Skip to main content

Leveraging Radar Features to Improve Point Clouds Segmentation with Neural Networks

  • Conference paper
  • First Online:
Book cover Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference (EANN 2020)

Abstract

Radar sensors, unlike lidars or cameras, can measure objects’ instantaneous velocity and composition. However, the ability to process and retrieve spatial information from radar point clouds has not yet been fully established. In this work, we propose a key technique for improving the performance of standard machine learning point-wise processing methods on radar point clouds. We show that a network can learn to extract object-related signatures for every point using automotive radar measurements. In addition, we propose RadarPCNN, a novel architecture for performing semantic segmentation, specifically designed for radar point clouds. RadarPCNN uses PointNet++, aided with mean shift as feature extractor module and an attention mechanism to fuse information from different neighborhood levels. We show that our model outperforms state-of-the-art solutions on our dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alessandretti, G., et al.: Vehicle and guard rail detection using radar and vision data fusion. IEEE Trans. Intell. Transp. Syst. 8(1), 95–105 (2007). https://doi.org/10.1109/TITS.2006.888597

    Article  Google Scholar 

  2. Breiman, L.: Random forests. Mach. Learn 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  3. Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. CoRR abs/1903.11027 (2019)

    Google Scholar 

  4. Engelcke, M., et al.: Vote3Deep: fast object detection in 3D point clouds using efficient convolutional neural networks. In: IEEE International Conference on Robotics and Automation, ICRA, pp. 1355–1361 (2017). https://doi.org/10.1109/ICRA.2017.7989161

  5. Eriksson, L.H., As, B..: Automotive radar for adaptive cruise control and collision warning/avoidance. In: Radar 1997 (Conf. Publ. No. 449), pp. 16–20 (1997). https://doi.org/10.1049/cp:19971623

  6. Ester, M., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-1996), pp. 226–231 (1996)

    Google Scholar 

  7. Feng, Y., et al.: GVCNN: group-view convolutional neural networks for 3D shape recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 264–272 (2018). https://doi.org/10.1109/CVPR.2018.00035

  8. Feng, Z., et al.: Point cloud segmentation with a high-resolution automotive radar. In: 10th GMM-Symposium on Automotive meets Electronics, AmE 2019, pp. 1–5 (2019)

    Google Scholar 

  9. Fukunaga, K., Hostetler, L.D.: The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. Inf. Theory 21(1), 32–40 (1975). https://doi.org/10.1109/TIT.1975.1055330

    Article  MathSciNet  MATH  Google Scholar 

  10. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  11. Li, Y., et al.: PointCNN: convolution on x-transformed points. In: Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems, NeurIPS, pp. 828–838 (2018)

    Google Scholar 

  12. Lin, T., et al.: Focal loss for dense object detection. In: IEEE International Conference on Computer Vision, ICCV, pp. 2999–3007 (2017). https://doi.org/10.1109/ICCV.2017.324

  13. Prophet, R., et al.: Pedestrian classification for 79 GHz automotive radar systems. In: IEEE Intelligent Vehicles Symposium IV, pp. 1265–1270 (2018). https://doi.org/10.1109/IVS.2018.8500554

  14. Qi, C.R., et al.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems, pp. 5099–5108 (2017)

    Google Scholar 

  15. Qi, C.R., et al.: PointNet: deep learning on point sets for 3D classification and segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 77–85 (2017). https://doi.org/10.1109/CVPR.2017.16

  16. Schumann, O., et al.: Semantic segmentation on radar point clouds. In: 21st International Conference on Information Fusion, FUSION, pp. 2179–2186 (2018). https://doi.org/10.23919/ICIF.2018.8455344

  17. Shelhamer, E., et al.: Fully convolutional networks for semantic segmentation. CoRR abs/1605.06211 (2016)

    Google Scholar 

  18. Sultana, F., et al.: Advancements in image classification using convolutional neural network. CoRR abs/1905.03288 (2019)

    Google Scholar 

  19. Wöhler, C., et al.: Comparison of random forest and long short-term memory network performances in classification tasks using radar. In: Sensor Data Fusion: Trends, Solutions, Applications, SDF, pp. 1–6 (2017). https://doi.org/10.1109/SDF.2017.8126350

  20. Yang, B., et al.: Attentional aggregation of deep feature sets for multi-view 3D reconstruction. CoRR abs/1808.00758 (2018)

    Google Scholar 

  21. Zaheer, M., et al.: Deep sets. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems, pp. 3391–3401 (2017)

    Google Scholar 

  22. Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3D object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 4490–4499 (2018). https://doi.org/10.1109/CVPR.2018.00472

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Cennamo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cennamo, A., Kaestner, F., Kummert, A. (2020). Leveraging Radar Features to Improve Point Clouds Segmentation with Neural Networks. In: Iliadis, L., Angelov, P., Jayne, C., Pimenidis, E. (eds) Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference. EANN 2020. Proceedings of the International Neural Networks Society, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-48791-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48791-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48790-4

  • Online ISBN: 978-3-030-48791-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics