n1 · · · nk for any boolean oper-
ation ⊗. We we prove our statement, by remarking that, for any quasi-boolean
operation ⊗, we have sc⊗(n1, . . . , nk) ≤ max{sc⊗v (n1, . . . , nk) | v ∈ {0, 1}k}. ��

We now introduce our main result that characterizes the operations encoded
by 1-uniform product modifiers.

Theorem 2. An operation ⊗ is quasi-boolean if and only if there exists a 1-
uniform product modifier m such that ⊗ = ⊗m.

Proof. Let ⊗ be a k-ary quasi-boolean operation. We construct a modifier m
such that ⊗ = ⊗m as follows. We consider the product modifier m = (Q, i, f, d)
such that i(Q, i, F ) = i and,

f(Q, i, F ) =
⋃

d∈E⊗v

cp(d, F ,Q),

where v ∈ {0, 1}k is such that vj = 0 if and only if ij ∈ Fj .
Let L ∈ Lv for some v ∈ {0, 1}k . For any k-tuple of DFAs A such that

Aj = (Σ,Qj , ij , Fj , δj) recognizes Lj , we have ij ∈ Fj if and only if vj = 0.
From Lemma 5, one has L(mA) = ⊗vL. Hence, m is 1 − uniform and ⊗ = ⊗m.

Now, we prove the converse. Let ⊗ be a regular operation such that there
exists a 1-uniform product modifier m satisfying ⊗m = ⊗. We use a reductio ad
absurdum argument by assuming that ⊗ is not quasi-boolean. Let v ∈ {0, 1}k
be such that ⊗v is not a boolean operation. Let A be a k-tuple of DFAs
with Al = (Σ,Ql, il, Fl, αl) such that (L(A1), . . . ,L(Ak)) ∈ Lv. Furthermore,
we assume that for all l ∈ {1, . . . , k}, Fl /∈ {∅, Ql}. By Corollary 1, there
exists E ⊆ 2{1,2,...,k} such that F = f(Q, i, F ) =

⋃

d∈E

cp(d, F ,Q). There-

fore, mA =
⋃

d∈E

(
⋂

l∈d

L(Al) ∩ ⋂

l∈{1,2,...,k}\d
L(Al)c

)

which is obviously a boolean

operation applied to (L(A1), . . . ,L(Ak)). Since ⊗v is not a boolean operation,
there exists A′, with A′

l = (Σ′, Q′
l, i

′
l, F

′
l , α

′
l), a k-tuple of DFAs such that

(L(A′
1), . . . ,L(A′

k)) ∈ Lv and mA′ 
= ⋃

d∈E

(
⋂

l∈d

L(A′
l) ∩ ⋂

l∈{1,2,...,k}\d
L(A′

l)
c

)

. We



120 P. Caron et al.

construct new k-tuples of DFAs B and B′ such that L(Bl) = L(B′
l) but such

that L(mB) 
= L(mB′), contradicting the 1-uniformity of m. By Corollary 1,
there exists H ⊆ 2{1,...,k} such that F ′ = f(Q′, i′, F ′) =

⋃

d∈H

cp(d, F ′, Q′).

We have to examine two cases. Either there exists p′ ∈ F ′ such that p′ /∈
⋃

d∈E

cp(d, F ′, Q′), or there exists p′ ∈ ⋃

d∈E

cp(d, F ′, Q′) such that p′ /∈ F ′. We

only describe the first case, as the other one is treated symmetrically. Therefore,
Lemma 1 implies that there exists d ∈ H \ E such that p′ ∈ cp(d, F ′, Q′). Let
p ∈ cp(d, F ,Q). Notice that p 
∈ F while each pl has the same finality in Bl as
p′
l in B′

l. Also remark that, as (L(A1), . . . ,L(Ak)) and (L(A′
1), . . . ,L(A′

k)) are in
Lv, for all l ∈ {1, . . . , k}, vl = 0 implies il ∈ Fl and i′l ∈ F ′

l , and vl = 1 implies
il /∈ Fl and i′l /∈ F ′

l .
Now consider the two k-tuples of DFAs B and B′ such that Bl =

({a}, Ql, il, Fl, βl) and B′
l = ({a}, Q′

l, i
′
l, F

′
l , β

′
l), where βl and β′

l are defined,
for all positive integer l ≤ k and all (q, q′) ∈ Ql × Q′

l, by :

βa
l (q) =

{
pl if q = il
q otherwise. and β′a

l (q′) =
{

p′
l if q′ = i′l

q′ otherwise.

We notice that, for all l ∈ {1, . . . , k}, Bl and B′
l recognize the same language

Ll. Indeed, since il and i′l have the same finality and pl and p′
l have the same

finality, one has to examine four cases which are summarized in Table 1.
Furthermore, we have βa(i) = p 
∈ F , and β′a(i′) = p′ ∈ F ′, which means

that a 
∈ L(mB) and a ∈ L(mB′), which contradicts the 1-uniformity of m. ��

Table 1. Common values of L(Bl) and L(B′
l).

L(Bl) = L(B′
l) il ∈ Fl il �∈ Fl

pl ∈ Fl {a∗} {a}+

pl �∈ Fl {ε} ∅

6 Conclusion

We have shown that some very simple modifiers, namely product modifiers,
encode a class of very low state complexity operations. This is a non-trivial
example of a set of modifiers closed by composition whose associated regular
operations are completely described. The proof techniques open perspectives to
explore other classes of modifiers closed by composition. The aim for our future
works is to establish a kind of atlas, as complete as possible, of the set of modifiers
in relation to the theory of state complexity.



A Study of a Simple Class of Modifiers: Product Modifiers 121

References

1. Brzozowski, J., Jirásková, G., Liu, B., Rajasekaran, A., Szyku�la, M.: On the state
complexity of the shuffle of regular languages. In: Câmpeanu, C., Manea, F., Shallit,
J. (eds.) DCFS 2016. LNCS, vol. 9777, pp. 73–86. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-41114-9 6

2. Caron, P., Hame-De-Le-Court, E., Luque, J.G., Patrou, B.: New tools for state
complexity. Discret. Math. Theor. Comput. Sci. 22(1) (2020)

3. Caron, P., Hame-De-Le-Court, E., Luque, J.G.: Algebraic and combinatorial tools
for state complexity : application to the star-xor problem. In: Leroux, J., Raskin,
J.F. (eds.) Proceedings Tenth International Symposium on Games, Automata, Log-
ics, and Formal Verification, GandALF 2019, Bordeaux, France, 2–3 September
2019, vol. 305 of EPTCS, pp. 154–168 (2019)

4. Caron, P., Luque, J.-G., Mignot, L., Patrou, B.: State complexity of catenation
combined with a boolean operation: a unified approach. Int. J. Found. Comput.
Sci. 27(6), 675–704 (2016)

5. Davies, S.: A general approach to state complexity of operations: formalization
and limitations. In: Hoshi, M., Seki, S. (eds.) DLT 2018. LNCS, vol. 11088, pp.
256–268. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98654-8 21

6. Domaratzki, M.: State complexity of proportional removals. J. Automata Lang.
Comb. 7(4), 455–468 (2002)

7. Domaratzki, M., Okhotin, A.: State complexity of power. Theor. Comput. Sci.
410(24–25), 2377–2392 (2009)

8. Gao, Y., Moreira, N., Reis, R., Sheng, Y.: A survey on operational state complexity.
J. Automata Lang. Comb. 21(4), 251–310 (2017)

9. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation, 3rd edn. Addison-Wesley, Boston (2007). Pearson
international edition

10. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Boston (1979)

11. Jirásek, J., Jirásková, G., Szabari, A.: State complexity of concatenation and com-
plementation. Int. J. Found. Comput. Sci. 16(3), 511–529 (2005)

12. Jirásková, G.: State complexity of some operations on binary regular languages.
Theor. Comput. Sci. 330(2), 287–298 (2005)

13. Jirásková, G., Okhotin, A.: State complexity of cyclic shift. ITA 42(2), 335–360
(2008)

14. Maslov, A.N.: Estimates of the number of states of finite automata. Soviet Math.
Dokl. 11, 1373–1375 (1970)

15. Sheng, Y.: State complexity of regular languages. J. Automata Lang. Comb. 6(2),
221 (2001)

https://doi.org/10.1007/978-3-319-41114-9_6
https://doi.org/10.1007/978-3-319-41114-9_6
https://doi.org/10.1007/978-3-319-98654-8_21

	A Study of a Simple Class of Modifiers: Product Modifiers
	1 Introduction
	2 Preliminaries
	2.1 Operations over Sets
	2.2 Languages and Automata
	2.3 State Complexity

	3 Modifiers and 1-uniform Operations
	3.1 Definition and First Properties
	3.2 Functional Notations

	4 Product Modifiers
	5 Quasi-boolean Operations
	6 Conclusion
	References




