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Abstract. Modern high-performance computing (HPC) systems are increas-
ingly using large amounts of fast storage, such as solid-state drives (SSD), to
accelerate disk access times. This approach has been exemplified in the design
of “burst buffers”, but more general caching systems have also been built. This
paper proposes extending an existing parallel file system to provide such a file
caching layer. The solution unifies data access for both the internal storage and
external file systems using a uniform namespace. It improves storage perfor-
mance by exploiting data locality across storage tiers, and increases data sharing
between compute nodes and across applications. Leveraging data striping and
meta-data partitioning, the system supports high speed parallel I/O for data
intensive parallel computing. Data consistency across tiers is maintained auto-
matically using a cache aware access algorithm. A prototype has been built
using BeeGFS to demonstrate rapid access to an underlying IBM Spectrum
Scale file system. Performance evaluation demonstrates a significant improve-
ment in the efficiency over an external parallel file system.

Keywords: Caching file system - Large scale data analysis + Data movement

1 Introduction

In order to mitigate the growing performance gap between processors and disk-based
storage, many modern HPC systems include an intermediate layer of fast storage, such
as SSDs, into the traditional storage hierarchy. Normally, this fast storage layer is used
to build a burst buffer that stages data access to the disk-based storage system at back-
end [12, 16]. However, adding new tiers into the storage hierarchy also increases the
complexity of moving data among the layers [17, 18].

The burst buffer can be provided on I/O or compute nodes of a cluster. The latter
option, also called a node-local burst buffer [17, 18], equips each compute node with
SSDs to decrease I/O contention to back-end storage servers. This leads to a deep
hierarchical structure [12, 13] that contains, at the very least, a node private burst buffer
and a shared external storage tier. To exploit hardware advances, many innovative
software methods [5, 7, 16—18, 28-31] are proposed to utilize burst buffers efficiently.
The management of node-local burst buffers has not been standardized. Some projects
have investigated its use only for specific purposes, such as staging checkpoint data [7]
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and caching MPI collective I/O operations [S5]. Other projects, including BurstFS [28]
and BeeOND [3], create a temporary file system on the private storage of compute
nodes. However, these solutions manage the burst buffer independently of back-end
storage, and programmers need to handle the complexity of moving data between
storage tiers explicitly.

These tiers of persistent storage are typically used for different purposes in an HPC
environment. Normally, the privately-owned internal storage maintains transient data to
achieve faster I/O rates. In contrast, persistent data for long-term usage is stored
externally, often using a parallel file system. Managing both tiers separately increases
programming difficulties, such as maintaining data consistency and worrying the effi-
ciency of moving data between the tiers. In order to bridge these layers, several
challenges need to be addressed. First, the internal storage is isolated to individual
compute nodes. Aggregating these siloed storage devices is necessary to provide
scalable bandwidth for staging data more efficiently. Second, striping data across
compute nodes is essential to accelerate parallel I/O for HPC applications. Third,
programmers should be freed from having to move data explicitly between the storage
tiers. Fourth, exploiting data access patterns through the storage layers can improve the
performance of accessing the external parallel file system.

In this paper, we discuss the integration of the internal and external storage using a
uniform solution. In particular, the paper describes a caching file system that automates
data movement between a node-local burst buffer and a back-end parallel file system. It
is realized by extending an existing parallel file system, BeeGFS [2]. Data access is
unified across the storage layers with a POSIX-based namespace. In addition, the
caching system improves storage performance by aggregating bandwidth of private
storage, and exploiting data locality across the tiers. Furthermore, it increases SSD
utilization by sharing data between compute nodes and across applications. Leveraging
the inherent strengths of BeeGFS, such as data striping and meta-data partitioning, the
caching extension supports high speed parallel I/O to assist data intensive parallel
computing. Data consistency across storage tiers is maintained using a cache-aware
algorithm.

Specifically, this paper presents the following contributions:

e A BeeGFS-based caching file system that integrates node-local burst buffers
seamlessly with the back-end parallel file system;

e A unified data access abstraction that automates data movement and improves 1/O
performance by exploiting data locality across storage tiers;

e The caching extension mechanism that leverages parallel file system strengths to
support scalable bandwidth and high-speed parallel I/O on the burst buffer.

The rest of this paper is organized as follows. Section 2 discusses related work and
our motivation. Section 3 introduces the design and architecture of BeeGFS caching
system. Section 4 presents the implementation details. Section 5 illustrates the per-
formance evaluation of the prototype. Our conclusions follow in Sect. 6.
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2 Background and Related Work

Most HPC systems adopt a hierarchical storage system [17, 18] to make the tradeoff
between performance, capacity and cost. Recently, fast storage, such as SSDs, have
been added between memory and disks to bridge the performance gap. This leads to a
deep hierarchical structure. The top tier, such as the burst buffer [12, 16], provides high
performance data access, and is placed close to compute nodes for containing actively
used data. The bottom tier maintains long-term data persistently using disk-based
solutions to provide high storage capacity. With most existing solutions, the software
systems that manage different layers work separately [17, 18]. Accessing a disk-based
storage tier has been standardized using a parallel file system, such as Lustre [26] and
GPEFS [22]. The appropriate way of managing a burst buffer is still under research [17,
18, 28, 29]. Currently, the internal storage layer cannot be directly utilized by most
back-end parallel file systems [17, 18]. There is a lack of automatic data movement
between storage tiers, and this causes a significant overhead to users [17, 18].

Compute nodes: % %\T\ %F%\ %@

Node private burst buffer

10 nodes or
bust buffer servers: @ Shared burst buffer
Disk-based storage servers: é é

Fig. 1. Typical options of attaching a burst buffer.

2.1 Burst Buffer Overview

Currently, there are two major options to provide a burst buffer, as illustrated in Fig. 1.
With the first option, compute nodes share a standalone layer of fast storage [16, 31,
33]. For example, the DoE Fast Forward Storage and IO Stack project [18] attaches the
burst buffer to I/O nodes. Augmenting I/O nodes using SSDs improves bandwidth
usage for disk-based external storage [31]. Cray DataWarp [10, 15] is a state-of-the-art
system that manages a shared burst buffer, and it stages write traffic using a file-based
storage space. Commands and APIs are supported for users to flush data from the burst
buffer servers to the back-end file system. Data elevator [6] automates transferring data
from the shared fast storage to the back-end servers. In addition, it offloads data
movement from a limited number of burst buffer servers to compute nodes for scalable
data transfer.

Efficiently organizing data for burst buffers has been investigated [29-31]. Data is
typically stored in a log-structured format, while meta-data is managed for efficient
indexing using Adelson-Velskii and Landis (AVL) tree, hash table, or a key-value
store. Optimizing the performance of flushing data to the external storage is critical. I/O
interference can be prevented by leveraging the scalability of distributed SSD array.
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Controlling concurrent flushing orders [30] and orchestrating data transfer according to
access patterns [14] have been proposed. SSDUP [23] improves SSD usage by only
directing random write traffic to burst buffers.

With the second option, the burst buffer is privately owned by each compute node
[17, 18]. This approach provides scalable private storage and further decreases 1/O
contention to the back-end storage [20]. Presently, the software that manages a node-
local burst buffer is not standardized. There are mainly two ways of utilizing node-local
burst buffers. One approach exploits fast local storage only for specific purposes. For
example, locally attached SSDs are used to cache collective write data by extending
MPI-IO [5], and to build a write-back cache for staging checkpoint data [7]. Another
approach provides a general file system service. Research has shown that deploying a
parallel file system on compute nodes can substantially reduce data movement to the
external storage [34]. Distributed file systems, such as HDFS [24], have explored using
host-local burst buffers to support aggregated capacity and scalable performance. These
solutions are designed mainly for scalable data access, and lack of efficient support for
high performance parallel I/O required by most HPC applications. The ephemeral
burst-buffer file system (BurstFS) [28] instantiates a temporary file system by aggre-
gating host-local SSDs for a single job. Similarly, BeeGFS On Demand (BeeOND) [3]
creates a temporary BeeGFS [1] parallel file system on the internal storage assigned to
a single job. These file system solutions enable sharing a namespace across compute
nodes at front-end, but it is separated from the back-end file system. Therefore, users
have to transfer data between the internal and external storage layers explicitly.

2.2 Uniform Storage Systems for HPC Storage Hierarchy

A few projects share the same goals with our work. UniviStor [27] provides a unified
view of various storage layers by exposing the distributed and hierarchical storage
spaces as a single mount point. UniviStor manages the address space using a distributed
meta-data service and hides the complexity of moving data across storage layers. In
addition, adaptive data striping is supported for moving data in a load balanced manner.
Hermes [13] supports a caching structure to buffer data in the deep memory and storage
hierarchy transparently. With Hermes, data can be moved seamlessly between different
layers, from RAM and SSDs to disks. Hermes places data across storage layers
according to access patterns and supports both POSIX and HDF5 [9] interfaces. In
comparison, our approach takes advantage of an existing parallel file system to achieve
a similar outcome. By extending BeeGFS, we provide a caching system to integrate a
node-local burst buffer seamlessly with an external storage.

2.3 Parallel File System Overview

POSIX-based parallel file systems, such as Lustre [26], GPFS [22], and PVFS [4], are
widely used to manage a disk-based back-end storage system. Typically, parallel data
access and scalable bandwidth are provided by aggregating storage servers. Normally,
data is striped across servers and meta-data is partitioned to accelerate parallel I/O.
BeeGFES [1] is a parallel cluster file system with the POSIX interface. BeeGFS manages
meta-data and files separately and its architecture consists of meta servers, storage
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servers and management servers. BeeGFS transparently spreads data across multiple
servers and scales up both system performance and storage capacity seamlessly.
A single namespace is provided by aggregating all servers. File chunks are maintained
by storage servers, whereas meta servers manage the meta-data, such as directories,
access permission, file size and stripe pattern. Meta-data can be partitioned at the
directory level such that each meta server holds a part of the file system tree. BeeGFS
clients can communicate with both storage and meta servers via TCP/IP based con-
nections or via RDMA-capable networks such as InfiniBand (IB). In addition, data
availability is improved using built-in replication: buddy mirroring.

Managing a node-local burst buffer using a parallel file system can inherently
leverage strengths, such as scalability and parallel data access, to assist data intensive
computing. We extend BeeGFS to provide a caching system that bridges both internal
and external storage tiers seamlessly. With the extension, BeeGFS allows moving data
between the storage layers automatically. In addition, it improves data access perfor-
mance by exploiting data locality across the storage tiers.

3 Design

The target environment consists of a compute cluster at the front-end and a persistent
storage system at the back-end. Each compute node in the cluster is equipped with a
large burst buffer, while the back-end storage system is managed using a POSIX-based
parallel file system. Parallel applications running on compute nodes analyze data stored
in an external file system. In order to decrease the I/O path of directly accessing the
external system, hotspot data can be placed close to processors in the top tier of the
storage hierarchy. Any applications running on the same cluster can access data stored
in the burst buffer to reduce sharing data across programs using the external file system.
Programmers are not required to know the exact location and long-term persistence for
accessed files. In addition, to alleviate the performance gap between processors and
storage, large files should be striped across compute nodes and serviced using parallel
I/0. Moving data between the internal and external storage needs to be scalable with
low I/O contention to avoid unnecessary network traffic.

[ BeeGFS Clients ]
Compute nodes I

E@éé ,,,,, E% | cachingextensn |

BeeGFS
| Parallel data access | | Scalability
| Fault tolerance | | Load balance

The internal storage \
— —
GPFS BeeGFS

The external storage

Fig. 2. The architecture of BeeGFS caching file system.
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To meet these requirements, the fast storage isolated across compute nodes should
be coordinated to provide a scalable caching pool. Each compute node contributes a
part of its private storage and makes it accessible by other nodes. An instance of
BeeGFS is deployed on the compute nodes to aggregate the siloed burst buffer.
Managed by BeeGFS, the burst buffer stages data access for both write and read
operations applied to back-end storage. Specifically, BeeGFS provides a parallel data
service by accessing the targeted data set from an external file system. To improve
performance, BeeGFS maintains most recently accessed files to avoid unnecessary
network traffic and I/O to the back-end.

To provide a caching functionality, BeeGFS keeps track of accessed files. When-
ever a file is requested, BeeGFS first verifies its existence and validity in the internal
storage. In case a request cannot be satisfied due to a cache miss or an invalid copy,
BeeGES fetches data from the external file system transparently. Moving data, and
examining its validity, are achieved using an on-demand strategy. If any updates need
to be flushed to the external storage, BeeGFS synchronizes the permanent copy
automatically.

Files are cached on compute nodes persistently, and are managed in a scalable
manner by leveraging BeeGFS’s scalability. In addition, BeeGFS organizes files with
data striping and meta-data partitioning across the distributed fast storage to support
high speed parallel I/O. When the free caching space is insufficient, least recently
accessed files are evicted.

With the above design, programmers access files across storage tiers using a single
namespace without worrying the exact data location, while data is committed for long-
term usage automatically. Therefore, programmers are relieved from the complexity of
manipulating data, but instead focusing on algorithm developments.

The architecture of BeeGFS caching system is illustrated in Fig. 2, which consists
of two storage tiers. The top layer manages host-attached SSDs using BeeGFS. The
bottom tier is the external storage cluster hosted by a parallel file system, such as GPFS,
Lustre and others. To achieve the design targets, the following components extend
BeeGFS to support the caching functionality:

e A POSIX-based uniform namespace: a uniform namespace across storage tiers
enables accessing a piece of data regardless of its location. Most HPC applications
rely on a traditional file interface. Therefore, providing a uniform namespace using
the POSIX standard works with existing parallel applications seamlessly.

e Meta-data and data caching: files in the external file system are cached in the
internal storage. BeeGFS maintains a consistent view of the back-end file system
tree in the node-local burst buffer, and keeps track of cached objects by monitoring
the existence and validity for each requested file and directory. It automatizes data
movement across storage tiers, and exploits data locality to reduce unnecessary data
traffic.

e Data access abstraction: moving data from the back-end file system can be achieved
using file sharing. Each data site may be managed using different parallel file
systems. The mechanism of accessing data should be applied to any file systems
compliant with the POSIX standard. All of the data accessing details are hidden
from users by the data access abstraction component.
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e Data consistency: maintaining a coherent view between cached objects and their
permanent copies needs to make an appropriate tradeoff between performance and
consistency. Synchronizing updates should be optimized by avoiding unacceptable
performance degradation.

e Optimization of data movement: moving data between the compute cluster and the
external storage must be optimized with low I/O contention. Data transfer perfor-
mance should be scalable with the number of involved compute nodes. In addition,
data movement must take full advantage of high bandwidth and low latency of the
storage network.

The performance target is to make both read and write operations applied to the
external storage, with a cache hit, match the native BeeGFS on the burst buffer. With a
cache miss, the read performance is restricted by the bandwidth of network and back-
end storage. Accordingly, the extension should not change typical BeeGFS behaviors,
such as high-performance data access, scalable storage capacity, load balancing and
fault tolerance.

3.1 Uniform Namespace

The caching system provides a uniform namespace for accessing both internal and
external files using the POSIX interface. Two sets of data are maintained in the internal
storage: transient files and permanent files. The transient files require no long-term
persistence, while each permanent file has a master copy in the external file system.
Each file is referred using a local name, actually the full path. However, the local name
for a permanent file also helps to identify its master copy in the external file system.
This is achieved by linking an external directory to the internal file system, as illus-
trated in Fig. 3. In particular, each BeeGFS instance caches one external directory. The
external director is specified when mounting the BeeGFS instance. The path name of
the external directory is used to construct the external full path for each permanent file.
Assume, a BeeGFS instance is mounted to the local directory /local/mounted that
caches files for an external directory /external/shared. The local file/local/mounted/a.
out has an external copy /external/shared/a.out, the name of which is produced by
concatenating the external path, /external/shared, and the relative path, a.out.

BeeGFS caching:

A The local name: | The mounted directory | the relative path ‘

The external directory:

@"/ The external name: the relative path

Fig. 3. Constructing the external path using the local name.

In another words, an internal directory is specified to hold the cache for an external
data set. Actually, multiple external data sets, which may originate from different
external file systems, can be linked to different internal directories. Therefore, the



10 D. Abramson et al.

POSIX file interface unifies storage access for both the internal burst buffer and
external file systems. From the perspective of users, accessing the cached directory is
no different than accessing other normal directories.

3.2 Caching Model

The caching model manages staging data for both read and write operations applied to
the back-end parallel file system, and hides the details of moving data from users. In
addition, it provides a consistent view on the shared external directory tree across
storage tiers. For each cached object, its permanent copy maintained by the external file
system is treated as the master version. To make an appropriate tradeoff between
improving performance and enforcing data consistency, different strategies are applied
to reading and writing files, and caching the namespace.

Writing files are staged using a write-back policy and reading files adopts a lazy
synchronization method, in order to reduce unnecessary data movement. In contrast,
the namespace is managed using an active strategy that guarantees a consistent global
view across storage tiers. Reading the namespace is realized using an on-demand
policy, while updating it is accomplished with a write-through method. The cache
consistency is not controlled by the external file system, but actively maintained by the
BeeGFS instance.

With the on-demand strategy, each level of the linked directory tree is cached only
when it is traversed. When accessing a directory, all of its children directories are
cached synchronously by duplicating its content to include name, creation time, update
time, permission and size etc. However, files under the accessed directory are initially
cached by only creating an empty position without copying the actual data. Subse-
quently, when the actual data is requested by any client, BeeGFS fetches the content to
replace the empty position. Similar strategies are applied to synchronize updates made
by the external file system.

To keep track of cached files and directories, BeeGFS meta-data, i.e. inode, is
enhanced to include caching state and validity information. In addition, the creation and
update times of the master copy are duplicated for consistency validation, the details of
which is described in Sect. 3.3.

3.3 Data Consistency

The caching layer provides a two-level data consistency model to incorporate the
performance difference between storage tiers. For concurrent data access applied to the
internal storage layer, a strong and POSIX compliant consistency model is inherently
supported by BeeGFS. Concurrent write operations can be coordinated by locking [2].

The caching model enforces data consistency between the cached objects and their
permanent copies. Most scientific applications share data across clusters using a single
writer model [1]. With this scenario, data is typically created by a single writer, even if
it is shared with multiple writers across computer clusters. Accordingly, a weak con-
sistency model is sufficient. The consistency is maintained per file. Validating the
consistency is accomplished by comparing the update time between the cached object
and its permanent copy. We assume each storage cluster uses a monotonically
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increasing clock to identify time for an update operation. In addition, the compute

cluster and the back-end storage cluster may hold different clocks at the same time. The

update time of an external file is denoted as mtime. When creating a cached copy,

mtime is duplicated in its the meta-data, denoted as mtime'. During the lifetime of the

cached object, mrime’ does not change. At the back-end, mtime increases for each

update applied to the permanent copy. Consequently, the validity of a cached object is
examined using Eq. (1).

{ If mtime' = mtime, the cached copy is valid.

. . L . (1)

If mtime’ <mtime, the cached copy is invalid.

An invalid cached copy means that the master copy has been updated by the
external file system. Therefore, synchronization is achieved by fetching the fresh copy
from the external file system to replace the staled file in BeeGFS. This consistency
semantic allows a single writer to spread its updates between multiple caching
instances that share the same external directory tree.

3.4 Data Movement

Moving data across storage tiers should be parallelized to improve data transfer per-
formance. Actually, data stored in the internal and external storage are both managed
using parallel file systems. Files are striped across multiple servers and are serviced
using parallel data access. Therefore, moving data across storage tiers should take
advantage of both features. Instead of using any intermediate I/O delegates, each
compute node should directly transfer file chunks that are managed by itself to the
back-end storage. With this approach, the number of concurrent data transfer streams is
scalable as the number of system nodes for both read and write operations. This type of
highly parallel data movement can fully utilize the scalable bandwidth of storage
network. In order to decrease I/O contention across files, transferring data can be
ordered per file.

4 Implementation

The current prototype is implemented by augmenting the original meta-data and
storage services. The meta server is extended to 1) keep track of each accessed object,
2) maintain data consistency between cached objects and their master copies in the
external file system, and 3) coordinate staging data in and out of the internal storage.
The storage server is improved to transfer data by leveraging BeeGFS data striping.
The interaction of major caching components is illustrated in Fig. 4.

BeeGFS servers are implemented using C++, while its client is mainly written in C.
BeeGFS clients, meta servers and storage servers communicate messages between each
other using Unix sockets. Both meta and storage severs manage separate tasks using
multiple worker threads. The caching extension expands the existing inode data
structure and adds new messages and worker threads to achieve the design goal. The
original BeeGFS structure is re-used as much as possible.
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With the new BeeGFS caching system, both meta and storage servers are placed on
compute nodes to manage the internal storage. Typically, one storage server is placed
on each compute node, while the number of meta servers is configurable. The mem-
bership of BeeGFS cluster is maintained by a management service.

When mounting a BeeGFS instance, an external directory is linked, and it can be
accessed using the Linux Virtual File System (VFES) interface. BeeGFS services VFS
requests by accessing the external file system. For each VFS request, the BeeGFS client
queries the meta-data service to determine if the target file exists internally. If an
internal copy is valid, the request is serviced as normal. Otherwise, the meta server
initiates moving the requested data to storage servers from the external file system.

4.1 Data Distribution

The caching extension re-uses the existing BeeGFS stripe formula to place all the
chunks of a file across m storage servers in a round robin manner. Each cached file is
uniformly partitioned into n chunks, and the size of each chunk is denoted chunkSize.
The exact stripe formula is shown as Eq. (2):

offset(i) = i x stripeSetSize + serverIndex x chunkSize. (2)

in which stripeSetSize = m x chunkSize and offset(i) stands for the "

assigned to a storage server (identified by serverindex).

stripe

[ Linux Virtual File System ]

( BeeGFS Client —

Meta servers

5
Cache flags
Consistency
@ @ @ @ Synchronization
i The external file system D File chunk

Fig. 4. The components of BeeGFS caching file system.

4.2 Meta Servers

The meta server coordinates storage servers to move data by adding new messages,
such as CachingFile, and a worker thread CacheEvictor. The data structure that keeps
track of cached objects must be persistent, otherwise, the caching system may become
inconsistent in case of failures. Therefore, the existing BeeGFS data structures are re-
used by leveraging its serialization logic to preserve included caching information
persistently. The BeeGFS inode structure contains essential information, such as an
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entry id, which is used to identify each file and directory, the placement map for file
chunks, and a feature field used for buddy mirroring. The inode structure is augmented
to include the caching state for each file and directory, and to identify if the cached
object is up-to-date. The feature field is extended to represent two flags: caching and
dirty. The caching flag indicates if the associated file has a copy in the internal storage.
Caching is off means that the file is created just for holding a position or has been
evicted. After all the chunks of a file are duplicated in BeeGFS, caching is set on. The
dirty flag is set when any update is applied to the cached copy. The master copy’s
mtime is also duplicated into inode for verifying the validity of a cached copy.

Namespace Consistency. Namespace coherence is maintained transparently using a
polling approach to detect changes made by the external file system. However, an
aggressive polling approach that periodically verifies the entire cached namespace
causes a significant overhead for a deep directory tree. To implement an on-demand
policy of enforcing consistency, a lazy polling approach is adopted that only examines
the part of file system tree being traversed.

In particular, stat, open, lookup and readdir operations are intercepted. The external
path name is reconstructed to validate the existence of the target item. If any new
directory is detected, its content is cached immediately. For any new file created in the
external directory, an internal entry is instantiated without copying the actual data. In
addition, its caching flag is set off to indicate subsequent synchronization is required.

As described previously, updates applied to the internal directory tree are syn-
chronized with the external file system using a write-through policy. Updates generated
by operations, such as chmod, chgrp, mv, rm etc., are replicated to the back-end file
system simultaneously. For a new file or directory created in BeeGFS caching, the
external file system immediately holds a position for them. But the actual content is
synchronized when required. BeeGFS exclusively partitions meta-data across multiple
meta servers. Updates from different meta servers cause no conflicts.

Verifying namespace consistency changes the default behavior of read only meta-
data operations, such as stat, lookup and readdir. These operations make no changes to
the namespace in the original BeeGFS. However, with the caching extension, these
operations may detect modifications on the external namespace, the synchronization of
which causes updating the namespace cached in the internal storage.

File Consistency. File consistency is maintained by intercepting the open operation.
Upon opening a file, the meta server queries its caching flag for the internal copy. In
case the cached copy is present, its validity is examined using Eq. (1). If necessary, the
master version is copied to replace the local stale one, which is coordinated by the meta
server using a caching request. To avoid conflicts, multiple simultaneous open oper-
ations applied to the same file are serialized by the meta server. With this serialization,
only a single caching request is created for one open operation and all other operations
applied to the same file block until the requested file is ready to access. Synchronizing a
file needs to update chunks that are distributed across storage servers. During the
process, the target file should not be accessed, because its content may belong to
different versions. Therefore, locking is used to protect file synchronization.

The transaction of moving or updating a file typically involves multiple storage
servers. The exact process consists of two stages: 1) notifying all of involved storage
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servers and 2) moving file chunks. In the first stage, a CachingFile message is sent to
all of the involved storage severs. The exact message includes file name, file size, and
data stripe pattern etc. This stage is protected using a read lock. After sending the
request, the second stage waits to start until all of the storage severs respond. At the end
of the first stage, the read lock is released and a write lock is obtained immediately for
the second stage. Both locks prevent other threads from opening the same file for
updates until all the chunks have been successfully synchronized. After the secondary
stage completes, the open operation continues as normal.

Optimization. Identifying an external file requires the concatenation of its internal
path with the name of cached external directory, as illustrated in Fig. 3. However,
reconstructing a path name in BeeGFS is not straightforward. BeeGFS does not keep a
full path for any file or directory. In addition, meta-data for each entry is stored in a
separate object, and each file is identified using its entry id and parent directory.
Therefore, constructing the path name for a file or directory must look up each entry’s
parent backwards by going through a number of separated objects, which is time-
consuming as it may require reloading the entry from storage. To improve the effi-
ciency of verifying data consistency, constructing a path name is accelerated. When
looking up a file from the root level, each parent entry is kept in memory for subse-
quent path construction.

4.3 Storage Servers

To assist file caching, eviction, and synchronization operations, BeeGFS storage ser-
vers are coordinated by the meta server. With file chunk distribution, each storage
server only keeps a part of a cached file, and the storage server maintains each chunk
using a local file. Upon receiving the request of transferring a file, the storage server
creates the working directory on the internal storage and then initiates copying file
chunks. Each storage server transfers data by only accessing a region of the target file
from the external file system, instead of going through the whole file. In order to
improve performance for accessing a file partially, instead of using Iseek, read and
write system calls, pread and pwrite are adopted. In addition, storage I/O access to the
external file system must be efficient. The remote file is accessed using the recom-
mended block size, which is detected using stat. Therefore, the exact data transfer is
realized using a block-based algorithm, as shown in Algorithm 1.

Buddy Mirror. BeeGFS supports buddy mirroring to improve data reliability. Each
group of buddy mirrors consists of two servers: the primary and secondary, in which
each secondary server duplicates its primary counterpart. When the primary and sec-
ondary copies become inconsistent, it is required to synchronize buddies, which is
called resync.

The caching module takes advantage of buddy mirroring to improve data avail-
ability, which is configurable, and to increase bandwidth for hotspot files. Presently, the
replication for data caching is performed asynchronously such that the primary server
does not wait until the secondary one finishes the caching request. However, the
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caching request must avoid interfering a resync process of buddy mirror. Specifically,
caching requests are serviced until a resync process is completed.

Algorithm 1. The block-based data transform algorithm on the storage server.

1 procedure BLOCKIO (fileDesc, buffer, len, offset, blocksize, isRead)
2 total = 0

3 bytes =0

4 while fotal < len do

5 if len — total < blocksize then

6 iosize = count — total

7 else

8 iosize = blocksize

9 if isRead

10 bytes = pread (fileDesc, buffer + total, iosize, offset + total)
11 else

12 bytes = pwrite (fileDesc, buffer + total, iosize, offset + total)
13 if bytes < 0 then return error

14 total = total + bytes

15 return success

4.4 Cache Eviction

When the free caching space is insufficient, some less accessed files should be evicted.
Clean copies that are not updated in the caching, can be deleted directly. In contrast, for
other dirty copies, updates should be flushed to the external file system.

The cache eviction routine is implemented by adding a worker thread,
CacheEvictor, to the meta-data service, which is launched on startup with other worker
threads. This eviction thread periodically selects less accessed files from storage servers
that are low in space and moves them out of BeeGFS to keep available free space as
required. The storage usage report created by the management service is re-used to
detect the whole system storage usage. The management service monitors storage
usage for each server and classifies them into emergency, low and normal capacity
groups. The storage usage report is collected for each storage server periodically and
sent to the meta servers. With this report, a Least Recently Used (LRU) policy is
adopted to make decisions on which files should be moved out. Upon eviction, flushing
dirty copies uses the same block-based data transfer algorithm as described in Sect. 4.3.
A write lock is acquired to guarantee the eviction process is not interrupted by normal
file operations.
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5 Performance Evaluation

The prototype was built on BeeGFS version 6.1 and it was evaluated on the FlashLite
system at the University of Queenland [8]. FlashLite contains large amounts of main
memory and high-speed secondary storage, SSDs. The back-end storage is provided by
an IBM Spectrum Scale (GPFS) system, and all compute nodes communicate with the
GPES system using the native Network Shared Disk (NSD) protocol [25]. High per-
formance networking, such as Dual rail 56Gbps Mellanox InfiniBand fabric, connects
FlashLite and GPFS servers. Each compute node of FlashLite has the following system
configuration:

2 x Xeon E5-2680v3 2.5 GHz 12core Haswell processors;

512 GB DDR4-2133 ECC LRDIMM memory (256 GB per socket);
3 x 1.6 TB Intel P3600 2.5” NVMe (SSD) drives of internal storage;
1 TB RAID 1 system disk;

2 x Mellanox 56 Gb/s FDR Single Port InfiniBand adapter.

The CentOS 7 operating system, with kernel version 3.10.0-693, is installed on
each node that manages SSDs using a standard ext4 filesystem. The BeeGFS caching
system was deployed for performance evaluation on 6 compute nodes of FlashLite. The
system was installed with one meta server, one management server, and 6 storage
servers. One BeeGFS storage server was placed on each compute node, while one
compute node was selected to run both meta and management servers. The BeeGFS file
system was mounted on each node at/mnt/beegfs for caching a remote directory in
GPFS. RDMA is enabled across the servers using the default BeeGFS OpenTk com-
munication library. File chunk size was set to 512 KB, and a striping pattern RAIDO
using four targets of storage server was specified. Buddy mirroring was disabled during
the experiment. Performance was evaluated for both meta-data operations and file data
accesses.

5.1 Meta-Data Performance

The performance of meta-data operations was evaluated using MDTtest [19]. MDTest
measures meta-data performance through a series of create, stat and delete operations
on a tree of directories and files. The operations were conducted in parallel on up to 6
compute nodes, in which each node run one MDTest instance. We compared these
operations for three different situations: GPFS, BeeGFS caching prototype, and the
original BeeGFS system (version 6.1). The vanilla BeeGFS system was installed on the
same set of compute nodes in which the caching prototype was deployed, and was
instantiated with the same configuration. MDTest was configured with a branch factor
of 3, and a depth of 3. The number of items per tree node was set to 100, for a total of
4,000 files/directories per task. Each situation was evaluated using the number of
performed transactions per second as metrics. The averaged value with a standard
deviation was collected.

For read-only meta-data operations, such as stat for files and directories illustrated
in Fig. 5, vanilla BeeGFS performs faster than GPFS, because it is deployed on internal
storage. However, for write-intensive operations, such as creation and deletion of files
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and directories, as shown in Fig. 6 and Fig. 7 respectively, GPFS performs better than
vanilla BeeGFS. This is because BeeGFS was created with only one meta-data server,
which is not scalable for highly concurrent meta-data operations.

Overall, the caching prototype performs the worst for both read- and write-intensive
meta-data operations. This is because the caching system not only conducts operations
on internal storage, but also replicates these operations on the back-end storage. Our
prototype performs both operations in a sequential manner, and this degrades perfor-
mance. However, as shown in Sect. 5.2, the performance degradation has a negligible
impact on the speed of accessing data in internal SSDs because meta-data operations
only compose a tiny fraction of data access activities. Future work will investigate how
to improve meta-data operations by maintaining consistency asynchronously.

File Stat

Directory Stat

Transactions/s
Transactions/s

1 2 4 6 1 2 4 6
The number of clients The number of clients

Fig. 5. MDTest file and directory stat.

Directory Creation File Creation

GPFS
Vanila BeeGFS
BeeGFS Caching|

Transactions/s
Transactions/s

2 4 2 4
The number of clients The number of clients

Fig. 6. MDTest file and directory creation.

File Removal Directory Removal

EGPFs
[ vanilla BeeGFS
[ElBeeGFS Caching|

Transactions/s
Transactions/s

2 4
The number of clients

2 4
The number of clients

Fig. 7. MDTest file and directory removal.



18 D. Abramson et al.

5.2 Data Performance

Interleaved or Random (IOR) [10] was performed on the same set of compute nodes to
evaluate the performance of accessing files stored in GPFS via the caching prototype.
We compared two scenarios: cache miss and cache hit, for different file sizes, from
100 MB to 100 GB. One IOR client was placed on each compute node, while up to 6
IOR clients were used during the experiment. When a cache miss occurs, the requested
file is fetched from back-end GPFS, while a cache hit means the requested file already
stays in the BeeGFS caching system. In order to amortize the disturbance of other
workloads present on GPFS, the IOR experiments were repeated over 24 h at hourly
intervals. For testing read operations, the tested files were generated in advance and
flushed out of the internal storage to enforce the behavior of cache-miss. The aggre-
gated bandwidth perceived by multiple IOR clients was collected. The averaged values
with a standard deviation were shown.

Read Performance (100ME)

ccccccccccccccccc

Fig. 8. IOR read performance.

Fig. 9. IOR write performance.

Overall, the experiment shows that accessing data from the caching layer is sig-
nificantly faster than directly accessing GPFS for both read and write operations,
regardless of data size. In addition, accessing 100 GB large files delivers higher
bandwidth than 100 MB files due to more efficient sequential operations on both
internal and external storage. The performance of reading data from GPFS and the
caching prototype is shown in Fig. 8, while Fig. 9 illustrates writing performance. The
caching prototype provides scalable data access with the number of clients for both
read and write operations. However, with a cache miss, the BeeGFS caching system is
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slower than GPFS because the requested data need to be copied into the internal storage
first before being forwarded to applications. Therefore, the cache miss introduces an
extra overhead in comparison to accessing GPFS directly. Future work will explore
how to overlap data transfer across storage tiers to hide the extra latency for cache miss
cases.

6 Conclusions

In order to improve storage performance, many HPC systems include an intermediate
layer of fast storage, such as SSDs, between memory and the disk-based storage
system. In particular, compute nodes may contain a large amount of fast storage for
staging data access to the back-end storage. Frequently, this layer of node-local burst
buffer is managed independently of the back-end parallel file system. To integrate the
node-local burst buffer seamlessly with the existing storage hierarchy, we extend
BeeGFS to provide a caching file system that bridges both internal and external storage
transparently. Data access to the burst buffer and the back-end parallel file system is
unified using a POSIX-based namespace. Moving data between the internal and
external storage is automated and long-term data persistency is committed transpar-
ently. Accordingly, users are released from the complexity of manipulating the same
piece of data across different storage tiers. In addition, the extension investigates how
to utilize the burst buffer by leveraging the strengths of a parallel file system to
accelerate data-intensive parallel computing. Taking advantage of BeeGFS, scalable
I/O bandwidth is provided by aggregating siloed fast storage, and storage performance
is improved by exploiting data locality across storage tiers. Data striping across storage
servers not only supports high performance parallel 10, but also scales data transfer
between storage tiers. In addition, a block-based algorithm increases the efficiency of
data movement. The performance evaluation demonstrates that BeeGFS caching sys-
tem improves data access significantly over directly accessing GPFS for both temporal
and spatial locality patterns. However, the present prototype imposes additional
overhead on meta-data operations due to maintaining data consistency between storage
tiers synchronously. Our future work will explore how to reduce the extra overhead and
apply the extension mechanism to other general parallel file systems.
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