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Abstract. A digraph D is singly connected if for all ordered pairs of
vertices u, v ∈ V (D), there is at most one path in D from u to v. In this
paper, we study the Singly Connected Vertex Deletion (SCVD)
problem: Given an n-vertex digraph D and a positive integer k, does
there exist a set S ⊆ V (D) such that |S| ≤ k and D − S is singly
connected? This problem may be seen as a directed counterpart of the
(Undirected) Feedback Vertex Set problem, as an undirected graph
is singly connected if and only if it is acyclic. SCVD is known to be NP-
hard on general digraphs. We study the complexity of SCVD on vari-
ous classes of digraphs such as tournaments, and various generalisations
of tournaments such as digraphs of bounded independence number, in-
and out-tournaments and local tournaments. We show that unlike the
Feedback Vertex Set on Tournaments (FVST) problem, SCVD
is polynomial time solvable on tournaments. In addition, we show that
SCVD is polynomial time solvable on digraphs of bounded independence
number, and on the class of acyclic local tournaments. We also study
the parameterized complexity of SCVD, with k as the parameter, on the
class of in-tournaments. And we show that on in-tournaments (and out-
tournaments), SCVD admits a fixed-parameter tractable algorithm and
a quadratic kernel. We also show that on the class of local tournaments,
which is a sub-class of in-tournaments, SCVD admits a linear kernel.
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1 Introduction

A digraph D is said to be singly connected if for every (ordered) pair of vertices u
and v of D, there is at most one (directed) path in D from u to v. In this paper, we
study the Singly Connected Vertex Deletion (SCVD for short) problem,
where the goal is to test if a given digraph can be made singly connected by
deleting a few vertices. This problem may be seen as a directed counterpart of the
Feedback Vertex Set problem. To see this, let us first define undirected singly
connected graphs. An undirected graph G is said to be singly connected if for
every pair of vertices u and v of G, there is at most one path in G between u and
v. But note that an undirected graph is singly connected if and only if it is acyclic.
So, the problem of checking whether it is possible to delete at most k vertices from
a given graph to make it singly connected is the same as the problem of checking
whether it is possible to delete at most k vertices to make a graph acyclic. This
precisely is the Feedback Vertex Set (FVS) problem. (A feedback vertex set
of a graph is a set of vertices whose deletion will render the graph acyclic.) The
complexity of FVS has been studied extensively [3,10,12–14,17,21,26,27,31–
34,37]. FVS, in fact, was one of Karp’s 21 NP-hard problems [28]. As for its
algorithmic tractability, FVS is fixed-parameter tractable (when parameterized
by the solution size) [21] and it admits a quadratic kernel [40]. FVS also admits
constant factor approximation algorithms [3,8,16,24].

Coming back to digraphs, the Directed Feedback Vertex Set (DFVS)
problem asks if a given digraph can be made acyclic by deleting at most k ver-
tices. Naturally, this problem has been deemed the appropriate directed coun-
terpart of Feedback Vertex Set, and has been studied in the frameworks of
approximation algorithms [39] and parameterized algorithms [15]. Although the
parameterized complexity of DFVS had been raised as an open problem since
the emergence of parameterized algorithms in the early 90s [20,22], it was set-
tled only in 2008 by Chen et al. [15]. They showed that the problem admits a
4kk!nO(1) time algorithm, and hence is fixed-parameter tractable when param-
eterized by k. If fixed-parameter tractability of DFVS remained open for years,
the kernelization complexity of the problem proved even more elusive. While
the question whether DFVS (parameterized by k) admits a polynomial kernel
still remains unresolved, several attempts have been made to study the kernel-
ization complexity of “DFVS-adjacent” problems. These include studying the
problem with larger parameters [9,35], restricting the input digraph to smaller
classes [1,7] and imposing more conditions on the acyclic digraph that results
from the deletion of a feedback vertex set [2,36].

While FVS and DFVS generated a large volume of literature, the SCVD
problem, already known to be NP-hard [19], received little attention from the
parameterized complexity community. In this paper, as a first step, we start an
investigation into the complexity of SCVD on various classes of digraphs such
as tournaments, local tournaments, digraphs of bounded independence number
etc. We formally define the problem below.
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Singly Connected Vertex Deletion (SCVD) Parameter: k
Input: A digraph D and a non-negative integer k.
Question: Does there exist a set S ⊆ V (D) such that |S| ≤ k and D − S is
singly connected?

x y

z

(a) Obstruction to
acyclic tournament.

x y

z

(b) Obstruction to
singly connected
tournament.

Fig. 1. Obstructions to acyclic and singly connected tournaments.

As observed earlier, an undirected graph is singly connected if and only if it
is acyclic. But notice that this property does not hold for digraphs. A directed
cycle, for instance, is singly connected. And consider a digraph on 3 vertices, say,
x, y and z, and with arcs (x, y), (y, z) and (x, z). This digraph, while acyclic, is not
singly connected. It is not surprising then that SCVD and DFVS show markedly
different behaviour. This is perhaps best illustrated by the fact that while DFVS
is NP-hard on tournaments, we show that SCVD is polynomial time solvable
on tournaments (Lemma 2). This difference in behaviour appears even starker
considering the fact that these two problems require that “obstructions” with a
“similar structure” be hit. Notice that obstructions to an acyclic tournament are
directed triangles, i.e., all triplets of vertices x, y and z with arcs (x, y), (y, z) and
(z, x), whereas obstructions to a singly connected tournament are all triplets of
vertices x, y and z with arcs (x, y), (y, z) and (x, z) (see Fig. 1).

A digraph D is not singly connected if and only if there exists a pair of
vertices u and v such that D contains two paths from u to v. It is not difficult to
see that a digraph D is not singly connected if and only if there exists a pair of
vertices u and v such that D contains two internally vertex disjoint paths from
u to v. (See Lemma 1.) Two internally vertex disjoint paths between a pair of
vertices of a digraph constitute a cycle in the underlying undirected graph. That
is, the obstructions to a singly connected digraph are cycles in the underlying
undirected graph. But notice that not every cycle in the underlying undirected
graph is necessarily an obstruction. Thus both DFVS and SCVD require us to
examine if a subset of the cycles in the underlying undirected graph can be hit
with a few vertices.

Our Contribution. We study the SCVD problem on several well-studied classes
of digraphs such as tournaments, α-bounded digraphs, local tournaments, etc.

A digraph D is said to be a tournament if for every pair of vertices u and v of
D, exactly one of the arcs (u, v) and (v, u) is present in D. The class of α-bounded
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digraphs were introduced by Fradkin and Seymour [23] as a generalisation of
tournaments. For a fixed positive integer α, a digraph D is said to be α-bounded
if the size of a maximum independent set of the underlying undirected graph of D
is at most α. Note that tournaments are 1-bounded digraphs. Local tournaments
are yet another generalisation of tournaments. A digraph D is said to be an
in-tournament (resp. out-tournament) if for every vertex v of D, the set of
in-neighbours (resp. out-neighbours) of v induces a tournament. A digraph D
is said to be a local tournament if it is both an in-tournament and an out-
tournament. A digraph D is said to be a an acyclic local tournament if D is
both a directed acyclic graph and a local tournament. (See, for example, the
chapter on locally semi-complete digraphs [5] in the monograph edited by Bang-
Jensen and Gutin [6] for a survey of literature on these classes of digraphs.)

We show that Singly Connected Vertex Deletion

• is polynomial time solvable on tournaments and α-bounded digraphs,
• is polynomial time solvable on acyclic local tournaments,
• has a 2knO(1) algorithm and O(k2) vertex kernel on in- and out-tournaments,
• and has an O(k) vertex kernel on local tournaments.

The polynomial time solvability of SCVD on tournaments follows from a
simple observation that no tournament with at least four vertices can be singly
connected. A similar result holds for α-bounded digraphs as well: no α-bounded
digraph with at least 2α2 + 4α vertices can be singly connected. In order to prove
this observation, we use the Gallai-Milgram theorem [25], which says that the
vertices of a digraph D can be covered by a disjoint collection of paths, such that
the number of paths does not exceed the size of a maximum independent set of
the underlying undirected graph of D. On acyclic local tournaments, we design a
polynomial time algorithm that computes a minimum-sized vertex subset whose
deletion will make the digraph singly connected. Our algorithm uses the fact that
every connected local tournament has a Hamiltonian path [4], which in turn,
implies that every connected acyclic local tournament has a unique topological
ordering. We show that SCVD on in-tournaments (and out-tournaments) can
be reduced to the 3-Hitting Set problem, and thus admits a simple 3knO(1)

time branching algorithm and an O(k2) vertex kernel. But we use the technique
of iterative compression to design a 2knO(1) algorithm for SCVD on in and out-
tournaments. And our O(k) vertex kernel for SCVD on local tournaments relies
on the fact that for a local tournament D and a set of vertices S ⊆ V (D) such
that D − S is singly connected, no vertex in S can have more than a constant
number of neighbours in V (D) \ S.

Related Work on Singly-Connected Digraphs. As noted above, the SCVD
problem was shown to be NP-hard by Dietzfelbinger and Jaberi [19]. The reduc-
tion in [19], in fact, shows that the problem is NP-hard even on directed acyclic
graphs. Their work shows that the arc-deletion version of the problem is also
NP-hard, i.e., the problem of testing whether a given digraph can be made singly
connected by deleting at most a given number of arcs. As for recognising singly
connected digraphs, i.e., the problem of testing whether a given digraph is singly
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connected, Buchsbaum and Carlisle [11] gave an algorithm that runs in O(n2)
time, where n is the number of vertices in the input digraph. Khuller [29,30]
gave another O(n2) algorithm for this problem. Dietzfelbinger and Jaberi [19]
presented a refined version of the algorithm of Buchsbaum and Carlisle [11] that
runs in time O(s·t + m), where m is the number of arcs, and s and t respectively
are the number of sources and sinks in the input digraph.

2 Preliminaries

For a positive integer n, we denote the set {1, 2, . . . , n} by [n]. Let S be a finite
set, and let σ be an ordering of the elements of S. For x, y ∈ S, we write x <σ y
to mean that x appears before y in the ordering σ. And we write x ≤σ y to mean
that either x = y or x <σ y.

Digraphs. For a digraph D, V (D) denotes the vertex set and A(D) denotes the
arc set of D. For a vertex v ∈ V (D), N+

D (v) denotes the set of all out-neighbours
of v, and N−

D (v) denotes the set of all in-neighbours of v, that is, N+
D (v) =

{u ∈ V (D) | (v, u) ∈ A(D)} and N−
D (v) = {u ∈ V (D) | (u, v) ∈ A(D)}. And

ND(v) denotes the set of all neighbours of v in the underlying undirected graph
of D, that is, ND(v) = N+

D (v) ∪ N−
D (v). Also, we define N+

D [v] = N+
D (v) ∪ {v},

N−
D [v] = N−

D (v)∪{v} and ND[v] = ND(v)∪{v}. For a set X ⊆ V (D), we define
ND(X) = ∪v∈XND(v).

For a set A′ ⊆ A(D), D − A′ denotes the digraph (V (D), A(D) \ A′). For a
set V ′ ⊆ V (D), D[V ′] denotes the subgraph of D induced by V ′. Similarly, for
S ⊆ V (D), D − S denotes the digraph D[V (D) \ S].

A digraph D is said to be connected if the underlying undirected graph of D
is connected. A digraph D on 3 vertices, say, x, y and z, is said to be an acyclic
triangle if A(D) = {(x, y), (y, z), (x, z)}.

A path cover P of a digraph D is a disjoint collection of paths in D such that
for every vertex v ∈ V (D), there is a path P ∈ P such that v ∈ V (P ).

For the sake of convenience, we repeat below some of the definitions we
introduced in Sect. 1. Recall that a directed graph D is a tournament if for every
pair of distinct vertices u, v ∈ V (D), either (u, v) ∈ A(D) or (v, u) ∈ A(D), but
not both.

Definition 1 (Out-tournament and In-tournament). A directed graph D
is an out-tournament (resp. in-tournament) if for all v ∈ V (D), D[N+

D (v)] (resp.
D[N−

D (v)]) is a tournament.

Definition 2 (Local tournament). A directed graph D is a local tournament
if D is both an out-tournament and an in-tournament.

Note that, by the definition of singly connected digraphs, a digraph D is
not singly connected if there exist two paths from u to v for u, v ∈ V (D). Note
that these two paths need not be internally vertex disjoint. But the following
lemma says that we may as well assume that the two paths are internally vertex
disjoint.
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Lemma 1 (�1). A directed graph D is not singly connected if and only if there
exist two vertices u, v ∈ V (D) such that there exist two internally vertex disjoint
paths from u to v.

3 Singly Connected Vertex Deletion on α-bounded
Digraphs and Acyclic Local Tournaments

In this section, we study the optimisation version of SCVD restricted to α-
bounded digraphs and acyclic local tournaments, and prove that the problem is
polynomial time solvable on both these classes of digraphs. That is, we consider
the following problem.

Minimum Singly Connected Vertex Deletion (Min-SCVD)
Input: A digraph D.
Output: A minimum-sized set S ⊆ V (D) such that D−S is singly connected.

3.1 Min-SCVD on α-bounded Digraphs

In this section, we prove that Min-SCVD is polynomial time solvable on α-
bounded digraphs. Specifically, we prove the following theorem.

Theorem 1. Min-SCVD can be solved in time O(nα(2α+3)) on α-bounded
digraphs, where n is the number of vertices of the input α-bounded digraph.

We first consider the problem on tournaments. Although Theorem 1 applies
to tournaments as well, as tournaments are 1-bounded digraphs, we consider
tournaments separately, and prove that the Min-SCVD problem can be solved
in O(n3) time on tournaments. This result follows from a simple observation
that no tournament with 4 or more vertices can be singly connected.

Lemma 2 (�). Any tournament on at least 4 vertices is not singly connected.

Using Lemma 2 and the fact that tournaments are hereditary, we get the
following corollary.

Corollary 1 (�). Min-SCVD on tournaments is solvable in O(n3) time.

We now move on to α-bounded digraphs, and prove Theorem 1. We prove
below that no α-bounded digraph with at least α(2α + 4) vertices is singly
connected. Note that this immediately gives an O(nα(2α+3)) time algorithm for
Min-SCVD on α-bounded digraphs, as solving Min-SCVD reduces to finding
a maximum sized induced subgraph that is singly connected, which can be done
in the claimed runtime.

We need the following theorem due to Gallai and Milgram [25] to prove our
observation that no α-bounded digraph with at least α(2α + 4) vertices can be
singly connected.
1 Due to paucity of space, the proofs of statements marked with a � have been omitted.
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v1 v2 v3 v4 v5

(a) The arc (v2, v4) is a forward
arc w.r.t. the path v1 · · · v5.

v1 v2 v3 v4 v5

(b) The arc (v4, v2) is a back-
ward arc w.r.t. the path v1 · · · v5.

Fig. 2. Forward and backward arcs w.r.t. a path.

Theorem 2 (Gallai and Milgram [18,25]). Every directed graph D has a
path cover P and an independent set {vp | P ∈ P} of vertices such that vp ∈ P
for every P ∈ P.

We can assume that the set {vp | P ∈ P} in Theorem 2 is a maximal independent
set. If not, we can add more vertices to the set until it becomes maximal, and
“break” the paths in P at those newly added vertices to make new paths. The
new collection of paths is a path cover of D such that every path contains a
vertex of the maximal independent set. We record this fact below.

Observation 1. Every directed graph D has a path cover P and a maximal
independent set {vp | P ∈ P} of vertices such that vp ∈ P for every P ∈ P.

Let D be a digraph. For a path P = v1 . . . v� in D, we define forward arcs
and backward arcs with respect to P in D as follows. An (vi, vj) ∈ A(D) is a
forward arc w.r.t. P if vi, vj ∈ V (P ), and j > i + 1. And (vi, vj) ∈ A(D) is a
backward arc w.r.t. P if vi, vj ∈ V (P ) and i > j + 1 (see Fig. 2).

For a path P = v1 . . . v� in a digraph D, if (vi, vj) ∈ A(D) is a forward arc
w.r.t. P then note that there are two distinct paths from vi to vj in D: vi . . . vj

and vivj . Therefore, we have the following observation.

Observation 2. If a digraph D has a path P such that D contains a forward
arc w.r.t. P , then D is not singly connected.

We now prove the following lemma, which, in turn proves Theorem 1.

Lemma 3. For each fixed α ∈ N, every α-bounded digraph with at least α(2α+4)
vertices is not singly connected.

Proof. Let D be any α-bounded digraph such that |V (D)| ≥ α(2α+4). Assume
that D is singly connected. By Theorem 2 (and Observation 1), there is a max-
imal independent set I such that D can be decomposed into a collection P of
|I| vertex disjoint paths such that each path contains one vertex from I. Let
|I|(= |P|) = α′. Note that α′ ≤ α, as D is an α-bounded digraph. Then, since
|V (D)| ≥ α(2α + 4), by the pigeonhole principle, there exists a path P in P
with at least 2α + 4 vertices. Let P be v1 . . . v�, where � ≥ (2α + 4), be such a
path. Let vP be a vertex of P such that vP ∈ I. We now prove the following two
claims.

Claim 1 (�). With respect to the path P , the vertex vP can have at most two
backward arcs and no forward arcs incident on it.
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Claim 2 (�). For a vertex v /∈ V (P ), there can be at most two arcs between v
and V (P ).

Now, let IP = N [vP ] ∩ V (P ), i.e., the set IP ⊆ V (P ) contains vP and the
vertices in V (P ) that are adjacent to vP . Since P is a path and because of
Claim 1, |IP | ≤ 5. Let S = V (P ) \ IP . Then, |S| ≥ 2α − 1, as |V (P )| ≥ 2α + 4.
Also, observe that no vertex in S is adjacent to vP . Then, every vertex in S
is adjacent to some vertex in I \ {vP }. To see this, consider x ∈ S. Note first
that x /∈ I, as I ∩ V (P ) = {vP }. And now, if x is not adjacent to any vertex in
I \ {vP }, then I ∪ {x} is an independent set, which contradicts the maximality
of I. Therefore, |ND(I \{vP })∩S| = |S| ≥ 2α−1. Now, since |I \ {vP }| ≤ α−1,
by the pigeonhole principle, there is a vertex in I \ {vP } which is adjacent to at
least three vertices in S, which, by Claim 2, is not possible. This completes the
proof of Lemma 3. �	

3.2 Polynomial Time Algorithm for Min-SCVD on Acyclic Local
Tournaments

In this section, we prove that Min-SCVD is polynomial time solvable on acyclic
local tournaments. Without loss of generality, let us assume that the input acyclic
local tournament is connected. Otherwise, we can find an optimal solution in each
connected component separately and return the union of the optimal solutions
for all the connected components. Specifically, this section is devoted to proving
the following theorem.

Theorem 3. Minimum Singly Connected Vertex Deletion can be solved
in time O(nO(1)) on acyclic local tournaments, where n is the total number of
vertices in the input acyclic local tournament.

The proof of Theorem 3 crucially uses the fact that every connected local
tournament has a Hamiltonian path [4], which, in turn, implies that every con-
nected acyclic local tournament has a unique topological ordering.

We first state the following lemma. It is so well-known that we omit its proof.

Lemma 4. Let D be a directed acyclic graph. Then, D has a topological order-
ing. That is, there exists an ordering σ = (v1, . . . , vn) of the vertices of D such
that for every arc (vi, vj) ∈ A(D), we have i < j, i.e., vi appears before vj in
the ordering σ. Moreover, there exists a polynomial time algorithm that, given a
directed acyclic graph D as input, finds a topological ordering of D.

It is a folklore result that every tournament contains a Hamiltonian path.
Bang-Jensen [4] showed that this applies to connected local tournaments as
well. For the sake of completeness, we prove this below.

Lemma 5 (�). Let D be a connected local tournament. Then D contains a
Hamiltonian path.

The following lemma follows from Lemmas 4 and 5.
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Lemma 6 (�). Let D be a connected acyclic local tournament and P =
v1v2 . . . vn be a Hamiltonian path of D. Then, σ = (v1, . . . , vn) is the unique
topological ordering of D.

Notation. Let D be an acyclic local tournament and σ = (v1, . . . , vn) be the
unique topological ordering of D. For a vertex u ∈ V (D), by �(u), we denote
the last vertex v in the ordering σ such that (u, v) ∈ A(D). For each i ∈ [n], we
define an ordered set Si = {vi, vi+1, . . . , �(vi)}.

Lemma 7 (�). Let D be a connected acyclic local tournament and σ =
(v1, . . . , vn) be the topological ordering of D. Then, for all i ∈ [n], the graph
D[Si] is an acyclic tournament. Moreover, Si = N+

D (vi) ∪ {vi}.
The following lemma says that any optimal solution to Min-SCVD on D

can exclude at most two vertices from the set Si for each i ∈ [n].

Lemma 8 (�). Let D be an acyclic local tournament and S be an optimal solu-
tion to Min-SCVD on D. Let σ = (v1, v2, . . . , vn) be the topological ordering of
D. Then, for every i ∈ [n], we have |Si \ S| ≤ 2.

Lemma 9 (�). Let D be an acyclic local tournament and σ = (v1, v2, . . . , vn) be
the topological ordering of D. Let vi, vj ∈ V (D) such that i < j. Let �(vi) = vpi

and �(vj) = vpj
. Then, pi ≤ pj.

The following lemma forms the basis of our algorithm.

Lemma 10 (�). Let D be an acyclic local tournament and σ = (v1, . . . , vn) be
the topological ordering of D. Then, there exists an optimal solution to Min-

SCVD on D that does not contain the vertices v1, v2.

Proof (Proof Sketch). Let S be an optimal solution to Min-SCVD on D. If
v1, v2 /∈ S, then the lemma holds. So assume that either v1 ∈ S or v2 ∈ S.

By Lemma 7, the graphs D[S1] and D[S2] are acyclic tournaments, and S1 =
N+

D (v1) ∪ {v1} and S2 = N+
D (v2) ∪ {v2}. By Lemma 9, we have �(v1) ≤σ �(v2).

This implies that S1 \ {v1} ⊆ S2. By Lemma 8, we have |S1 \ S| ≤ 2 and
|S2 \S| ≤ 2. We now consider two cases depending on whether v1 ∈ S or v2 ∈ S.
We only prove the case when v1 ∈ S here.

Case 1: v1 ∈ S. If S1\S = ∅, then since N+
D (v1) ⊆ S1, the digraph D−(S\{v1})

is also singly connected, which contradicts the assumption that S is an optimal
solution. Therefore, |S1 \ S| ≥ 1. Let vp ∈ S1 be such that vp /∈ S. (Note that
p �= 1 as we are in the case when v1 ∈ S.) We shall show that (S \ {v1}) ∪ {vp}
is also an optimal solution to Min-SCVD on D.

Now, consider the digraph D − (S \ {v1}). Since S is an optimal solution,
D − (S \ {v1}) is not singly connected. That is, D − (S \ {v1}) contains a pair of
vertices u and v such that there are two internally vertex disjoint paths in D −
(S \ {v1}) from u to v. We refer to such a pair of paths as a forbidden structure.
But since D − S is singly connected, any forbidden structure in D − (S \ {v1})
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must contain v1. Also, note that since v1 is the first vertex in the topological
ordering σ, any forbidden structure in D − (S \ {v1}) must be a pair of paths
that start from v1.

Now, since, |S1 \S| ≤ 2, the vertex v1 has at most two out-neighbours in the
digraph D − (S \ {v1}), and vp is one of them. Therefore, if there exists a vertex
vj in D − (S \ {v1}) such that there are two vertex disjoint paths from v1 to
vj in D − (S \ {v1}), then one of those paths must contain the vertex vp. This
implies that (S \ {v1}) ∪ {vp} is also an optimal solution to Min-SCVD on D.

�	

Algorithm 1: Algo(D)

1 Input: A connected acyclic local tournament D.
2 Output: A solution S to Min-SCVD for D.
3 Let (v1, . . . , vn) be the topological ordering of D.
4 if D is singly connected then
5 return S = ∅;
6 else
7 return S = (S1 \ {v1, v2})∪Algo(D − (S1 \ {v2}));
8 end

We are now ready to describe our algorithm, which works as follows. We
greedily construct a solution S as follows. First, we add the set S1 \ {v1, v2} to
S, and by doing this, we cover all the forbidden structures containing v1. (Note
that D − (S1 \ {v1, v2}) could still contain some forbidden structures containing
v2). Next, we recursively find a solution in the digraph D− (S1 \{v2}). A formal
description of our algorithm Algo is in Algorithm 1. It is easy to see that the
algorithm runs in polynomial time. The correctness of the algorithm follows from
Lemma 10. This completes the proof of Theorem 3.

4 Singly Connected Vertex Deletion on In-Tournaments

In this section, we design an algorithm for SCVD on in-tournaments that runs
in time 2knO(1). We use the technique of iterative compression, introduced by
Reed, Smith and Vetta [38] to design this algorithm. We also show that SCVD
on in-tournaments admits a kernel with O(k2) vertices.

Remark 1. We note that the classical complexity of SCVD on in-tournaments
(and local touranments) is still open. We do not know whether the problem is
NP-hard or not on in-tournaments and on local tournaments.

Recall that a directed graph D is said to be an in-tournament if for all vertices
v ∈ V (D), D[N−

D (v)] is a tournament. We first prove the following preparatory
results that will be used to design our algorithm and kernel.

Lemma 11 (�). Let D be an in-tournament. Then D is singly connected if and
only if |N−

D (v)| ≤ 1 for all v ∈ V (D).
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As an immediate consequence of Lemma 11, we get the following result, which
says that singly connected in-tournaments are precisely those digraphs that are
acyclic triangle-free.

Lemma 12 (�). Let D be an in-tournament. Then D is singly connected if and
only if D does not contain an acyclic triangle as an induced subgraph.

In light of Lemma 12, it is not difficult to see that the SCVD problem on
in-tournaments reduces to the 3-Hitting Set problem. The 3-Hitting Set

problem takes as input a set U , a family F of subsets of U such that |F | ≤ 3
for every F ∈ F , and a non-negative integer k. And the question is to determine
if there exists X ⊆ U such that |X| ≤ k and X ∩ F �= ∅ for every F ∈ F .
Given an instance (D, k) of SCVD on in-tournaments, where D is an n-vertex in-
tournament, we can construct an equivalent instance (U,F , k′) of 3-Hitting Set

by taking U = V (D), F = {{x, y, z} | {x, y, z} induces an acyclic triangle}, and
k′ = k. The fastest algorithm for 3-Hitting Set, to the best of our knowledge,
is due to Wahlström [41, Corollary 69] and runs in time 2.0755knO(1). Thus,
we can conclude that SCVD problem on in-tournaments can be solved in time
2.0755knO(1) as well. In the remaining part of this section, we show that SCVD

on in-tournaments can in fact be solved in time 2knO(1). Before that we also
note that 3-Hitting Set has a O(k2)-sized kernel [1, Remark 1], which can be
adapted to SCVD on in-tournaments as well. We record this fact below.

Observation 3. SCVD on in-tournaments admits an O(k2) kernel.

We now prove the following theorem.

Theorem 4 (�). SCVD on in-tournaments admits an algorithm that runs in
time 2knO(1).

To prove Theorem 4, we apply the technique of iterative compression, and show
that solving SCVD on in-tournaments boils down to solving 2knO(1) many
instances of the Vertex Cover (VC) problem on pseudoforests. A pseudo-
forest is an undirected graph in which every connected component contains at
most one cycle; and VC is polynomial time solvable on pseudoforests. Thus we
obtain the runtime claimed in the theorem statement. Theorem 4 implies an
analogous result for out-tournaments as well.

Theorem 5 (�). SCVD on out-tournaments admits an algorithm that runs in
time 2knO(1).

5 A Linear Kernel for SCVD on Local Tournaments

In this section, we prove that SCVD admits a linear vertex kernel on local
tournaments. Specifically, we prove the following theorem.

Theorem 6. SCVD on local tournaments admits a kernel with O(k) vertices.
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Let (D, k) be an instance of SCVD, where D is a local tournament. The basis
of our kernelization algorithm is Lemma 12. Recall Lemma 12, which says that
an in-tournament (and hence a local tournament) is singly connected if and only
if it does not contain an acyclic triangle as a subgraph. We give the following
reduction rule in order to simplify the input instance (D, k) of SCVD. We apply
this reduction rule exhaustively.

Reduction Rule 1. If a vertex v ∈ V (D) is not contained in any acyclic tri-
angle, then delete v from D. Return instance (D′, k), where D′ = D − {v}.
Lemma 13 (�). Reduction Rule 1 is safe.

After an exhaustive application of Reduction Rule 1, every vertex in D is
contained in some acyclic triangle.

Next, we prove the following lemma that will help us bound the kernel size.

Lemma 14 (�). Let D be a local tournament and S ⊆ V (D) such that D − S
is singly connected. Then, for every vertex v ∈ S, v has at most 3 in-neighbours
and at most 3 out-neighbours in V (D) \ S.

Next, using Lemma 14, we obtain the following lemma.

Lemma 15 (�). Let (D, k) be an instance of SCVD on local tournaments and
assume that Reduction Rule 1 is no longer applicable. If (D, k) is a yes-instance
of SCVD, then |V (D)| ≤ 7k.

Reduction Rule 2. If |V (D)| ≥ 7k+1, then return that (D, k) is a no-instance
of SCVD.

The safeness of the above reduction rule follows from Lemma 15. When
Reduction Rule 2 is no longer applicable, we obtain our required bound in Theo-
rem 6. Observe that both the reduction rules can be applied in polynomial time
and are applied only polynomially many times. The correctness of our kernel
follows from Lemmas 13 and 15. This completes the proof of Theorem 6.

6 Conclusion

We studied the SCVD problem on various classes of digraphs such as tourna-
ments, α-bounded digraphs, acyclic local tournaments, in-tournaments and local
tournaments. Our algorithm for SCVD on in-tournaments runs in time 2knO(1).
It remains to be seen if this runtime is optimal or can be improved. In particular,
as noted in Remark 1, it is open whether SCVD is NP-hard or polynomial time
solvable on in-tournaments. Another class of digraphs that one could consider is
the class of locally transitive tournaments. A digraph D is said to be a locally
transitive tournament if for every vertex v ∈ V (D), both N+

D (v) and N−
D (v)

induce transitive tournaments. Note that locally transitive tournaments are a
super-class of acyclic local tournaments, and a sub-class of local tournaments.
It would be interesting to see if one can extend the polynomial time algorithm
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for SCVD on acyclic local tournaments to locally transitive tournaments. As for
the parameterized complexity of SCVD, the most interesting open problem is
to resolve the complexity of SCVD on general digraphs, i.e., whether SCVD,
parameterized by the solution size, admits a fixed-parameter tractable algorithm
on general digraphs?
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