
Multiple HPC Environments-Aware
Container Image Configuration Workflow
for Large-Scale All-to-All Protein–Protein

Docking Calculations

Kento Aoyama1,2, Hiroki Watanabe1,2, Masahito Ohue1 ,
and Yutaka Akiyama1(B)

1 Department of Computer Science, School of Computing,
Tokyo Institute of Technology, Tokyo, Japan
{aoyama,h watanabe}@bi.c.titech.ac.jp,

{ohue,akiyama}@c.titech.ac.jp
2 AIST-Tokyo Tech Real World Big-Data Computation Open Innovation Laboratory,

National Institute of Advanced Industrial Science and Technology,
Tsukuba, Ibaraki, Japan

Abstract. Containers offer considerable portability advantages across
different computing environments. These advantages can be realized by
isolating processes from the host system whilst ensuring minimum perfor-
mance overhead. Thus, use of containers is becoming popular in computa-
tional science. However, there exist drawbacks associated with container
image configuration when operating with different specifications under
varying HPC environments. Users need to possess sound knowledge of
systems, container runtimes, container image formats, as well as library
compatibilities in different HPC environments. The proposed study intro-
duces an HPC container workflow that provides customized container
image configurations based on the HPC container maker (HPCCM)
framework pertaining to different HPC systems. This can be realized by
considering differences between the container runtime, container image,
and library compatibility between the host and inside of containers. The
authors employed the proposed workflow in a high performance protein–
protein docking application—MEGADOCK—that performs massively
parallel all-to-all docking calculations using GPU, OpenMP, and MPI
hybrid parallelization. The same was subsequently deployed in target
HPC environments comprising different GPU devices and system inter-
connects. Results of the evaluation experiment performed in this study
confirm that the parallel performance of the container application con-
figured using the proposed workflow exceeded a strong-scaling value of
0.95 for half the computing nodes in the ABCI system (512 nodes with
2,048 NVIDIA V100 GPUs) and one-third those in the TSUBAME 3.0
system (180 nodes with 720 NVIDIA P100 GPUs).

Keywords: Containers · Container image configuration · Singularity ·
Bioinformatics · Message passing interface

c© The Author(s) 2020
D. K. Panda (Ed.): SCFA 2020, LNCS 12082, pp. 23–39, 2020.
https://doi.org/10.1007/978-3-030-48842-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48842-0_2&domain=pdf
http://orcid.org/0000-0002-0120-1643
http://orcid.org/0000-0003-2863-8703
https://doi.org/10.1007/978-3-030-48842-0_2

24 K. Aoyama et al.

1 Introduction

Containers that contribute to application portability through process isola-
tion are now being widely used in computational applications. Today, many
researchers run containers in various computing environments such as laptops,
clouds, and supercomputers. Container technology is becoming essential for
retaining scientific reproducibility and availability beyond system differences [1–
3]. However, there remain certain limitations that need to be overcome to facili-
tate accurate configuration of container images for use in high-performance com-
puting (HPC) applications running in multiple HPC environments. This requires
users to understand systems, container runtimes, container image formats, and
their compatibility with those used in HPC environments [4]. In addition, when
an application establishes a message passing interface (MPI) communication
over containers, the MPI library compatibility between the host system and the
inside of the container must be ensured. This makes container deployment diffi-
cult. Therefore, these problems constitute a major obstacle facing the extensive
use of the container technology in HPC environments.

To introduce the container’s techniques and benefits to one of our HPC appli-
cations, MEGADOCK [5], the authors, in this study, propose use of a custom
HPC container image configuration workflow. The said workflow is based on the
HPCCM framework [6] to give users easier way to make containers when consid-
ering the specification differences between the hosts and containers in multiple
HPC environments. Furthermore, we also showed the performance results of
the containers configured using the proposed workflow in the target HPC envi-
ronments with a large-scale dataset for over a million protein–protein pairs of
docking calculations.

Key contributions of this research are listed hereunder.

– A container image configuration workflow for an all-to-all protein–protein
docking application (MEGADOCK) for HPC environments is proposed.

– The workflow provides functions to customize container image configurations
by considering specification differences between target HPC environments
using the HPCCM framework.

– It has been confirmed that the parallel performance of containers configured
using the proposed workflow exceeds a strong-scaling value of 0.95. The con-
tainer was run with more than 2,000 GPUs for docking calculations of over
a million protein–protein pairs.

2 Background

2.1 Containers for HPC Environment

Docker [7] is the most widely used container in general computing environments.
Its usage ranges from personal development to large-scale production systems in
cloud environments. This has been actively developed and great efforts have been

Multiple HPC Environments-Aware Container Image 25

made to standardize the container specification [8]. This, therefore, becomes a
de-facto standard format of the containers.

However, in Docker’s toolset design, there are several concerns about the per-
formance overhead, operational policies, and affinity for traditional HPC soft-
ware stacks, particularly those related to system privileges [9]. Owing to such
concerns in the HPC community, other container environments have been pro-
posed for use in HPC environments. These include Singularity [10], Shifter [11],
Chariecloud [12], and Sarus [13]. They are operated on HPC systems, and bench-
mark performances of HPC containers indicate that they perform nearly at par
with the bare-metal environment [14–16]. Those container environments provide
similar features, for example, they do not require privileges for users, thereby
solving the security concerns of HPC system policies unlike the general Docker
environment1. In addition, they also support the ‘pull’ function which downloads
a container image from general container registry services (e.g. Docker Hub [17])
and convert it to their own container image format.

Presently, the most emerging container environment in the HPC field is Sin-
gularity [10], which was originally developed by the Lawrence Berkeley National
Lab and subsequently moved to Sylabs Inc. It provides runtime support for host
GPU/MPI libraries to use those from the inside of the containers to meet the
requirements of HPC applications. It also provides original container building
toolsets along with its own registry service. This helps users upload container
images for improving the preservability and portability of the application [18].
These functions make it easy for users to use host GPU devices with GPU-
enabled container images that are available on Docker Hub, Singularity Hub [19],
and NVIDIA GPU Cloud (NGC) [20].

Consequently, the number of HPC systems that provide container environ-
ments is constantly increasing. This is due to the widespread use of Singularity
and other containers; however, there remain several difficulties in the deployment
of containers in HPC environments. Some of these difficulties are described in
the next section.

2.2 Problems of Container Image Configuration Workflow

Figure 1 describes an example of a typical container deployment workflow for
several environments, including HPC systems.

HPC container deployment workflows are generally expected to support both
Docker and Singularity to keep application portability in a wide range of com-
puting environments. However, supporting both container environments from
the level of container image specification (recipe) requires efforts for its mainte-
nance. To this end, Singularity provides functions to download a container image
from general registry services, and this image can be subsequently converted to
Singularity’s image format [10]. Therefore, it is possible to use various container
images including Docker’s images and run them on HPC systems using Singu-

1 The rootless-mode is available from Docker 19.03 (since July 2019).

26 K. Aoyama et al.

Fig. 1. Example of general container deployment workflow

larity. However, deployment of typical HPC applications nonetheless encounters
several problems.

A. Preparation Cost for Container Image Recipe with Host Depen-
dent Library. First, there exists a dependent library problem necessitating
the availability of local libraries for using high-speed interconnects within tar-
get HPC systems. These must be installed within containers. For example,
openib [25], ucx [26] or a similar library needs to be installed in the container if
it is running on the system with InfiniBand [27]. On the other hand, the psm2 [28]
library is required when it runs on the system with Intel Omni-Path [29].

Technically, it is possible to install almost all of the libraries in one container;
however, it is generally not recommended as a best practice for container image
configuration. Because most of the advantages of the containers originated from
its light-weightiness, the containers must be as simple as possible.

B. MPI Library Compatibility for Inter-containers Communication.
Second, if the process in a singularity container uses the MPI library to com-
municate with the process outside of the container, then the Application Binary
Interface (ABI) must be compatible between MPI libraries of the host and con-

Multiple HPC Environments-Aware Container Image 27

tainer. For instance, it is necessary to install the same (major and minor) version
of the library when OpenMPI [30] older than version 3.0 is used [2].

The problem pertaining to ABI compatibility can be overcome by using latest
releases of MPI libraries, such as MPICH [31] v3.1 (or newer) or IntelMPI [32]
v5.0 (or newer) given that they officially support compatibility between different
library versions. However, users must know what version of MPI libraries are sup-
ported in both host systems and container images. Deployment of containerized
MPI applications to HPC systems nonetheless involves large expenditures.

The above-mentioned problems are major difficulties to be considered when
configuring the container image for the HPC environments.

3 HPC Container Maker (HPCCM) Framework

To solve these difficulties and ease the configuration of container specifications,
use of the HPC Container Maker (HPCCM) framework was proposed by the
NVIDIA corporation [6]. HPCCM is an open source tool to ease generation
of container specification files for HPC environments. HPCCM supports both
the Docker and Singularity specification formats via use of a highly functional
Python recipe. This provides various useful functions to configure container
images along with their application and system dependencies.

FROM nvidia/cuda:10.0-devel-centos7

Mellanox OFED version 4.6-1.0.1.1
RUN yum install -y ¥

findutils ¥
libnl ¥
libnl3 ¥
numactl-libs ¥
wget && ¥

rm -rf /var/cache/yum/*
RUN mkdir -p /var/tmp && wget -q -nc --no-check-certifi

mkdir -p /var/tmp && tar -x -f /var/tmp/MLNX_OFED_L
find /var/tmp/MLNX_OFED_LINUX-4.6-1.0.1.1-rhel7.2-x
rm -rf /var/tmp/MLNX_OFED_LINUX-4.6-1.0.1.1-rhel7.2

OpenMPI version 3.1.3
RUN yum install -y ¥

bzip2 ¥
file ¥
hwloc ¥
make ¥
numactl-devel ¥
openssh-clients ¥
perl ¥
tar ¥
wget && ¥

rm -rf /var/cache/yum/*
RUN mkdir -p /var/tmp && wget -q -nc --no-check-certifi

mkdir -p /var/tmp && tar -x -f /var/tmp/openmpi-3.1
cd /var/tmp/openmpi-3.1.3 && ./configure --prefix
make -j$(nproc) && ¥
make -j$(nproc) install && ¥
rm -rf /var/tmp/openmpi-3.1.3.tar.bz2 /var/tmp/open

ENV LD_LIBRARY_PATH=/usr/local/openmpi/lib:$LD_LIBRARY_
PATH=/usr/local/openmpi/bin:$PATH

...

Select the base image from repository in Docker Hub
Stage0 += baseimage(image='nvidia/cuda:10.0-devel-centos7')

Select the version of libraries
ompi_version = USERARG.get('ompi', '3.1.3')
mlnx_ofed_version = USERARG.get('mlnx_ofed', '4.6-1.0.1.1')

Install the Mellanox OpenFabrics Enterprise Distribution
Stage0 += mlnx_ofed(version=mlnx_ofed_version)

Install the OpenMPI library of the selected version
Stage0 += openmpi(

version = ompi_version,
prefix = '/usr/local/openmpi',
cuda = True,
infiniband = True,
configure_opts = ['--enable-mpi-cxx']

)
...

HPCCM recipe (sample.py)

$ hpccm --recipe sample.py
--format docker
--userarg ompi=3.1.3 mlnx_ofed=4.6-1.0.1.1
> Dockerfile

Dockerfile

Fig. 2. Sample of HPCCM recipe and generated container specification (Dockerfile)

28 K. Aoyama et al.

Figure 2 shows a sample Python recipe of HPCCM and a generated container
specification in the ‘Dockerfile’ format. HPCCM contains the ‘building blocks’
feature, which transparently provides simple descriptions to install the specific
components commonly used in the HPC community. Additionally, it supports
flexible Python-based code generation functions, including recipe branch and val-
idating user arguments; thus, it provides users with an easy method to generate
the multiple container specifications from the same Python recipe file.

By adopting the HPCCM framework, the cost of container recipe preparation
can be reduced by implementing one Python recipe and setting parameters of
container specifications for HPC environments.

The authors used this HPCCM framework as a base for the proposed con-
tainer deployment workflow for target HPC environments. The following section
provides an overview of the target application and proposed workflow.

4 Container Deployment Workflow for MEGADOCK
Application Using HPC Container Maker

4.1 MEGADOCK: A High Performance All-to-All Protein–Protein
Docking Application

The authors selected MEGADOCK [5] as the proposed container configura-
tion workflow application. MEGADOCK is an all-to-all protein–protein dock-
ing application written in C++/CUDA for use in large-scale computing envi-
ronments. The internal process is based on Fast Fourier Transform (FFT)
calculations for grid-based protein–protein docking using FFT libraries (e.g.
FFTW [22], CUFFT [24]).

Fig. 3. Overview of docking calculations in MEGADOCK 5.0 (under development)
and its OpenMP/GPU/MPI hybrid parallelization

Multiple HPC Environments-Aware Container Image 29

In the latest implementation of MEGADOCK 5.0, which is under develop-
ment, each docking pair calculation is independently assigned to an OpenMP [23]
thread with CUDA streams [24]. The set of docking pairs is distributed by the
master to workers in a typical master–worker framework implemented in C++
using the MPI library (Fig. 3).

At present, the authors are working toward improving the performance of
the application as well as container portability in multiple environments while
upgrading to the next MEGADOCK version. Currently, Docker images and their
container specifications in the ‘Dockerfile’ format for GPU-enabled environments
are provided to users having access to the MEGADOCK public repository on
GitHub [33]. The authors reported scalable performance when operating those
containers in a cloud environment using Microsoft Azure [34].

However, it is required to solve several container configuration difficulties
when we assume the MEGADOCK application with Singularity containers on
different HPC systems that are presented in previous sections. Therefore, the
authors, in this study, propose use of an HPC container deployment workflow
using the HPCCM framework. The said workflow supports a wide variety of
computing environments and solves deployment problems in HPC systems for
further advancement in this project.

4.2 HPC Container Workflow for MEGADOCK with HPCCM

Figure 4 provides an overview of the proposed container configuration work-
flow for deploying MEGADOCK in different HPC environments while using the
HPCCM framework. Introducing the HPCCM framework in combination with
the MEGADOCK application workflow offers the following advantages.

1. Decreasing the cost of preparing container images
The workflow based on the HPCCM framework supports the configuration
of container specifications in different environments by setting appropriate
parameter values. Additionally, it supports both Docker and Singularity spec-
ification formats. This results in the reduction of management costs for con-
tainer specification files, thereby facilitating continuous integration (CI) of
container workflow.

2. Avoiding library compatibility problems
The workflow provides a clear opportunity to specify the versions of depen-
dent libraries by setting parameter values when container specifications are
generated. Explicit and easy specifications of library versions help in over-
coming problems associated with library compatibility. This is particularly
true in cases where the exact version of the MPI libraries pertaining to the
host HPC system and the inside of the container must match to avoid ABI
compatibility issues.

30 K. Aoyama et al.

Fig. 4. Proposed HPC container deployment workflow for different HPC environments

4.3 Example of User Workflow

First, a user generates a custom container specification for both the target system
and container environment by setting parameter values. Subsequently, the user
builds a custom container image by using the container specification file in local
environment (e.g. laptop, general cluster, etc.).2

Next, the user deploys custom containers to the target system for running
the MEGADOCK application. Here, a user selects a compatible host MPI mod-
ule and loads it while launching containers. The said containers can then com-
municate with processes over Singularity containers. Finally, custom containers
pertaining to the MEGADOCK application distribute docking tasks via MPI
communication in the target HPC system.

5 Evaluation Experiments

In this section, we evaluate the parallel performance of the custom contain-
ers in the target HPC environments. Container images were configured based

2 This process can be skipped if there already exists a custom container image prepared
for the target environment.

Multiple HPC Environments-Aware Container Image 31

on the workflow proposed in the previous section. Additionally, we conducted
a large-scale experiment involving over a million protein–protein pair docking
calculations requiring a large number of computing nodes of the target HPC
environment.

Target HPC environments used in both experiments correspond to
ABCI (Table 1), located at the National Institute of Advanced Industrial Sci-
ence and Technology, Japan, and TSUBAME 3.0 (Table 2), located at the Tokyo
Institute of Technology, Japan. Both these environments provide Singularity
environments and each computing node equips NVIDIA GPU devices; however,
the systems have different hardware and software specifications.

Table 1. ABCI system hardware specifications

Item Description #

CPU Intel Xeon Gold 6148, 2.4 [GHz] ×2

GPU NVIDIA Tesla V100 for NVLink ×4

Memory 384 [GB]

Local storage NVMe SSD, 1.6 [TB] ×1

Interconnect InfiniBand EDR, 100 [Gbps] ×2

Total number of computing nodes ×1,088

Table 2. TSUBAME 3.0 system hardware specifications

Item Description #

CPU Intel Xeon E5–2680 v4, 2.4 [GHz] ×2

GPU NVIDIA Tesla P100 for NVLink ×4

Memory 256 [GB]

Local storage NVMe SSD, 2.0 [TB] ×1

Interconnect Intel Omni-Path HFI, 100 [Gbps] ×4

Total number of computing nodes ×540

5.1 Experiment 1. Container Deployment for Target HPC
Environment

At first, we prepared custom container images for target environments and tested
their execution performance using a small number of computing nodes with a
benchmark dataset. The experiment aimed at validating the proposed workflow
and ensuring that the custom container functions properly in the target envi-
ronment.

32 K. Aoyama et al.

System and Container Specifications. Specifications of the system software
and container images used during experimentation are listed in Table 3.

Custom container images were prepared to those that are properly configured
with the GPU/MPI libraries so they are compatible with the system modules [21]
provided by the host (Table 3). The NVIDIA container image obtained from
the Docker Hub (nvidia/cuda:10.0-devel-centos7) was selected as a base
image because CUDA-10.0 [24] supports both GPU architectures in the target
environments.3

Additionally, we installed each version of the OpenMPI [30] library by using
different parameters to match the version of the host system module. The depen-
dent libraries for the InfiniBand EDR [27] and the Intel Omni-Path HFI [29] were
installed when necessary.

Table 3. Specifications of system software and container images used in Experiment 1

ABCI TSUBAME 3.0

System software specification

OS CentOS 7.5.1804 SUSE Linux Enterprise Server 12 SP2

Linux kernel 3.10.0 4.4.121

Singularity [10] singularity/2.6.1 singularity/3.2.1

CUDA [24] cuda/10.0/10.0.130 cuda/8.0.61

OpenMPI [30] openmpi/2.1.6 openmpi/2.1.2-opa10.9

Container image specification

Base image nvidia/cuda:10.0-devel-centos7 nvidia/cuda:10.0-devel-centos7

FFTW [22] fftw-3.3.8 fftw-3.3.8

CUDA [24] cuda-10.0.130 cuda-10.0.130

OpenMPI [30] openmpi-2.1.6 openmpi-2.1.2

Dataset. The dataset used during the experiment corresponds to the ZLab
Docking Benchmark 5.0 [35]. We selected 230 files of the PDB (protein 3-D
coordinates) format data labeled unbound. This was calculated for the protein–
protein docking of the all-to-all (230 × 230 = 52,900) pairs.

Computational Details. The input files are stored in a virtually distributed
shared file system, called BeeGFS On Demand (BeeOND) [36], which is tem-
porarily constructed on the set of non-volatile memory express (NVMe) storages
in computing nodes. The output files are generated for each local NVMe storage

3 The version of loaded CUDA modules were different in each environment; however,
we confirmed that they did not exhibit any significant performance differences.

Multiple HPC Environments-Aware Container Image 33

upon completion of each protein–protein pair docking calculation. When all cal-
culations are completed, the output files are compressed as a .tar archive and
moved to the global storage.

The measured execution time is obtained using the task distribution frame-
work in MEGADOCK. This indicates the duration time from the start of task
processing to the end of all tasks. The data point in the plot implies that
each execution time is chosen from a median of three executions for the same
calculations.

Fig. 5. Performance results of MEGADOCK docking calculations performed on ZLab
Docking Benchmark 5.0 (all-to-all, 52,900 pairs) dataset in ABCI and TSUBAME 3.0
environments.

Results. Figure 5 depicts the performance results of the docking calculations
using the benchmark dataset in both target environments. In all the docking
calculations, no fatal errors were detected. The demonstration of the proposed
custom container image configuration workflow was considered successful.

On average, the execution of the docking calculations in the ABCI environ-
ment was faster in comparison with that in TSUBAME 3.0 by 1.65 times at
each point. The parallel performance in strong-scaling was found to be 0.964
on ABCI and 0.948 on TSUBAME 3.0 in the comparison of the execution time
when running on 2 nodes versus 64 nodes. There are no significant differences
between the environments in terms of scalability because the dataset used for
this experiment was not sufficiently large.

The results obtained in the ABCI environment, which had four NVIDIA Tesla
V100 devices, demonstrated better performance in comparison with TSUBAME
3.0 that comprised four NVIDIA Tesla P100 devices. This indicates that the per-
formance of FFT-based docking calculations in MEGADOCK are computation-
ally expensive, which heavily depends on the performance of the CUFFT library

34 K. Aoyama et al.

with the NVIDIA GPU, and therefore, the performance is directly affected by
the host GPU device architecture.

5.2 Experiment 2. Performance Evaluation with Large-Scale
Computing Nodes and over a Million Protein–Protein Pairs

Next, we performed a large-scale experiment using a larger number of computing
nodes and over a million protein–protein pairs of docking calculations. To under-
stand the principles of biological systems and elucidate the causes of diseases,
over a million all-to-all protein pairs of docking calculations were considered in
this experiment.

We reserved and used half of the computing nodes of the ABCI system (512
nodes with 2,048 GPUs) and one-third of the TSUBAME 3.0 system (180 nodes
with 720 GPUs) for this experiment. The computational resources for calcu-
lations were supported by the “Grand Challenge” programs, which are open
recruitment programs for researchers, coordinated by AIST and Tokyo Tech,
respectively.

System and Container Specifications. Environmental specifications of the
system hardware were identical to that described for the first experiment. Addi-
tionally, system software and container images were nearly identical to those
corresponding to the first experiment. Several versions of libraries were modi-
fied, but no significant performance impact was observed.

Dataset. We used the dataset from the ZLab Benchmark 5.0 [35], which is
the same as in the first experiment. To validate the large-scale application per-
formance, we simply amplified the set of docking pairs to 25 times larger than
the whole of the original dataset and created a virtual large-scale benchmark
dataset. This dataset includes duplicated protein pairs; however, the docking
calculations in the MEGADOCK application are completely independent of each
other. Therefore, we computed 1,322,500 pairs of protein–protein docking calcu-
lations in total.

Computational Details. The application deployments, storage usage, and
measurement methods are the same as in the first experiment.

As for the number of computing nodes used in each environment, we selected
16, 32, 64, 128, 256, and 512 nodes in the ABCI environment, and 90, 120, 150,
and 180 nodes in TSUBAME 3.0. These node counts were set considering the
limitation of reserved computational resources as well as performance predictions
obtained from the previous experiment.

Results. Figure 6 depicts performance results obtained by performing large-
scale docking calculations in the ABCI and TSUBAME 3.0 systems. The scale
of computational resources and dataset size used in this experiment were larger

Multiple HPC Environments-Aware Container Image 35

Fig. 6. Performance results of the MEGADOCK docking calculations with 1,322,500
pairs of proteins on ABCI and TSUBAME 3.0.

compared to the previous experiment; however, the parallel performance in both
environments was observed to be similar.

The observed execution time equaled 1,657 s when using half the ABCI sys-
tem (512 nodes with 2,048 NVIDIA V100 GPUs) and 7,682 s when using one-
third of the TSUBAME 3.0 system (180 nodes with 720 NVIDIA P100 GPUs).
A direct comparison of the performance in each environment is not warranted
owing to differences between measured data points and computational resources.
However, ABCI clearly demonstrated better overall performance.

The parallel performance in strong-scaling was found to be 0.964 on ABCI
and 0.985 on TSUBAME 3.0 in the comparison of the execution time when run-
ning on each minimum-measured and maximum-measured number of computing
nodes. This indicated that our container application workflow is able to achieve
good scalability on the target HPC environments.

The older version of MEGADOCK required approximately half a day to run
a million protein–protein pairs of docking calculations using the entire TSUB-
AME 2.5 system [5]. However, the latest MEGADOCK version completes over
a million protein–protein docking-pair calculations within 30 min in the latest
HPC environment.

6 Discussion

The proposed workflow considers ABCI and TSUBAME 3.0 as target HPC
environments when deploying Singularity containers because they adopt similar
architectural concepts but different specifications pertaining to both hardware
and software. Thus, the environments are sufficient as targets for a proof-of-
concept of our workflow.

Further, we can easily switch specific dependent libraries in each environ-
ment using the proposed workflow to fill gaps caused by differences in specifica-

36 K. Aoyama et al.

tions. However, the proposed workflow does not cover other gaps, such as those
pertaining to binary optimization of CPU/GPU architectural differences, MPI
communication optimization for network architecture, and other performance
optimization approaches. These features must be included in future implemen-
tations to enhance the utility of the proposed workflow.

7 Conclusion

In this study, the authors incorporated the HPCCM framework into a large-scale
all-to-all protein–protein docking application called MEGADOCK to integrate
the container deployment workflow over multiple HPC systems with different
specifications. The proposed workflow provides users an easy means to config-
ure containers for different systems and offers the flexibility to operate on both
Docker and Singularity container formats. This helps users avoid container diffi-
culties within HPC systems, such as host-dependent libraries and ABI compat-
ibility of MPI libraries.

Further, we evaluated the parallel performance of container execution in
both ABCI and TSUBAME 3.0 systems using a small benchmark dataset and
a virtual large-scale datasets containing over a million protein–protein pairs.
Result demonstrate that the parallel performance achieved exceeds a strong-
scaling value of 0.95 when using half the ABCI system (512 nodes with 2,048
GPUs) and one-third of the TSUBAME 3.0 system (180 nodes with 720 GPUs).
This demonstrates that the latest HPC environment can complete over a million
protein–protein docking calculations within half an hour.

The authors believe that performance results obtained in this study can
contribute to accelerate exhaustive large-scale ‘interactome’ analysis for under-
standing principles of biological systems. Additionally, the authors believe the
proposed workflow would be beneficial for contributing to the portability of sci-
entific achievements.

Code Availability. The entire source code of proposed container workflow and
manual instructions are available in the following GitHub repository.

https://github.com/akiyamalab/megadock hpccm

Acknowledgments. Computational resources of the AI Bridging Cloud Infrastruc-
ture (ABCI) were awarded by the ABCI Grand Challenge Program, National Institute
of Advanced Industrial Science and Technology (AIST), and resource of the TSUB-
AME 3.0 was awarded by the TSUBAME Grand Challenge Program, Tokyo Institute
of Technology.

This work was partially supported by KAKENHI (Grant No. 17H01814 and
18K18149) from the Japan Society for the Promotion of Science (JSPS), the Program
for Building Regional Innovation Ecosystems “Program to Industrialize an Innova-
tive Middle Molecule Drug Discovery Flow through Fusion of Computational Drug
Design and Chemical Synthesis Technology” from the Japanese Ministry of Educa-
tion, Culture, Sports, Science and Technology (MEXT), the Research Complex Pro-
gram “Wellbeing Research Campus: Creating new values through technological and

https://github.com/akiyamalab/megadock_hpccm

Multiple HPC Environments-Aware Container Image 37

social innovation” from Japan Science and Technology Agency (JST), and conducted
as research activities of AIST-Tokyo Tech Real World Big-Data Computation Open
Innovation Laboratory (RWBC-OIL).

References

1. Zhang, J., Lu, X., Panda, D.K.: Is singularity-based container technology ready for
running MPI applications on HPC clouds? In: Proceedings of the 10th International
Conference on Utility and Cloud Computing (UCC 2017), Austin, TX, USA, pp.
151–160. ACM (2017). https://doi.org/10.1145/3147213.3147231

2. Veiga, V.S., et al.: Evaluation and benchmarking of Singularity MPI containers on
EU research e-infrastructure. In: Proceedings of the 1st International Workshop on
Containers and New Orchestration Paradigms for Isolated Environments in HPC
(CANOPIE HPC), Denver, CO, USA, pp. 1–10. IEEE TCHPC (2019). https://
doi.org/10.1109/CANOPIE-HPC49598.2019.00006

3. Paolo, D.T., Palumbo, E., Chatzou, M., Prieto, P., Heuer, M.L., Notredame, C.:
The impact of Docker containers on the performance of genomic pipelines. PeerJ
3(3), e1273 (2015). https://doi.org/10.7717/peerj.1273

4. Canon, R.S., Younge, A.J.: A case for portability and reproducibility of HPC con-
tainers. In: Proceedings of the 1st International Workshop on Containers and New
Orchestration Paradigms for Isolated Environments in HPC (CANOPIE HPC),
Denver, CO, USA, pp. 49–54. IEEE TCHPC (2019). https://doi.org/10.1109/
CANOPIE-HPC49598.2019.00012

5. Ohue, M., Shimoda, T., Suzuki, S., Matsuzaki, Y., Ishida, T., Akiyama, Y.:
MEGADOCK 4.0: an ultra-high-performance protein-protein docking software for
heterogeneous supercomputers. Bioinformatics 30(22), 3281–3283 (2014). https://
doi.org/10.1093/bioinformatics/btu532

6. McMillan, S.: Making containers easier with HPC container maker. In: Proceedings
of the SIGHPC Systems Professionals Workshop (HPCSYSPROS 2018), Dallas,
TX, USA (2018). https://doi.org/10.5281/zenodo.3552972

7. Docker. https://www.docker.com/. Accessed 9 Dec 2019
8. Open Container Initiative. https://www.opencontainers.org/. Accessed 9 Dec 2019
9. Jacobsen, D.M., Canon, R.S.: Contain this, unleashing Docker for HPC. In: Pro-

ceedings of the Cray User Group (2015)
10. Kurtzer, G.M., Sochat, V., Bauer, M.W.: Singularity: scientific containers for

mobility of compute. PLoS ONE 12(5), 1–20 (2017). https://doi.org/10.1371/
journal.pone.0177459

11. Gerhardt, L., et al.: Shifter: containers for HPC. J. Phys. Conf. Ser. 898(082021)
(2017). https://doi.org/10.1088/1742-6596/898/8/082021

12. Priedhorsky, R., Randles, T.: Charliecloud: unprivileged containers for user-defined
software stacks in HPC. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC 2017), Denver,
CO, USA, no. 36, pp. 1–10. ACM (2017). https://doi.org/10.1145/3126908.3126925

13. Benedicic, L., Cruz, F.A., Madonna, A., Mariotti, K.: Sarus: highly scalable Docker
containers for HPC systems. In: Weiland, M., Juckeland, G., Alam, S., Jagode, H.
(eds.) ISC High Performance 2019. LNCS, vol. 11887, pp. 46–60. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-34356-9 5

https://doi.org/10.1145/3147213.3147231
https://doi.org/10.1109/CANOPIE-HPC49598.2019.00006
https://doi.org/10.1109/CANOPIE-HPC49598.2019.00006
https://doi.org/10.7717/peerj.1273
https://doi.org/10.1109/CANOPIE-HPC49598.2019.00012
https://doi.org/10.1109/CANOPIE-HPC49598.2019.00012
https://doi.org/10.1093/bioinformatics/btu532
https://doi.org/10.1093/bioinformatics/btu532
https://doi.org/10.5281/zenodo.3552972
https://www.docker.com/
https://www.opencontainers.org/
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1088/1742-6596/898/8/082021
https://doi.org/10.1145/3126908.3126925
https://doi.org/10.1007/978-3-030-34356-9_5

38 K. Aoyama et al.

14. Torrez, A., Randles, T., Priedhorsky, R.: HPC container runtimes have minimal
or no performance impact. In: Proceedings of the 1st International Workshop on
Containers and New Orchestration Paradigms for Isolated Environments in HPC
(CANOPIE HPC), Denver, CO, USA, pp. 37–42. IEEE TCHPC (2019). https://
doi.org/10.1109/CANOPIE-HPC49598.2019.00010

15. Felter, W., Ferreira, A., Rajamony, R., Rubio, J.: An updated performance
comparison of virtual machines and Linux containers. In: Proceedings of 2015
IEEE International Symposium on Performance Analysis of Systems and Soft-
ware (ISPASS 2015), Philadelphia, PA, USA, pp. 171–172 (2015). https://doi.org/
10.1109/ISPASS.2015.7095802

16. Xavier, M.G., Neves, M.V., Rossi, F.D., Ferreto, T.C., Lange, T., De Rose, C.A.F.:
Performance evaluation of container-based virtualization for high performance
computing environments. In: 2013 21st Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing, Belfast, pp. 233–240. IEEE
(2013). https://doi.org/10.1109/PDP.2013.41

17. Docker Hub. https://hub.docker.com/. Accessed 9 Dec 2019
18. Sochat, V.: Singularity registry: open source registry for Singularity images. J.

Open Source Softw. 2(18), 426 (2017). https://doi.org/10.21105/joss.00426
19. Sochat, V., Prybol, C.J., Kurtzer, G.M.: Enhancing reproducibility in scientific

computing: metrics and registry for singularity containers. PLoS ONE 12(11), 1–
24 (2017). https://doi.org/10.1371/journal.pone.0188511

20. NGC - GPU-Optimized Software Hub Simplifying DL, ML and HPC workflows.
https://www.nvidia.com/en-us/gpu-cloud/. Accessed 9 Dec 2019

21. Furlani, J.L., Osel, P.W.: Abstract yourself with modules. In: Proceedings of
the Tenth Large Installation Systems Administration Conference (LISA 1996),
Chicago, IL, USA, pp. 193–204 (1996)

22. Matteo, F., Steven, G.J.: The design and implementation of FFTW3. Proc. IEEE
93(2), 216–231 (2005). https://doi.org/10.1109/JPROC.2004.840301

23. Leonardo, D., Ramesh, M.: OpenMP: an industry standard API for shared-memory
programming. Comput. Sci. Eng. 5(1), 46–55 (1998)

24. Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming
with CUDA. Queue GPU Comput. 6(2), 40–53 (2008). https://doi.org/10.1145/
1401132.1401152

25. OpenFabrics Alliance. https://www.openfabrics.org/. Accessed 11 Dec 2019
26. Unified Communication X. https://www.openucx.org/. Accessed 11 Dec 2019
27. InfiniBand Architecture Specification, Release 1.3.1. https://cw.infinibandta.org/

document/dl/8125. Accessed 11 Dec 2019
28. intel/opa-psm2. https://github.com/intel/opa-psm2. Accessed 11 Dec 2019
29. Birrittella, M.S., et al.: Intel Omni-Path architecture: enabling scalable, high per-

formance fabrics. In: 2015 IEEE 23rd Annual Symposium on High-Performance
Interconnects, Santa Clara, CA, USA, pp. 1–9. IEEE (2015). https://doi.org/10.
1109/HOTI.2015.22

30. Gabriel, E., et al.: Open MPI: goals, concept, and design of a next genera-
tion MPI implementation. In: Kranzlmüller, D., Kacsuk, P., Dongarra, J. (eds.)
EuroPVM/MPI 2004. LNCS, vol. 3241, pp. 97–104. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30218-6 19

31. MPICH. https://www.mpich.org/. Accessed 11 Dec 2019
32. Intel MPI Library. https://software.intel.com/mpi-library. Accessed 11 Dec 2019
33. akiyamalab/MEGADOCK. https://github.com/akiyamalab/MEGADOCK. Acc-

essed 11 Dec 2019

https://doi.org/10.1109/CANOPIE-HPC49598.2019.00010
https://doi.org/10.1109/CANOPIE-HPC49598.2019.00010
https://doi.org/10.1109/ISPASS.2015.7095802
https://doi.org/10.1109/ISPASS.2015.7095802
https://doi.org/10.1109/PDP.2013.41
https://hub.docker.com/
https://doi.org/10.21105/joss.00426
https://doi.org/10.1371/journal.pone.0188511
https://www.nvidia.com/en-us/gpu-cloud/
https://doi.org/10.1109/JPROC.2004.840301
https://doi.org/10.1145/1401132.1401152
https://doi.org/10.1145/1401132.1401152
https://www.openfabrics.org/
https://www.openucx.org/
https://cw.infinibandta.org/document/dl/8125
https://cw.infinibandta.org/document/dl/8125
https://github.com/intel/opa-psm2
https://doi.org/10.1109/HOTI.2015.22
https://doi.org/10.1109/HOTI.2015.22
https://doi.org/10.1007/978-3-540-30218-6_19
https://www.mpich.org/
https://software.intel.com/mpi-library
https://github.com/akiyamalab/MEGADOCK

Multiple HPC Environments-Aware Container Image 39

34. Aoyama, K., Yamamoto, Y., Ohue, M., Akiyama, Y.: Performance evaluation of
MEGADOCK protein-protein interaction prediction system implemented with dis-
tributed containers on a cloud computing environment. In: Proceedings of the 25th
International Conference on Parallel and Distributed Processing Techniques and
Application (PDPTA 2019), Las Vegas, NV, pp. 175–181 (2019)

35. Vreven, T., et al.: Updates to the integrated protein-protein interaction bench-
marks: docking benchmark version 5 and affinity benchmark version 2. J. Mol.
Biol. 427(19), 3031–3041 (2015). https://doi.org/10.1016/j.jmb.2015.07.016

36. BeeGFS. https://www.beegfs.io/. Accessed 9 Dec 2019

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1016/j.jmb.2015.07.016
https://www.beegfs.io/
http://creativecommons.org/licenses/by/4.0/

	Multiple HPC Environments-Aware Container Image Configuration Workflow for Large-Scale All-to-All Protein–Protein Docking Calculations
	1 Introduction
	2 Background
	2.1 Containers for HPC Environment
	2.2 Problems of Container Image Configuration Workflow

	3 HPC Container Maker (HPCCM) Framework
	4 Container Deployment Workflow for MEGADOCK Application Using HPC Container Maker
	4.1 MEGADOCK: A High Performance All-to-All Protein–Protein Docking Application
	4.2 HPC Container Workflow for MEGADOCK with HPCCM
	4.3 Example of User Workflow

	5 Evaluation Experiments
	5.1 Experiment 1. Container Deployment for Target HPC Environment
	5.2 Experiment 2. Performance Evaluation with Large-Scale Computing Nodes and over a Million Protein–Protein Pairs

	6 Discussion
	7 Conclusion
	References

