1909.13330v1 [cs.IR] 29 Sep 2019

arxXiv

Neural Hybrid Recommender: Recommendation
needs collaboration

Ezgi Yildinnm!2, Payam Azad?, and Sule Giindiiz Ogiidiicii!

! Istanbul Technical University, 34467 Sariyer/Istanbul, Turkey
{yildirimez,sgunduz}@itu.edu.tr
2 Catharijnesingel 30e, 3511 GB Utrecht, Netherlands
{ezgi.yildirim,payam.azad}@5ca.com

Abstract. In recent years, deep learning has gained an indisputable
success in computer vision, speech recognition, and natural language
processing. After its rising success on these challenging areas, it has
been studied on recommender systems as well, but mostly to include
content features into traditional methods. In this paper, we introduce a
generalized neural network-based recommender framework that is easily
extendable by additional networks. This framework named NHR, short
for Neural Hybrid Recommender allows us to include more elaborate in-
formation from the same and different data sources. We have worked
on item prediction problems, but the framework can be used for rating
prediction problems as well with a single change on the loss function.
To evaluate the effect of such a framework, we have tested our approach
on benchmark and not yet experimented datasets. The results in these
real-world datasets show the superior performance of our approach in
comparison with the state-of-the-art methods.

Keywords: neural networks - learning latent representation - recom-
mender systems - personalization - hybrid recommenders - incomplete
data.

1 Introduction

Online services such as social media and e-commerce have played the key role
to derive massive data sources for information systems. Since this information
explosion makes users’ lives more complicated and even difficult to use such
systems, recommender systems aim to offer personalized recommendations to
users in order to minimize confusion and increase the chance to reach meaning-
ful information. Based on the available data and the nature of the application
domain, there are two main approaches in recommender systems to produce
favorable recommendations: collaborative filtering that learn only from past in-
teractions of users and content-based methods that learn the taste of users by
using content features. However, both approaches have flaws and favors. While
collaborative filtering does not require domain expertise to mine information
from data sources and works well for complex objects such as movies, books,

2 E. Yildirim et al.

music, etc. where variations in taste are much sparse than variations in pref-
erences; content-based filtering works better if preference data is sparse and
cold-start is an issue. In practice, companies are following a middle way and
using hybrid systems of these two approaches. Nevertheless, there are seldom
cases of hybrid recommender systems investigated in the literature. Therefore,
we present a general framework to use both aspects in a compact deep neural
network architecture.

Among the various applied methods, matrix factorization is the most known
collaborative filtering approach. Matrix factorization projects user and item into
a shared latent space by decomposing the rating matrix into low-dimensional la-
tent factors. To find out an interaction between user and item, the inner product
of latent factors are used in recommender systems. In [I4], a deep collaborative
filtering (DCF) method is proposed to combine probabilistic matrix factorization
(PMF) with marginalized denoising auto-encoders (mDA). The latent factors are
extracted from the hidden layer of deep networks and they are used to feed matrix
factorization components. A collaborative topic modeling approach is proposed
by Wang and Blei [18] for recommending scientific articles to online communi-
ties. Here, Latent Dirichlet Allocation (LDA) is applied to the user ratings as
well as the article contents. Once users and articles are represented as latent
factors, matrix factorization is applied to their latent representations to predict
user preferences. [12] proposed a context-aware recommendation model, convo-
lutional matrix factorization (ConvMF) that integrates a convolutional neural
network (CNN) into PMF. Item representation is obtained from the CNN net-
work that they have trained directly in matrix factorization.

In most of the studies in recommender systems, Deep Neural Networks (DNNs)
are used to either get better latent factor representation or integrate auxiliary
information into matrix factorization to alleviate the cold-start problem. In con-
trast to the wide range of researches on the combination of matrix factorization
and DNNs, there is relatively little work on employing DNNs to learn the inter-
action function directly from data. A very first attempt to build a traditional
collaborative filtering setup by neural networks [4] simulated matrix factoriza-
tion by replacing its inner product by a feed-forward neural network, however,
it could not be succeeded in benchmark datasets. [9] took this approach one
step further because the inner product cannot capture non-linear interactions
between users and items. Thus, they proposed a framework named NCF to re-
place the inner product with non-linear interaction function by a feed-forward
neural network and they reported promising results. However, interaction data
by itself cannot be sufficient for a challenging recommender system in most cases,
auxiliary data is a key factor especially for the systems introducing new users or
items at any time. This paper explores the use of DNNs to extract meaningful
information from both auxiliary and historical interaction data, then combines
them to make better predictions than any single aspects and data sources. Our
proposed framework can be extended by not yet experimented auxiliary data
and/or by redefining the interaction function using the current data in a flexible
manner.

Neural Hybrid Recommender: Recommendation needs collaboration 3

The main contributions of this work are summarized below.

— We devise a general framework for a hybrid recommender system based on
DNNs that model latent features of user and item from both auxiliary and
interaction data.

We demonstrate the effectiveness of our NHR approach on the collaboration
of self-sufficient recommender models.

— We verify that auxiliary information can significantly improve recommenda-
tion quality, especially in large-scale domains. Utilizing auxiliary information
can improve not only the success in detecting true interactions but also the
ability to correctly rank predictions.

We show that our NHR approach is essential in the domains that suffer from
the severity of cold-starts and rating sparsity due to its stronger contributions
to such disadvantaged domains.

Recommendation problems generally suffer from the lack of actual feedbacks
given by users a.k.a. explicit feedback. Explicit feedback (via ratings and reviews)
is a clear expression of user preferences on items, and it is expressed by direct
interactions between system and user. On the other hand, implicit feedback is
automatically tracked by the system itself, through inferences about the behavior
of the user, such as watching videos, purchasing products and clicking items.
Despite the plethora of research over explicit feedbacks; implicit feedbacks are
the more realistic case of recommender systems in uttermost situations such as
online advertising and online shopping. The reason for the less popularity of
using implicit feedbacks is its challenging nature due to the absence of negative
interactions. Since we have tested our framework on item prediction problems,
we employ negative sampling as discussed in Section [3:4] to come through this
problem.

2 Neural Hybrid Recommender

In order to build a general framework for both collaborative filtering and aux-
iliary information, we adopt feed-forward neural networks. Neural networks can
model user-item interaction since it has been proven that they are able to learn
non-linear relations which is essential for the recommendation of complex ob-
jects such as jobs and movies. As suggested in [3], we also utilize wide neural
networks for memorization of feature interactions through a wide set of cross-
product feature transformations and deep neural networks for better generaliza-
tion of unseen feature combinations through low-dimensional dense embeddings.
Following NCF, we first build a Wide&Deep collaborative filtering approach by
combining different neural networks using the same interaction data, then we add
auxiliary information by supplementary networks into the system to address the
cold-start problem. The names of pure collaborative filtering methods remained
as in [9]: GMF (Generalized Matrix Factorization) performing non-linear matrix
factorization and MLP (Multi-Layer Perceptron) learning the high-order inter-
action function. The models trained on auxiliary information are simply named

4 E. Yildirim et al.

Output Layer prediction

Product Vector l

Output Layer ? prediction Hidden Layers |

element-wise product

concatenation

Embedding L e €
mieading Layer ' Embedding Layer | e, €

U is user item
f i T 1T
Uig Lig Uinfo Linfo
ids auxiliary information
Data Selection

Fig.1. (left) Representation of neural network realization of matrix factorization;
(right) Representation of deep neural recommender networks

NHR-type where type refers to the data type that is used for training. We first
train multiple self-sufficient neural recommenders independent from each other,
then build a framework as an ensemble of all . Even though there is no limitation
on the construction of the models, we can roughly divide what type of networks
we use in our experiments into two groups:

— neural network realization of matrix factorization (Fig. [[}eft)
— deep neural recommender networks (Fig. [[}right)

Both of the mentioned networks have embedding layers to transform users
and items into vector representations. The obtained embedding vectors can be
interpreted as the latent vectors of users and items. If we term p, and ¢; as the
user latent vector and item latent vector respectively, one can easily define a
mapping function as

Dmut (pu; Qi) =Du ©g; (1)

where ¢ denotes the element-wise product of latent vectors. Then, the next step
is to project this product vector to the output layer of the model:

¢out (-T) = Qout (WTl' + b) (2)

where © = ¢mul (Pu, ¢i), the output of the multiplication layer in Fig. left, and
W, b and ¢ is the weight vector, bias, and activation function of the layer,
respectively. Under the assumptions that the weight vector W is a uniform vector
of 1, there is zero bias b in the equation and the activation is an identity function

Neural Hybrid Recommender: Recommendation needs collaboration 5

Output Ladiction

4 optimized weights N
| weight calculation |
original weights l l I
[Concatenation]
e W %
S S
model #1 model #2

Interaction and auxiliary data

Fig. 2. Network Architecture for Neural Hybrid Recommender Framework

which allows firing the perceptron with the exact value of the input, this project
layer acts as a traditional matrix factorization. In order to implement neural
network realization of matrix factorization, the weight vector W and the bias
b are learned from interactions by the logarithmic loss function in Eq. [5} and
in this way, a non-linear MF approach a.k.a. GMF is obtained. The sigmoid
function o(x) = 1/ (1 4+ e~%) is used as a: because it restricts each neuron to
be in (0, 1) range which meets the expectation for item prediction.

The outputs of the embedding layers on GMF and MLP models are already
1-dimensional vectors because they are fed on inputs of length 1 (ids only).
However, the embedding layers of deep neural recommender networks trained on
auxiliary data (NHR) produce sequences of embeddings w.r.t. sequence length.
Average-pooling is a well-known application to gather information exists in the
sequence members into a particular form, for example getting sentence embed-
dings from word embeddings [20/I], average-pooling is applied to the outputs of
embedding layers in these models. Since users and items are represented with
several features and every feature has its own embedding space, a concatenation
is applied to have one unique latent vector representation for each user-item pair
after the average-pooling of embeddings.

Once the latent vectors are obtained for user-item pairs, the following func-
tions are used to generate MLP and NHR models.

¢1 (¢concat) = W1T¢concat + bl)
¢a (¢1) = g (W5 ¢1 + b2)

On (d)n—l) = Qn (Wg(bn—l + bn)

6 E. Yildirim et al.

where o, s are ReLLU activation functions, except the final «,, which is a sigmoid.
W,s are the weight matrices and b,s are bias vectors as usual.

As reported in [6], the initialization of weights can contribute to convergence
and performance of deep learning models. Therefore, we first train all models
without prior information till the convergence, then use their parameters to
initialize relevant weights on the overall architecture. To combine the models,
we simply concatenate the last layers of networks just before the outputs. Since
this layer defines the predictive capability of a model, it is generally called as
predictive factors in literature. We use the original weights of last layers in a
weighting process:

w4 [aw! Bw? .. yw"| where (a+B+..+7) =1 (4)

where w™ denotes the weight vector of nth pre-trained model and (a, S, ...,)
is the set of hyper-parameters determining the trade-off between the pre-trained
models. The final framework which ensembles multiple self-sufficient neural rec-
ommender networks by this weighting process is shown in Fig.

The parameters given in the layer definitions of all models are learned by
binary cross entropy loss function given below.

L=— > rulogiui+ (1—ry)log (1l —iu) (5)
(u,1)eOUO~

where O denotes the set of observed interactions, and O~ denotes the set of
negative instances. When the loss function is replaced to a weighted squared
loss, the proposed framework can be easily applied to explicit datasets as well.

3 Experiments

3.1 Datasets

To conduct our experiments, we worked on two real-world problems: movie rec-
ommendation and job recommendation. For the movie recommendation task, we
applied our approach to a benchmark movie rating dataset enriched by movie
subtitles.

MovieLens & OPUS. MovieLens [§] includes 5-star ratings of movies and
some categorical properties of users and movies. It contains 1M ratings, 3.8K
movies and 6K users in total. Users have at least 20 ratings. 5-star explicit
ratings are converted to implicit feedback by treating a rating is the indicator of
user-item interaction, so all ratings in the dataset are considered to be 1. OPUS
subtitles dataset [I5] describes a collection of translated movie subtitles from
http://www.opensubtitles.org/. It composes of bitexts from many language
pairs. English subtitles are used to supply more convenient contents for movies.
2581 movies out of 3706 (69.64%) in the rating dataset have subtitles. The movie
subtitles in the OPUS dataset are utilized for item representation while and the
categorical properties of user profiles in the MovieLens for user representation.

http://www.opensubtitles.org/

Neural Hybrid Recommender: Recommendation needs collaboration 7

Table 1. Statistics of the experimented datasets

Dataset Type Interaction Item User Sparsity
MovieLens movie 1,000,209 3,706 6,040 95.53%
Kariyer job 383,434 16,134 20,283 99.88%

Kariyer. This dataset consists of the job application history of candidates from
a one-week period, candidate profiles, job definitions, job requirements, company
details. Each user has at least 20 applications. It consists of 383K applications,
20K candidates for 16K jobs in total. The application history of users is used
as the interaction data in job recommendation, and the properties of jobs and
candidates as the auxiliary data.

3.2 Handling Text Data

To make the text data suitable to feed neural networks, we need to convert raw
texts into numeric vectors. In the simplest approach, using a simple dictionary
for this purpose could lead to extremely sparse representations due to the huge
size of vocabulary. Thus, we exploited the advantage of a hash function which
converts a raw text to a sequence of indexes in a fixed-size hashing space. Note
that some words may be assigned to the same index according to the hash
function. The dimension of hashing space is in relation to the overlapping rate
of distinct words and the dimension of embedding layers. By considering the
pros and cons, we set the dimension of hashing space to 1K in the experiments
after evaluating its effect on overall performance and complexity.

Since the inputs to the neural networks have to be in the same size for all
iterations, we examined the mean (1) and the standard deviation (o) of sequence
lengths of text features. Then, the feature-specific input lengths are defined as
1+ o for each text feature in the datasets.

3.3 Evaluation Process

In order to split the dataset into the train and test sets, we preferred leave-
one-out evaluation which has been widely applied in many works [TOJ9I2/T6],
especially where sparse datasets are subjected. The latest interaction of each
user is held-out to compose a test set, while the remaining interactions are used
for training. The last interaction of each user in the train set is used for hyper-
parameters tuning.

Since ranking every user-item pair amongst the test pairs are very time-
consuming and not possible to run in real-time. Therefore, as in similar studies
[13I519] we randomly sampled 100 items per user and rank them by probability
of interaction. To measure the quality of ranking, we used well-known evaluation
metrics: Hit Ratio (HR) and Normalized Discounted Cumulative Gain (NDCG).
We applied both metrics on a truncated list including top-10 ranked test items

8 E. Yildirim et al.

for each user. Due to the fact that the users have one interaction in the test set,
HR@X is simplified in our experiments as follows:

]./k, if ’I’test(u,i) € Rk
0, otherwise

HR@k—{ (6)

where 7ie5:(u,7) and Ry define the interaction with the item ¢ and the list of
top-k recommended items for the user u. In addition to HR@k, NDCGQk is
reinterpreted as well in our experiments because ideal discounted cumulative
gain (IDCGY) in position k is equal to 1 in our evaluation setup. Therefore,
NDCGQ@k is redefined as:

k .
DCGQk rlud) _
ca IDCGQk ; log(i+ 1) (™)

where 7(u,4) is 1 if the user u interacted with the ith item of the top-k list and
0 otherwise. The results are reported by the mean of user scores.

HR gives a shallow understanding of success by considering if the interacted
item is in the top-10 list or not whereas NDCG helps for a better understanding
by setting higher scores to hits at higher ranks.

3.4 Negative Sampling

In most of the cases, implicit feedback refers to positive inference of user inter-
action or user interest. To handle the absence of negative feedback, many stud-
ies have either assumed all unobserved cases as negative feedback or sampled
negative instances from them. In this work, we also apply the latter approach
to generate a set of negative feedback by sampling four negative instances per
positive instance. Unlike the evaluation process, we randomly sampled negative
training instances in real-time, just before each epoch starts. This allows our
system to learn as much as possible from different instances and increases the
utility of dataset without interfering with its feasibility.

3.5 Baselines
We compared our proposed approach NHR to the following methods:

— PopRank is a non-personalized popularity based recommendation method.
Items are ranked by their popularity which is determined by the number of
interactions and recommended to all users with the same order.

— BPR [I6] is a highly competitive pairwise ranking method which works well
for implicit feedbacks. It optimizes the matrix factorization model with a
pairwise ranking loss.

— ALS [11] is also a matrix factorization algorithm for item recommendation.
It works in parallel and effective for large-scale collaborative filtering prob-
lems which suffer from the sparseness of the rating data.

Neural Hybrid Recommender: Recommendation needs collaboration 9

— GMF [9] is a neural network realization of matrix factorization. Besides
being a part of NCF, it can be employed as a complete recommender system.

— MLP [9] is also a part of NCF that learns user-item interaction function by
neural networks, Like GMF, it is a standalone recommender system.

— NCF [9] is a state-of-the-art neural network based collaborative filtering
method which combines GMF and MLP methods. No matter that has very
promising results for item prediction, it is a pure collaborative filtering
method which benefits from only interaction data and does not regard cold-
starts that is a very common case for real-world recommendation tasks.

3.6 Parameter Setting

We implemented our proposed framework using PyTorch. All individual models
had been learned by optimizing the logarithmic loss of Eq. [5| because we tested
them on an item prediction setup. To determine the hyper-parameters of the
methods, we conducted intensive tests on validation data.

For individual models that are trained without any prior information, we set
model parameters with a Xavier initialization, then optimize them with Adam
optimizer which employs an adaptive learning rate for faster convergence. The
learning rate is set to 0.001 and the momentum for Adam optimizer to 0.9 which
is the default setting.

We tested a bunch of different batch size but found the 128 is the best per-
forming setup for all, except the model trained on text data. Because the embed-
ding size for the text data is quite large and hard to fit on even comparatively
large computer memories, we adopt the batch size of 32 for them.

We evaluated the predictive factors of {8,16,32,64}. We employed three
hidden layers for interaction-specific networks, for example, if the number of
predictive factors is set to 8, then the size of hidden layers are selected in the
order of 32 — 16 — 8 from the top on down and the embedding size is 16 in
this setup, as a matter of course. For the networks trained on auxiliary data,
we used two hidden layers and intuitively set embedding size to be 128 for
movie subtitles, 4 for job titles and candidate past-positions, and 16 for job
qualifications, job explanations and candidate experiments. To treat equally, we
set the a parameter of NCF which defines the trade-off between GMF and MLP
by optimization as we did for our NHR methods.

3.7 Performance Results

In our NHR experiments, we group auxiliary information sources into three cat-
egories: categorical, text, and a combination of them. Kariyer dataset includes
many data types: free-text, real values, binary, single-label, and multi-label cate-
gorical features. In order to handle all different types during the learning process,
we first apply general pre-processing steps such as outlier removal, tokenization,
etc. We then normalize real values and transform binary and categorical fea-
tures into one-hot and multi-hot representations. All these features are consid-
ered categorical for simplicity. We also convert raw text features to hash vec-
tors which refer to text data source as explained in Section [3.:2} Both networks

10 E. Yildirim et al.

Table 2. Performance of HR@Q10 and NDCG@10 w.r.t. the number of predictive factors
(pf) on different datasets. Here are the abbreviations used to shrink the result table due
to the limited space; ds:Dataset, ML:MovieLens, Ka:Kariyer, m¢:Metric, PR:PopRank,
cat.:.categorical, comb.:combined, and Im.:Improvements

ds |pf| mt Baselines NHR Tm. %
PR |BPR | ALS |GMF | MLP |NCF | cat. | text |[comb.

3 HR]0.4512{0.5331|0.6076|0.6247|0.6522|0.6560 - - 10.6718(2.41%
NDCG|0.2546(0.3027]0.3488]0.3528|0.3789|0.3807 - - 10.3943|3.57%

16 HR]0.4512]0.5886|0.6545(0.6714|0.6626|0.6828 - - 10.6946(1.73%
ML NDCG|0.2546(0.3426|0.3886(0.3945|0.3890(0.4057 - - 10.4126| 1.7%
39 HR |0.4512]0.6040|0.6826|0.6757|0.6728|0.6874 - - 10.6979(1.53%
NDCG|0.2546(0.3564(|0.4150(0.3936{0.3986(0.4053 - - 10.4147|2.32%

64 HR]0.4512{0.6108|0.6912{0.6763|0.5190(0.6798 - - 10.6964(2.44%
NDCG|0.2546(0.3621]0.4290(0.4052|0.2857|0.4077 - - 10.4176|2.43%

3 HR]0.3231]0.7399|0.5137]0.8249|0.7448|0.8594| 0.8821 |0.8624|0.8834(2.79%
NDCG|0.1875|0.5067|0.3237|0.5719{0.5592|0.6204|0.6368|0.6188| 0.6354 |2.64%

16 HR]0.3231]0.7874]0.6166{0.8357[0.8021[0.8695| 0.8890 |0.8730|0.8917(2.55%

Ka NDCG|0.1875(0.5560(0.4034|0.6041|0.5564|0.6402| 0.6571 |0.6426|0.6579|2.76%
39 HR [0.3231[0.7934]0.7013]0.8121]0.8100{0.8658| 0.8851 |0.8703|0.8875(2.51%
NDCG|0.1875|0.5629|0.4740(0.5870{0.5471|0.6369| 0.6537 |0.6411|0.6562|3.03%

64 HR [0.3231]0.7922(0.7627]0.7841|0.8205|0.8621| 0.8800 |0.8678|0.8841(2.55%
NDCG|0.1875|0.5608]0.5394(0.5624(0.5519(0.6334| 0.6505 |0.6378/0.6536|3.19%

trained on the categorical and text data sources are first incorporated into NCF
alone (NHR-categorical and NHR-text respectively), then together to embody
the most extensive NHR model (NHR-combined). As for MovieLens dataset,
users are represented with categorical features whereas movies are represented
with text features. This results in having one auxiliary network (NHR~combined)
which combine the categorical and the text data sources at the same time. Thus,
we could report one experiment on NHR for the movie recommendation task.

Table [2| shows the recommendation performance of the compared methods
with respect to the number of predictive factors. The results are given in HR@Q10
and NDCG@10. BPR and ALS methods have the same latent factor size as
the predictive factors in neural network models. By doing so, we use the same
predictive capability for all baselines except PopRank to make a fair compar-
ison between them. PopRank has the weakest performance amongst the other
methods. It is already expected because it is incapable to make personalized
suggestions. Since 0.001-level improvements are already found to be significant
for similar tasks such as click-through rate (CTR) prediction [BJT9I7ITT], one can
easily say that NHR is significantly outperforming the state-of-the-art matrix
factorization methods, ALS and BPR, by a large margin in both metrics, and
it is also consistently superior to the most competitive baseline NCF. NHR on
MovieLens and Kariyer achieved 2.03% HR-2.51% NDCG and 2.60% HR-2.91%
NDCG relative improvements on average over their NCF counterparts, relatively.
NHR gains more generalization capability through merging interaction and aux-

Neural Hybrid Recommender: Recommendation needs collaboration 11

iliary data. In addition to more accurate hits on top-10 predictions, the results
show that NHR systems could better learn to rank items in the top-10 lists by
uprising the test interaction amongst the other predictions since NDCG scores
are improved by larger steps. The NHR~combined results on job recommenda-
tion clearly shows that adding new auxiliary data even with the same learning
function can enhance the overall recommendation performance.

Even though NHR-text system improves the recommendation quality, it un-
derperforms NHR-categorical because of its model complexity. Besides the in-
evitable large size of the embedding layer, the Kariyer dataset is extremely sparse
and interaction data is not enough to feed such a network in fact. With more
data, we expect to have more contribution from text data.

The last but not the least, the results are more promising for the job rec-
ommendation. Since Kariyer dataset suffers from a severe sparsity and a high
frequency of cold-starts, the auxiliary data and the cooperation of models can
fill in this information shortage about user preferences.

4 Conclusion

In this work, we explored DNNs for hybrid recommender systems . We devised
a general framework NHR, that model user-item interactions by combining aux-
iliary and historical data. We showed that every variation of NHR outperforms
state-of-the-art collaborative filtering methods as expected, but NHR also gives
us the chance to alleviate deficiencies to be dependent on single aspects or data
sources. It does not require to train complete architecture from scratch. Instead,
it allows self-sufficient recommender models to speak for themselves by a weight-
ing process which learns the capabilities of its components.

In the next phase of the study, we would like to test our approach on explicit
datasets and use pre-trained vector space models such as document vectors for
text features since learning of embedding layers directly effects the model com-
plexity and training time. Since average pooling leads to the loss of sequential
property of natural language texts, we would like to improve our text models
by using more elaborated architectures such as LSTMs and CNNs to exploit
sequence information and interrelation of words.

Acknowledgements

This study is part of the research project (Project No:5170032) supported by
the Scientific and Technological Research Council of Turkey (TUBITAK). The
authors would like to thank Istanbul Technical University for their financial
support under the project BAP-40737.

References

1. Adi, Y., Kermany, E., Belinkov, Y., Lavi, O., Goldberg, Y.: Fine-grained anal-
ysis of sentence embeddings using auxiliary prediction tasks. arXiv preprint
arXiv:1608.04207 (2016)

12

10.

11.

12.

13.

14.

15.

16.

17.

E. Yildirim et al.

. Bayer, 1., He, X., Kanagal, B., Rendle, S.: A generic coordinate descent frame-

work for learning from implicit feedback. In: Proceedings of the 26th International
Conference on World Wide Web. pp. 1341-1350. International World Wide Web
Conferences Steering Committee (2017)

Cheng, H.T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., An-
derson, G., Corrado, G., Chai, W., Ispir, M., et al.: Wide & deep learning for
recommender systems. In: Proceedings of the 1st Workshop on Deep Learning for
Recommender Systems. pp. 7-10. ACM (2016)

Dziugaite, G.K., Roy, D.M.: Neural network matrix factorization. arXiv preprint
arXiv:1511.06443 (2015)

Elkahky, A.M., Song, Y., He, X.: A multi-view deep learning approach for cross
domain user modeling in recommendation systems. In: Proceedings of the 24th
International Conference on World Wide Web. pp. 278-288. International World
Wide Web Conferences Steering Committee (2015)

Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P., Bengio, S.: Why
does unsupervised pre-training help deep learning? Journal of Machine Learning
Research 11(Feb), 625-660 (2010)

Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: Deepfm: a factorization-machine based
neural network for ctr prediction. arXiv preprint arXiv:1703.04247 (2017)
Harper, F.M., Konstan, J.A.: The movielens datasets: History and context. ACM
Transactions on Interactive Intelligent Systems (TiiS) 5(4), 19 (2016)

He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative
filtering. In: Proceedings of the 26th International Conference on World Wide
Web. pp. 173-182. International World Wide Web Conferences Steering Committee
(2017)

He, X., Zhang, H., Kan, M.Y., Chua, T.S.: Fast matrix factorization for online
recommendation with implicit feedback. In: Proceedings of the 39th International
ACM SIGIR conference on Research and Development in Information Retrieval.
pp- 549-558. ACM (2016)

Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback
datasets. In: Data Mining, 2008. ICDM’08. Eighth IEEE International Conference
on. pp. 263-272. Ieee (2008)

Kim, D., Park, C., Oh, J., Lee, S., Yu, H.: Convolutional matrix factorization
for document context-aware recommendation. In: Proceedings of the 10th ACM
Conference on Recommender Systems. pp. 233-240. ACM (2016)

Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative fil-
tering model. In: Proceedings of the 14th ACM SIGKDD international conference
on Knowledge discovery and data mining. pp. 426-434. ACM (2008)

Li, S., Kawale, J., Fu, Y.: Deep collaborative filtering via marginalized denoising
auto-encoder. In: Proceedings of the 24th ACM International on Conference on
Information and Knowledge Management. pp. 811-820. ACM (2015)

Lison, P., Tiedemann, J.: Opensubtitles2016: Extracting large parallel corpora from
movie and tv subtitles. In: Proceedings of the 10th International Conference on
Language Resources and Evaluation (2016)

Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: Bpr: Bayesian
personalized ranking from implicit feedback. In: Proceedings of the twenty-fifth
conference on uncertainty in artificial intelligence. pp. 452-461. AUAI Press (2009)
Song, W., Shi, C., Xiao, Z., Duan, Z., Xu, Y., Zhang, M., Tang, J.: Autoint:
Automatic feature interaction learning via self-attentive neural networks. arXiv
preprint arXiv:1810.11921 (2018)

Neural Hybrid Recommender: Recommendation needs collaboration 13

18. Wang, C., Blei, D.M.: Collaborative topic modeling for recommending scientific
articles. In: Proceedings of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining. pp. 448-456. ACM (2011)

19. Wang, R., Fu, B., Fu, G., Wang, M.: Deep & cross network for ad click predictions.
In: Proceedings of the ADKDD’17. p. 12. ACM (2017)

20. Wieting, J., Bansal, M., Gimpel, K., Livescu, K.: Towards universal paraphrastic
sentence embeddings. arXiv preprint arXiv:1511.08198 (2015)

	Neural Hybrid Recommender: Recommendation needs collaboration

