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Abstract. This paper presents a Data Science-oriented application for image
classification tasks that is able to automatically: a) gather images needed for
training Deep Learning (DL) models with a built-in search engine crawler; b)
remove duplicate images; c) sort images using built-in pre-trained DL models or
user’s own trained DL model; d) apply data augmentation; e) train a DL clas-
sification model; f) evaluate the performance of a DL model and system by
using an accuracy calculator as well as the Accuracy Per Consumption (APC),
Accuracy Per Energy Cost (APEC), Time to closest APC (TTCAPC) and Time
to closest APEC (TTCAPEC) metrics calculators. Experimental results show
that the proposed Computer Vision application has several unique features and
advantages, proving to be efficient regarding execution time and much easier to
use when compared to similar applications.
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1 Introduction

Data is at the core of every DL application. Because the Machine Learning lifecycle
consists of four stages such as data management, model learning, model verification
and model deployment [1], in order to collect, analyze, interpret and make use of this
data, e.g. training accurate models for real-life scenarios, in recent years, new spe-
cializations were introduced in Universities around the world such as Machine
Learning and Data Science, to name only a few. Additionally, also new career positions
were created recently such as Machine Learning Engineer and Data Scientist, being
some of the top paid positions in the industry [2].

Regarding Computer Vision applications for image classification tasks, a major
bottleneck before training the necessary DL models is considered to be the data col-
lection which consists mainly of data acquisition, data labeling and improvement of the
existing data in order to train very accurate DL models [3]. Another bottleneck is that,
because the amount of data needed to train a DL model is usually required to be very
large in size and because most of this important data is not released to the general
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public but is instead proprietary, the need of an original dataset for a particular DL
project can be very crucial. In general, data can be acquired either by a) buying it from
marketplaces or companies such as Quandl [4] and URSA [5]; b) searching it for free
on platforms like Kaggle [6]; c) crawling it from internet resources with the help of
search engine crawlers [7]; d) paying to a 24 � 7 workforce on Amazon Mechanical
Turk [8] like the creators of the ImageNet dataset did to have all of their images labeled
[9]; e) creating it manually for free (e.g. when the user takes all the photos and labels
them himself), which can be impossible most of the time because of a low-budget, a
low-quality camera or time constraints. The importance of image deduplication can be
seen in the fields of Computer Vision and DL where a high number of duplicates can
create biases in the evaluation of a DL model, such as in the case of CIFAR-10 and
CIFAR-100 datasets [10]. It is recommended that before training a DL classification
model, one should always check and make sure that there are no duplicate images
found in the dataset. Finding duplicate images manually can be very hard for a human
user and a time-consuming process, this being the reason why a software solution to
execute such a task is crucial. Some of the drawbacks of existent solutions are that they
usually require the user to buy the image deduplication software or pay monthly for a
cloud solution, they are big in size or are hard to install and use.

Despite all of these options, especially in the case of scraping the images from the
internet, once stored they can still be unorganized or of a lower quality than expected,
with images needed to be sorted out each in their respective class folder in order for the
user (e.g. data scientist) to be able later to analyze and use this data for training a
performant DL model. This kind of sorting task can take a tremendous amount of time
even for a team, from several days or weeks to even months [11]. Another difficult task
is that once the data is cleaned, organized and ready to be trained from scratch or using
transfer learning, because of the variety of DL architectures, each with different sizes
and training time needed until reaching convergence [12], it can be very difficult to
know from the beginning which DL architecture fits the best a given dataset and will, at
the end of the training, result in a DL model that has high accuracy. Because energy
consumption in DL started to become a very debated aspect in recent months, espe-
cially regarding climate change [13–17], the necessity of evaluating the performance of
DL models also by their energy consumption and cost is very crucial.

Considering these aspects, our work introduces a DL-based Computer Vision
application that has multiple unique built-in Data Science-oriented capabilities which
give the user the ability to train a DL image classification model without any pro-
gramming skills. It also automatically searches for images on the internet, sort these
images each in their individual class folder and is able to remove duplicate images as
well as to apply data augmentation in a very intuitive and user-friendly way. Addi-
tionally, it gives the user an option to evaluate the performance of a DL model and
hardware platform not only by considering its accuracy but also its power consumption
and cost by using the environmentally-friendly metrics APC, APEC, TTCAPC and
TTCAPEC [16].

The paper is organized as follows. In Sect. 2 we present the related work. Section 3
describes the proposed DL-based Computer Vision application. Section 4 presents the
experimental setup and results. Finally, Sect. 5 concludes this paper.
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2 Related Work

Considering the advancements of DL in recent years, there is a growing interest in
computer vision applications in the literature, such as regarding the automatic sorting of
images, as shown by the authors in [18]. The authors propose a solution called ImageX
for sorting large amounts of unorganized images found in one or multiple folders with
the help of a dynamic image graph and which successfully groups together these
images based on their visual similarity. They also created many similar applications,
e.g. ImageSorter [19], which besides sorting images based on their color similarity, is
also able to search, download and sort images from the internet with a built-in Google
Image Search option. A drawback of their applications is that the user is able to only
visualize similar images, without also having these images automatically cleaned and
sorted in their respective class folder with high accuracy. Also, the authors in [20]
created an application called Sharkzor that combines user interaction with DL in order
to sort large amounts of images that are similar. By comparison, regarding sorting, their
solutions only sort images by grouping them based on how similar they are to each
other after a human interacted and sorted these images initially, whereas our application
sorts them automatically by using in-built pre-trained DL models or gives the user an
option to use his own trained DL models. An on-device option that uses DL capabilities
and helps users find similar photos (e.g. finding photos that contain certain objects such
as flowers, trees, food, to name only a few) is presented also by Apple in their newest
version of Photos app [21].

Regarding the detection of duplicate images, this technique has practical applica-
tions in many domains such as social media analysis, web-scale retrieval as well as
digital image forensics [22, 23], with several works in the literature applying it for the
detection of copyright infringements [24] and fraud detection [25]. Recently, a python
package that makes use of hashing algorithms and Convolution Neural Networks
(CNNs) that finds exact or near-duplicates in an image collection called Image
Deduplicator (Imagededup) was released in [26]. In our Computer Vision application,
we make use of this package in order to offer a user the option to remove duplicate
images from the images dataset (e.g. right before training a DL model).

When training DL models from scratch or by using transfer learning, usually
frameworks such as Tensorflow and PyTorch are used [27], either locally (e.g. on a
personal laptop or Desktop PC that contains a powerful GPU) or in cloud services such
as Cloud AutoML [28, 29], Amazon AWS [30] or Microsoft Azure [31], with the work
in [32] even assessing the feasibility and usefulness of automated DL in medical
imaging classification, where physicians with no programming experience can still
complete such tasks successfully. The problem when training locally is that the user
still has to research on his own which size the images should have for a given DL
architecture, which DL architecture to choose for his dataset and if it is necessary to
apply fine-tuning and image augmentation. Regarding using the cloud services for
training a DL model, even though these may solve most of the problems mentioned
above, they still have some drawbacks such as that they can be affected by latency, can
be difficult to manage (not user-friendly) and most importantly, they can be very
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expensive when training for several hours (e.g. Cloud AutoML from Google costs
around $20 per hour when used for Computer Vision tasks [27]).

Similar work to ours is presented by the authors in [33] where they created the
Image ATM (Automated Tagging Machine) tool that automatizes the pipeline of
training an image classification model (preprocessing, training with model tweaking,
evaluation, and deployment). Regarding preprocessing, the Image ATM tool just
resizes the images to fit the model input shape. For training, it uses transfer learning
with pre-trained CNNs from Keras by firstly training the last Dense layer followed by
the whole network. For evaluation, it calculates the confusion matrix and other metrics.
A few disadvantages of Image ATM: the tool is aimed at people with programming
knowledge (developers) and is focused mainly on the training function. Also, in order
to use the Image ATM tool, the user must take the work of preparing the data in a
specific folder structure, e.g. the user must create a .yml file with some of the
parameters desired, path to images and destination path. The user must also create a .
json file containing the classification of each image. Some advantages of the
Image ATM are that the tool offers the possibility for cloud training, has access to more
models (although all are trained with the same dataset) and that the evaluation errors
can be visualized. When compared to Image ATM, our Computer Vision application
has several advantages such as that it is accessible to more kinds of people and offers
more functionalities such as image web scraping and sorting, deduplication, calculators
for accuracy as well as for the APC, APEC, TTCAPC and TTCAPEC metrics, all in a
user-friendly Graphical User Interface (GUI).

3 The Proposed Deep Learning-Based Computer Vision
Application

The proposed DL-based Computer Vision application is summarized in Fig. 1 and is
built using the Python programming language. It is composed of the most common
features needed in the Computer Vision field and facilitate them in the form of a GUI,
without requiring the user to have any knowledge about coding or DL in order to be
able to fully use it.

Fig. 1. Summarized view of the proposed Computer Vision application that incorporates
features such as an automatic Image Crawler and Image Sorter assisted by inference
classification, an Image Deduplicator, a DL Model Trainer with Data Augmentation capabilities
as well as calculators regarding Accuracy, APC, APEC, TTCAPC, and TTCAPEC.
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Regarding the system, the compilation dependencies and installation requirements
of the proposed application are Python 3, Windows 10 (or later version) or Linux
(Ubuntu 12 or later version). Regarding the Python libraries, we use PyQt5 for creating
the GUI, HDF5 for loading DL model files, Tensorflow for training and inference,
OpenCV for image processing, Numpy for data processing, Shutil for copying images
in the system, TQDM for showing the terminal progress bar, Imagededup [26] for
deduplication of images, Icrawler for crawling the images and fman build system
(fbs) for creating installers.

There are certain conventions that are common in all the features of the proposed
application:

1. Model files: These are .h5 files that contain the architecture of a Keras model and
the weights of its parameters. These are used to load (and save) a previously trained
model in order to be able to use it.

2. Model class files: These are extensionless files that contain the labels of each of the
classes of a DL model. It contains n lines, where n is the number of classes in the
model, and the line i contains the label corresponding to the ith element of the
output of the DL model.

3. Preprocessing function: In this convention, a preprocessing function is a function
that takes as input the path to an image and a shape, loads the image from the input
path, converts the image to an array and fits it to the input of the model.

Images folders structures: We use two different folders structures: unclassified
structures and classified structures. The unclassified images folders structure is the
simplest one, consisting of just one folder containing images, presumably to be clas-
sified or deduplicated. The classified images folders structure consists of a folder which
in turn contains subfolders. Each subfolder represents a class of images, is named the
same as the label for that class, and contains images tagged or classified belonging to
that class.

Following, we will present all the built-in features: Automatic web crawler assisted
by inference classification, Images deduplication, Images Sorter assisted by inference
classification, DL Model Trainer with Data Augmentation capabilities, Accuracy cal-
culator as well as the APC and APEC [16] calculators.

3.1 Image Crawler Assisted by Inference Classification

The purpose of this feature is to collect images related to a keyword (representing a
class) from the web and by using a classification algorithm, to make sure that the
images are indeed belonging to this class. During the inference process needed for
cleaning the images, a preprocessing is happening in the background, which,
depending on the pretrained or custom DL model that is chosen, will resize the images,
making them have the correct input shape (e.g. 28 � 28 � 1 for MNIST and
224 � 224 � 3 for ImageNet) for the DL model.

A summarized view of the implemented Image Crawler feature can be seen in Fig. 2
and is composed of the following elements: ‘Model’ - a combo box containing all the
existent pretrained in-built DL models such as “mnist” or “resnet50” as well as the
‘Custom’ option which gives the user the possibility to load his own previously trained
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DL model; Confidence Slider (‘Confidence required’) - a slider to select the minimum
accuracy value to be used when classifying the images and which ranges from 0 to 99;
Image Class Selector (‘Select a class of images’) - a combo box containing the labels of
all the classes from the pretrained built-in selected DL model (e.g. 10 classes for when
the “mnist” model is selected and 1000 classes when the “resnet50” model is selected).
Additionally, the box contains an autocomplete search function as well; Images Amount
(‘Max amount to get’) - a slider to select the number of images that should be crawled
from the internet and which ranges from 1 to 999 and ‘Destination Folder’ - a browser to
select the path for the final location of the obtained images.

The options under ‘Custom Model Configuration’ only apply when the DL model
selected is “Custom” and is not built-in in the proposed Computer Vision application,
e.g. when it was trained by the user itself. These options are: ‘Model File’ - a browser
to select the .h5 file the user wishes to use for inference and Model Classes - a browser
to select the extensionless file containing the name of each output class on which the
selected DL model (.h5 file) was trained on. Finally, this feature’s GUI interface has a
button (‘Add Images!’) that begins the web crawling process.

With the help of this feature, images are automatically crawled by the crawler and
downloaded to a temporal folder location. After that, each image is classified with the
selected DL model, and if the classification coincides with the selected class and the
confidence is higher than the selected threshold, the image is moved to the ‘Destination
folder’, where each image will be saved in its own class folder.

This feature automatizes the population of image classification datasets by pro-
viding a reliable way of confirming that the downloaded images are clean and correctly
organized.

Fig. 2. Summarized view of the proposed Image Crawler feature assisted by inference
classification.

52 S. L. Jurj et al.



3.2 Images Deduplication

The purpose of this feature is to remove duplicate images found in a certain folder. For
this, we incorporated the Imagededup techniques found in [26]. A summarized view of
the implemented Images Deduplication feature can be seen in Fig. 3 and is composed
of the following elements: ‘Images folder’ - a browser to select the location of the
folder containing the images that need to be analyzed for duplicate images; ‘Destina-
tion folder’ - a browser to select the location of the folder where the deduplicated
images will be stored; ‘Duplicates Folder’ - a browser to select the location of the
folder where the found duplicate images will be stored.

Each duplicate image found will be stored in a subfolder. Regarding advanced
settings, it is composed of: Hashing method selector (‘Select a hashing method’) - a
combo box containing 4 hashing methods that can be used for deduplication (Per-
ceptual Hashing (default), Difference Hashing, Wavelet Hashing, and Average Hash-
ing) as well as a ‘Max Distance Threshold’ - the maximum distance by which two
images will be considered to be the same (default value is 10). Finally, this interface
has a button (‘Deduplicate!’) that begins the deduplication process according to the
selected parameters.

Following, we will shortly describe the types of hashes we are using in the images
deduplication feature: a) Average Hash: the Average Hash algorithm first converts the
input image to grayscale and then scales it down. In our case, as we want to generate a
64-bit hash, the image is scaled down. Next, the average of all gray values of the image
is calculated and then the pixels are examined one by one from left to right. If the gray
value is larger than the average, a 1 value is added to the hash, otherwise a 0 value; b)
Difference Hash: Similar to the Average Hash algorithm, the Difference Hash algo-
rithm initially generates a grayscale image from the input image. Here, from each row,
the pixels are examined serially from left to right and compared to their neighbor to the
right, resulting in a hash; c) Perceptual Hash: After gray scaling, it applies the discrete
cosine transform to rows and as well as to columns. Next, we calculate the median of

Fig. 3. Summarized view of the proposed Image Deduplication feature.
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the gray values in this image and generate, analogous to the Median Hash algorithm, a
hash value from the image; d) Wavelet Hash: Analogous to the Average Hash
algorithm, the Wavelet Hash algorithm also generates a gray value image. Next, a two-
dimensional wavelet transform is applied to the image. In our case, we use the default
wavelet function called the Haar Wavelet. Next, each pixel is compared to the median
and the hash is calculated.

Regarding this deduplication feature, first, the hasher generates hashes for each of
the images found in the images folder. With these hashes, the distances between hashes
(images) are then calculated and if they are lower than the maximum distance threshold
(e.g. 10), then they are considered duplicates. Secondly, for each group of duplicates,
the first image is selected as “original” and a folder is created in the duplicates folder
with the name of the “original” folder. Then all duplicates of this image are stored on
that folder.

This feature successfully integrates the image deduplication technique [26] and
provides a simple and quick way to utilize it.

3.3 Images Sorter Assisted by Inference Classification

This feature helps a user to sort an unsorted array of images by making use of DL
models. A summarized view of the implemented Images Sorter feature assisted by
inference classification can be seen in Fig. 4 and is composed of elements similar to the
ones presented earlier for the Image Crawler feature, but in this case with the function
of selecting the path to the folders from which and where images should be sorted.

In the destination folder, a new folder is created for each possible class, with the
name extracted from the extensionless file that contains all the names of the classes,
plus a folder named ‘Undetermined’. Then, each image from the ‘Images Folder’ is
automatically preprocessed, feed as input to the selected DL model and saved in the
corresponding class folder. The highest value from the output determines the predicted

Fig. 4. Summarized view of the proposed Image Sorter feature assisted by inference
classification.
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class of the image: if this value is less than the minimum ‘Confidence required’, value,
then the image will be copied and placed in the ‘Undetermined’ folder, otherwise, the
image will be copied to the folder corresponding to the class of the highest value from
the output. We took the decision of copying the files instead of moving them, for data
security and backup reasons.

This feature heavily reduces the amount of time required to sort through an
unclassified dataset of images by not only doing it automatically but also removing the
need to set up coding environments or even write a single line of code.

3.4 Model Trainer with Data Augmentation Capabilities

This feature gives the user a simple GUI to select different parameters in order to train
and save a DL image classifier model. A summarized view of the implemented DL
Model Trainer feature assisted by inference classification can be seen in Fig. 5 and is
composed of the following elements: ‘Model’ – as described earlier for the Image
Crawler feature; ‘Sorted images folder’ - a browser to select the folder that contains the
classified folder structure with the images to be trained on; ‘Number of training bat-
ches’ - an integer input, to specify the number of batches to train and ‘Size of batches’ -
an integer input, to specify the number of images per batch. Regarding the custom
options, they are the same as mentioned earlier regarding the Image Crawler feature.

Next, this interface has a button (‘Train model’) that, when clicked on, prompts a
new window for the user to be able to visualize in a very user-friendly way all the
image transformations that can be applied to the training dataset in a random way
during training. More exactly, as can be seen in Fig. 6, the user can input the following
parameters for data augmentation: Horizontal Flip - if checked the augmentation will
randomly flip or not images horizontally; Vertical Flip - if checked the augmentation
will randomly flip or not images horizontally; Max Width Shift - Slider (%), maximum
percentage (value between 0 and 100) of the image width that it can be shifted left or

Fig. 5. Summarized view of the proposed DL Model Trainer feature.
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right; Max Height Shift - Slider (%), maximum percentage (value between 0 and 100)
of the image height that it can be shifted up or down; Max Angle Shift - Slider (degrees
°), the maximum amount of degrees (value between 0 and 90) that an image might be
rotated and Max Shear Shift - Slider (%), maximum shear value (value between 0 and
100) for image shearing. The data augmentation feature allows the user to visualize the
maximum possible changes that can be made to an image in real-time, without the need
of guessing the right parameters.

Following, a training generator is defined with the selected parameters; The gen-
erator randomly takes images from the folder structure and fills batches of the selected
size, for the number of batches that are selected. These batches are yielded as they are
being generated.

Regarding the training, first, the selected DL model is loaded, its output layer is
removed, the previous layers are frozen and a new output layer with the size of the
number of classes in the folder structure is added. The model is then compiled with the
Adam optimizer and the categorical cross-entropy as the loss function. Finally, the
generator is fed to the model to be fitted. Once the training is done, the total training
time is shown to the user and a model file (.h5) is created on a prompted input location.

This feature achieves the possibility of training a custom DL model on custom
classes just by separating images in different folders. There is no knowledge needed
about DL and this feature can later also be easily used by the Image Sorting feature
described earlier in order to sort future new unsorted images.

Fig. 6. Summarized view of the proposed Data Augmentation feature.
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3.5 Accuracy Calculator

This section of the application GUI gives a user the option to compute the accuracy of a
DL model on the given dataset in the classified images folder structure. A summarized
view of the implemented Accuracy Calculator feature can be seen in Fig. 7 and is
composed of the following elements: ‘Model’ - as described earlier for the Image Crawler
feature; ‘Test images folder’ - a browser to select the folder that contains the classified
folder structure to measure the accuracy of a DL classification model; ‘Size of batches’ -
an integer input, to specify the number of images per batch. The custom options are the
same as mentioned earlier regarding the Image Crawler feature. Finally, this interface has
a button (‘Calculate Accuracy’) that starts the accuracy evaluation process.

After loading the DL model and the list of classes, it searches for the classes as
subfolders names in the classified images folder structure. Then, for each class (or
subfolder) it creates batches of the selected batch size, feeds them to the DL model and
counts the number of accurate results as well as the number of images. With these
results, it calculates the total accuracy of the DL model and shows it to the user directly
in the application GUI. This feature provides a simple and intuitive GUI to measure the
accuracy of any DL image classification model.

3.6 Accuracy Per Consumption (APC) Calculator

This GUI feature makes use of our APC metric [16] and which is a function that takes
into account not only the accuracy of a system (acc) but also the energy consumption of
the system (c). The APC metric can be seen in Eq. (1) below:

APCa;b c; accð Þ ¼ acc
b:WCa c; accð Þþ 1

ð1Þ

where c stands from energy consumption of the system and it’s measured in Watt/hour
(Wh) and acc stands for accuracy; a is the parameter for the WCa function, the default

Fig. 7. Summarized view of the proposed Accuracy Calculator feature.
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value is 0.1; b is a parameter (ranges from 0 to infinity) that controls the influence of
the consumption in the final result: higher values will lower more heavily the value of
the metric regarding the consumption. The default value is 1.

The application GUI gives a user the option to define the values for a and b as well
as to specify and calculate the accuracy and energy consumption of a DL model using
the above APC metric equation.

A summarized view of the implemented APC Calculator feature can be seen in
Fig. 8 and is composed of the following elements: ‘Model test accuracy (%)’ - this
widget gives a user the option to input the accuracy or use the previously described
Accuracy Calculator feature to measure the accuracy of a DL model and ‘Energy
Consumption (Wh)’ - float input to specify the power consumption of a user’s DL
model.

Regarding the advanced options, it has: Alpha (a) - float input to specify the desired
value of a (default 0.2) and Beta ðb) - float input to specify the desired value of b
(default 1). For simplicity, a table is shown with the following columns: Accuracy,
Energy Consumption, Alpha, Beta, and APC. Whenever a value is changed, the table is
automatically updated as well. Finally, the application GUI has a button (‘Calculate
APC’) to begin the calculation of the APC metric. The function itself is a Numpy
implementation of our previously defined APC metric [16] seen in Eq. (1) and takes as
input parameters the values defined in the application GUI.

The implemented feature brings this new APC metric to any user by allowing them
to easily calculate the accuracy per consumption and know the performance of their DL
model with regards to not only the accuracy but also to the impact it has on the
environment (higher energy consumption = higher negative impact on nature). How-
ever, the drawback of the current version of this APC calculator feature in the proposed
application GUI is that the user has to measure the energy consumption of the system
manually. We plan to implement automatic readings of the power consumption in
future updates (e.g. by using the Standard Performance Evaluation Corporation (SPEC)

Fig. 8. Summarized view of the proposed APC Calculator feature.
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PTDaemon tool [34, 35], which is also planned to be used for power measurements by
the MLPerf Benchmark in their upcoming mid-2020 update).

3.7 Accuracy Per Energy Cost (APEC) Calculator

This metric is a function that takes into account not only the accuracy of a system (acc)
but also the energy cost of the system (c). The APECmetric can be seen in Eq. (2) below:

APECa;b c; accð Þ ¼ acc
b:WCa c; accð Þþ 1

ð2Þ

where c stands for the energy cost of the system and it’s measured in EUR cents per
inference and acc stands for accuracy.

a is the parameter for the WCa function, the default value is 0.1; b is a parameter
(ranges from 0 to infinity) that controls the influence of the cost in the final result:
higher values will lower more heavily the value of the metric regarding the cost. The
default value is 1.

The APEC feature is presented in Fig. 9 and lets a user define the values for a and b,
specify or calculate the accuracy of a DL model, specify the energy consumption and the
cost of Wh of the DL as well as calculate the APEC using the formula seen earlier in (2).

The APEC feature of the proposed Computer Vision application is composed of the
following elements: ‘Model test accuracy (%)’ – works similar to the APC widget
described earlier; ‘Energy Consumption (Wh)’ - works also similar to the APC widget
described earlier and Watt-Hour Cost - float input to specify the cost in EUR cents of a
Wh. Regarding the advanced options, we have: Alpha (a) - float input to specify the
desired value of a(default 0.2) and Beta b - float input to specify the desired value of
b(default 1). A similar table like the one for APC Calculator is shown also here, with
the following columns: Accuracy, Energy Cost, Alpha, Beta, and APEC. Whenever a
value is changed, the table is automatically updated here as well.

Fig. 9. Summarized view of the proposed APEC Calculator feature.
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Finally, the application GUI has a button (‘Calculate APEC’) to begin the calcu-
lation of the APEC metric.

The function itself is an implementation on Numpy of our previously defined
APEC metric [16] seen in Eq. (2) and takes as input parameters the values defined in
the application GUI. The implemented feature brings this new APEC metric to any user
by allowing them to easily calculate the accuracy per energy cost and evaluate the
performance of their DL model with regards to the impact it has on the environment
(higher energy consumption = higher cost = negative impact on nature). However, the
drawback of the current version of this APEC calculator feature is that the user has to
measure the energy consumption of the system and calculate its Wh cost manually.

3.8 Time to Closest APC (TTCAPC) Calculator

The objective of the TTAPC metric [16] is to combine training time and the APC
inference metric in an intuitive way. The TTCAPC feature is presented in Fig. 10 and
is composed of the following elements: ‘Model test accuracy (%)’ and ‘Energy Con-
sumption (Wh)’, both working similar to the APEC widget described earlier; ‘Accuracy
Delta’ – float input to specify the granularity of the accuracy axis; ‘Energy Delta’ –
float to specify the granularity of the energy axis. Regarding the advanced options, they
are the same as the ones presented earlier regarding the APEC feature.

A similar table like the one for APEC Calculator is shown also here, with the
following columns: Accuracy, Energy Consumption, Alpha, Beta, Accuracy Delta,
Energy Delta, Rounded Accuracy, Rounded Energy, Training Time and Closest APC.
Whenever a value is changed, the table is automatically updated here as well.

Finally, the application GUI has a button (‘Calculate TTCAPC’) to begin the
calculation of the TTCAPC metric.

Fig. 10. Summarized view of the proposed TTCAPC Calculator feature.
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3.9 Time to Closest APEC (TTCAPEC) Calculator

The objective of the TTCAPEC metric [16] is to combine training time and the APEC
inference metric. The TTCAPEC feature is presented in Fig. 11 and is composed of the
same elements like the TTCAPC feature presented earlier and one additional element
called ‘Energy Cost (EUR cents per Wh)’ which is similar to the one presented earlier
regarding the APEC metric calculator and where the user can specify the cost in EUR
cents of a Wh.

A similar table like the one for TTCAPC Calculator is shown also here, with the
following columns: Accuracy, Energy Cost, Alpha, Beta, Accuracy Delta, Energy
Delta, Rounded Accuracy, Rounded Energy, Training Time and Closest APEC.
Finally, the application GUI has a button (‘Calculate TTCAPEC’) to begin the cal-
culation of the TTCAPEC metric.

4 Experimental Setup and Results

Following, we will show the experimental results regarding all the implemented fea-
tures in comparison with existing alternatives found in the literature and industry.

We run our experiments on a Desktop PC with the following configuration: on the
hardware side we use an Intel(R) Core(TM) i7-7800X CPU @ 3.50 GHz, 6 Core(s), 12
Logical Processor(s) with 32 GB RAM and an Nvidia GTX 1080 Ti as the GPU; on the
software side we use Microsoft Windows 10 Pro as the operating system with CUDA
9.0, CuDNN 7.6.0 and Tensorflow 1.10.0 using the Keras 2.2.4 framework.

4.1 Image Crawler

As can be seen in Table 1, our proposed Image Crawler feature outperforms existent
solutions and improves upon them. Even though the crawling took the same amount of

Fig. 11. Summarized view of the proposed TTCAPEC Calculator feature.
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time, this is not the case regarding the cleaning part, where, because this feature is not
available in any of the existent solutions, this needed to be done manually and took
47 s for a folder containing 97 images as compared to only 10 s for our proposed
solution which executed the task automatically.

A comparison between “dirty” images and clean images can be seen in Fig. 12
where, for simplicity, we searched for 97 pictures of “cucumber”, which is one class
from the total of 1000 classes found in the ImageNet dataset [9].

Table 1. Comparison between existent and the proposed Image Crawling solution.

Features Existent solutions [7] Proposed solution

Image crawler Yes Yes
Built-in DL models No Yes
Custom DL models No Yes
Cleans dataset automatically? No Yes
Speed Test (sec)
Crawling 97 images 23 23
Cleaning 97 images 47 10

Fig. 12. Summarized view of existent and the proposed image crawling solution. The pictures
marked with a red rectangle are examples of “dirty” images found when crawling with existent
solutions. By comparison, the proposed image crawling feature assisted by DL inference contains
only clean images.
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It can be easily observed how the existent solutions provide images that don’t
represent an actual cucumber, but products (e.g. shampoos) that are made of it. After
automatically cleaning these images with a confidence rate of 50% with the proposed
feature, only 64 clean images remained in the folder.

4.2 Deduplication

For the experiments seen in Table 2, we tested the speed time of the proposed built-in
image deduplication feature that uses the Imagededup python package [26]. We run
these experiments on finding only exact duplicates on the same number of images with
a maximum distance threshold of 10 for all four hashing methods.

As can be seen, the average speed is about 16 s for finding duplicates in a folder
containing 1.226 images, with Difference Hashing being the fastest hashing method
from all four.

4.3 Images Sorter

For our experiments regarding the sorting of images with the proposed images sorter
feature, we used both the MNIST as well as the ImageNet pre-trained models with a
confidence rate of 50% and presented the results in Table 3.

Regarding MNIST experiments, we converted the MNIST dataset consisting of
70.000 images of 28 � 28 pixels to PNG format by using the script in [36] and mixed
all these images in a folder. After that, we run our image sorter feature on them and
succeeded to have only 0.09% of undetermined images, with a total speed time of
around 6 min. Regarding ImageNet, we used the ImageNet Large Scale Visual
Recognition Challenge 2013 (ILSVRC2013) dataset containing 456.567 images
belonging to 1000 classes with a confidence rate of 50%. Here we successfully sorted

Table 2. Speed Results for the 4 hashing methods of the proposed Image Deduplication feature.

Nr. of images Hashing method Speed time (sec)

1.226 Perceptual Hashing 16
Difference Hashing 15
Wavelet Hashing 17
Average Hashing 16

Table 3. Speed Time for the proposed Images Sorting feature.

DL model Nr. of classes Nr. of images Undetermined images Speed time (sec)

MNIST 10 70.000 69 307
ImageNet [9] 1000 456.567 135.789 40.817
Custom [37] 34 2.380 34 223
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all images in around 11 h and 20 min, more exactly in 40.817 s, with 29.74%
(135.789) undetermined images.

Regarding the custom model, we used one of our previously trained DL models
(ResNet-50) that can classify 34 animal classes [37] on a number of 2.380 images of
256 � Ratio pixels (70 images for each of the 34 animal classes) with a confidence rate
of 50%. Here we succeeded to have 1.42% undetermined images, with a total speed
time of almost 4 min. The percentage of the undetermined images for all cases can be
improved by modifying the confidence rate, but it is out of this paper’s scope to
experiment with different confidence values.

The time that a DL prediction task takes depends on a few variables, mainly the
processing power of the machine used to run the model, the framework used to call the
inference of the model and the model itself. Since processing power keeps changing
and varies greatly over different machines, and all the frameworks are optimized
complexity wise and keep evolving, we find that among these three the most important
to measure is, therefore, the model itself used in the prediction. Models vary greatly in
their architecture, but all DL models can be mostly decomposed as a series of floating
points operations (FLOPs). Because, generally, more FLOPs equal more processing
needed and therefore more time spent in the whole operation, we measured the time
complexity of the built-in ImageNet and MNIST models in FLOPS and presented the
results in Table 4.

4.4 Model Trainer

For the experiments regarding the DL model training feature, because we want to
evaluate the application on a real-world problem, we will attempt to show that this
feature could be very useful for doctors or medical professionals in the aid of detecting
diseases from imaging data (e.g. respiratory diseases detection with x-ray images). In
order to prove this, we will attempt to automatically sort between the images of sick
patients versus healthy patients regarding, firstly, pneumonia [38], and secondly,
COVID-19 [39], all within our application and doing it only with the training feature
that the application provides.

For this, first, in order to classify between x-ray images of patients with pneumonia
versus x-ray images of healthy patients, we made use of transfer learning and trained a
‘resnet50’ architecture for around 2 h without data augmentation on pneumonia [38]
dataset containing 6.200 train images by selecting 10 as the value for the number of
training batches and 10 as the value for the size of batches (amount of images per
batch) and achieved 98.54% train accuracy after 10 epochs. Secondly, in order to
classify between x-ray images of patients with COVID-19 versus x-ray images of
negative patients, we again made use of transfer learning and trained a ‘resnet50’

Table 4. The time complexity of the built-in DL models measured in the number of FLOPS.

DL model Dataset MFLOPS GFLOPS

ResNet-50 ImageNet 3.800 3.8
MNIST MNIST 9 0.009
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architecture for around 1 h without data augmentation on the COVID-19 [39] dataset
containing 107 train images by selecting the same values for the number and size of
training batches as the pneumonia model mentioned above and achieved 100% train
accuracy after 100 epochs.

4.5 Accuracy Calculator

For the experiments regarding the accuracy calculator feature, we used the two custom
DL models trained earlier to classify x-ray images of patients with pneumonia versus
x-ray images of healthy patients and between x-ray images of patients with COVID-19
versus x-ray images of negative patients, with 20 as the size of batches (20 images per
batch).

The evaluation took in both cases around 50 s with a test accuracy of 93.75%
regarding the pneumonia model on 620 test images and 91% regarding the COVID-19
model on 11 test images, proving that the proposed Computer Vision application can
easily be used by any medical personal with very basic computer knowledge in order to
train and test a DL classification model for medical work purposes.

4.6 APC and APEC Calculators

Regarding the experiments with the proposed APC [16] calculator feature, we pre-
sented the simulated results for different model test accuracy (%) and energy con-
sumption (Wh) values in Table 5. We run all the experiments with 0.2 as the alpha
value and with 1.0 as the beta value.

It is important to mention that our recommendation for a correct comparison
between two DL models, is that it is always necessary that they are both tested with the
same alpha and beta values. As can be seen in Table 5 where we experimented with

Table 5. Summarized Results of the proposed APC Calculator feature.

Energy consumption [Wh] DL model test accuracy [%] APC [%]

10 99.0 32.14
2 99.0 69.91
1 99.7 82.91
10 99.7 32.96
50 99.7 8.96
10 94.5 27.47
50 50.0 1.61
1 50.0 31.25
10 50.0 7.14
10 40.0 5.12
1 40.0 23.8
1 100 83.33
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random energy consumption and test accuracy values, our APC Calculator feature is
evaluating the performance of a DL model by considering not only the accuracy but
also the power consumption. Therefore, DL models that consume around 50 Wh (e.g.
when running inference on a laptop) instead of 10 Wh (e.g. when running inference on
a low-cost embedded platform such as the Nvidia Jetson TX2) [15], are penalized more
severely by the APC metric.

Regarding the experiments with the proposed APEC [16] calculator feature, we
presented the simulated results for different model test accuracy (%) and energy cost in
Table 6. We run all the experiments with 0.2 as the alpha value and with 1.0 as the beta
value.

For simplicity, regarding electricity costs, we took Germany as an example.
According to “Strom Report” (based on Eurostat data) [40], German retail consumers
paid 0.00305 Euro cents for a Wh of electricity in 2017. We used this value to calculate
the cost of energy by plugging it in the equation presented in (2)”, where “c” in this
case stands for the energy cost. As can be seen, the APEC metric favors lower power
consumption and cost, favoring the use of green energy (free and clean energy).

4.7 TTCAPC and TTCAPEC Calculators

Regarding the experiments with the proposed TTCAPC [16] calculator feature, we
simulated a custom DL model on two platforms and presented the results in Table 7.

Table 6. Summarized Results of the proposed APEC Calculator feature.

Energy
consumption
[Wh]

Power cost
[cents EUR]

DL model test
accuracy [%]

APEC
[%]

APEC green
energy [%]

10 0.03050 99.0 98.37 99.0
2 0.0061 99.0 98.87 99.0
1 0.00305 99.7 99.63 99.7
10 0.03050 99.7 99.08 99.7
50 0.1525 99.7 96.71 99.7
10 0.03050 94.5 93.8 94.5
50 0.1525 50.0 45.8 50.0
1 0.00305 50.0 49.9 50.0
10 0.03050 50.0 49.1 50.0
10 0.03050 40.0 39.18 40.0
1 0.00305 40.0 39.91 40.0
1 0.00305 100 99.93 100
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As can be seen, even though the accuracy and training time is the same for both
platforms, the TTCAPC feature favors the platform which has less power consumption.

Regarding the experiments with the proposed TTCAPEC [16] calculator feature,
we simulated with the same DL model values used also in the experiments regarding
the TTCAPC calculator earlier and presented the results in Table 8.

As can be also seen in this case, the TTCAPEC feature favors the lower power
consumption of a system because it results in a lower cost. Additionally and more
importantly, it favors DL-based systems that are powered by green energy, because
they have 0 electricity costs and no negative impact on our environment.

5 Conclusions

In this paper, we present a Computer Vision application that succeeds in bringing
common DL features needed by a user (e.g. data scientist) when performing image
classification related tasks into one easy to use and user-friendly GUI.

From automatically gathering images and classifying them each in their respective
class folder in a matter of minutes, to removing duplicates, sorting images, training and
evaluating a DL model in a matter of minutes, all these features are integrated in a
sensible and intuitive manner that requires no knowledge of programming and DL.
Experimental results show that the proposed application has many unique advantages
and also outperforms similar existent solutions. Additionally, this is the first Computer

Table 7. TTCAPC with Accuracy delta = 0.1, Energy delta = 1, beta = 0.1, alpha = 0.1.

Desktop PC Nvidia Jetson TX2

Accuracy [%] 97.92
Energy Consumption [Wh] 50 10
Rounded Accuracy [%] 97.95
Rounded Energy Consumption [Wh] 50.5 10.5
Closest APC [%] 61.28 87.11
Train seconds 60

Table 8. TTCAPEC with Accuracy delta = 0.1, Energy delta = 1, beta = 0.1, alpha = 0.1.

Desktop PC Nvidia Jetson TX2

Accuracy [%] 97.92
Energy Cost (cents) 0.1525 0.0305
Rounded Energy Cost (cents) 0.1525 0.0305
Rounded Accuracy [%] 97.95
Closest APEC [%] 51.46 82.96
Closest APEC Green (Solar) Powered [%] 97.95
Train seconds 60
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Vision application that incorporates the APC, APEC, TTCAPC and TTCAPEC metrics
[16], which can be easily used to calculate and evaluate the performance of DL models
and systems based not only on their accuracy but also on their energy consumption and
cost, encouraging new generations of researchers to make use only of green energy
when powering their DL-based systems [15].
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