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Abstract. Given a set of n points in a d-dimensional space, we seek to
compute the skyline, i.e., those points that are not strictly dominated by
any other point, using few comparisons between elements. We adopt the
noisy comparison model [15] where comparisons fail with constant prob-
ability and confidence can be increased through independent repetitions
of a comparison. In this model motivated by Crowdsourcing applica-
tions, Groz and Milo [18] show three bounds on the query complexity
for the skyline problem. We improve significantly on that state of the
art and provide two output-sensitive algorithms computing the skyline
with respective query complexity O(ndlog(dk/d)) and O(ndklog(k/9d)),
where k is the size of the skyline and § the expected probability that our
algorithm fails to return the correct answer. These results are tight for
low dimensions.

Keywords: Skyline + Noisy comparisons * Fault-tolerance

1 Introduction

Skylines have been studied extensively, since the 1960s in statistics [6], then
in algorithms and computational geometry [22] and in databases [7,12,16,21].
Depending on the field of research, the skyline is also known as the set of maxi-
mum vectors, the dominance frontier, admissible points, or Pareto frontier. The
skyline of a set of points consists of those points which are not strictly dominated
by any other point. A point p is dominated by another point ¢ if p; < ¢; for every
coordinate (attribute or dimension) 4. It is strictly dominated if in addition the
inequality is strict for at least one coordinate; see Fig. 1.
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Fig. 1. Given a set of points X, the goal is to find the set of skyline points, i.e.,points
are not dominated by any other points.

Noisy Comparison Model, and Parameters. In many contexts, comparing
attributes is not straightforward. Consider the example of finding optimal cities
from [18].

To compute the skyline with the help of the crowd we can ask people ques-
tions of the form “is the education system superior in city z or city y?”
or “can I expect a better salary in city © or city y”. Of course, people are
likely to make mistakes, and so each question is typically posed to multiple
people. Our objective is to minimize the number of questions that need to
be issued to the crowd, while returning the correct skyline with high prob-
ability.

Thus, much attention has recently been given to computing the skyline when
information about the underlying data is uncertain [25], and comparisons may
give erroneous answers. In this paper we investigate the complexity of computing
skylines in the noisy comparison model, which was considered in [18] as a sim-
plified model for crowd behaviour: we assume queries are of the type is the i-th
coordinate of point p (strictly) smaller than that of point ¢%, and the outcome
of each such query is independently correct with probability greater than some
constant better than 1/2 (for definiteness we assume probability 2/3). As a con-
sequence, our confidence on the relative order between p and g can be increased
by repeatedly querying the pair on the same coordinate. Our complexity measure
is the number of comparison queries performed.

This noisy comparison model was introduced in the seminal paper [15] and
has been studied in [8,18]. There are at least 2 straightforward approaches to
reduce noisy comparison problems to the noiseless comparison setting. One app-
roach is to take any “noiseless” algorithm and repeat each of its comparisons
log(f(n)) times, where n is the input size and f(n) is the complexity of the algo-
rithm. The other approach is to sort the n items in all d dimensions at a cost
of ndlog(nd), then run some noiseless algorithm based on the computed orders.
The algorithms in [15,18] and this paper thus strive to avoid the logarithmic
overhead of these straightforward approaches.

Three algorithms were proposed in [18] to compute skylines with noisy com-
parisons. Figure 2 summarizes their complexity and the parameters we consider.
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The first algorithm is the reduction through sorting discussed above. But sky-
lines often contain only a small fraction of the input items (points), especially
when there are few attributes to compare (low dimension). This leads to more
efficient algorithms because smaller skylines are easier to compute. Therefore,
[18] and the present paper expresses the complexity of computing skylines as a
function of four parameters that appear on Fig.2: §, the probability that the
algorithm could fail to return the correct output, and three parameters wholly
determined by the input set X: the number of input points n = | X|, the dimen-
sion d of those points, and the size k = |skyline(X)| of the skyline (output).
There is a substantial gap between the lower bounds and the upper bounds
achieved by the skyline algorithms in [18]. In particular, the authors raised the
question whether the skyline could be computed in o(nk) for any constant d. In
this paper, we tighten the gap between the lower and upper bounds and settle
this open question.

Contributions. We propose 2 new algorithms that compute skylines with prob-
ability at least 1 — ¢ and establish a lower bound:

Algorithm SkyLowDim (X, §) computes the skyline in O(ndlog(dk/§)) query
complexity and O(ndlog(dkd) + ndk) overall running time.

Algorithm SkyHighDim(X, ) computes the skyline in O(ndklog(k/d))

— 2(ndlogk) queries are necessary to compute the skyline when d < k.

— Additionally, we show that Algorithm SkyLowDim can be adapted to com-
pute the skyline with O(ndlog(dk)) comparisons in the noiseless setting.

Our first algorithm answers positively the above question from [18]. Together
with the lower bound, we thus settle the case of low dimensions, i.e., when there
is a constant ¢ such that d < k°. Our 2 skyline algorithms both shave off a factor
k from the corresponding bounds in the state of the art [18], as illustrated in
Fig. 2 with respect to query complexity. SkyLowDim is a randomized algorithm
that samples the input, which means it may fail to compute the skyline within
the bounds even when comparisons are guaranteed correct. However, we show
that our algorithm can be adapted to achieve deterministic O(ndlog(dk)) for
this specific noiseless case.

As a subroutine for our algorithms, we developed a new algorithm to evaluate
disjunctions of boolean variables with noise. Algorithm NoisyFirstTrue is, we
believe, interesting in its own right: it returns the index of the first positive
variable in input order, with a running time that scales linearly with the index.
Technical Core of Our Algorithms. The algorithm underlying the two bounds for
k < n in [18] recovers the skyline points one by one. It iteratively adds to the
skyline the maximum point, in lexicographic order, among those not dominated
by the skyline points already found.! However, the algorithm in [18] essentially
considers the whole input for each iteration. Our two algorithms, on the opposite,
can identify and discard some dominated points early. The idea behind our

! The difference between those two bounds is due to different subroutines to check
dominance.
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[18] O(ndlog(nd/s))"|O(ndklog(dk/$))|O(ndk?log(k/3)) |4 : dimension

this paper — O(ndlog(dk/é))T O(ndklog(k/5)) | # input points
) . . k : # skyline points
SkyLowDim | SkyHighDim |5 error rate tolerated

best when: ke 2(log(dn)) d<k°<n k<d

Fig. 2. Query complexity of skyline algorithms depending on the values of k. For
t_labeled bounds, the running time is larger than the number of queries.

algorithm SkyHighD — param is that it is more efficient to separate the two
tasks: (i) finding a point p not dominated by the skyline points already found,
on the one hand, and (ii) computing a maximum point (in lexicographic order)
among those dominating p, on the other hand. Whenever a point is considered
for step (i) but fails to satisfy that requirement, the point can be discarded
definitively. The O(ndk) skyline algorithm from [13] for the noiseless setting
also decomposes the two tasks, although the point they choose to add to the
skyline in each of the k iteration is not the same as ours.

Our algorithm SkyLowD — param can be viewed as a 2-steps algorithm
where the first step prunes a huge fraction of dominated points from the input
through discretization, and the second step applies a cruder algorithm on the
surviving points. We partition the input into buckets for discretization, iden-
tify “skyline buckets” and discard all points in dominated buckets. The bucket
boundaries are defined by sampling the input points and sorting all sample points
in each dimension. In the noisy comparison model, the approach of sampling the
input for some kind of discretization was pioneered in [8] for selection problems,
but with rather different techniques and objectives. One interesting aspect of
our discretization is that a fraction of the input will be, due to the low query
complexity, incorrectly discretized yet we are able to recover the correct skyline.

Our lower bound constructs a technical reduction from the problem of iden-
tifying null vectors among a collection of vectors, each having at most one non-
zero coordinate. That problem can be studied using a two-phase process inspired
from [15].

Related Work. The noisy comparison model was considered for sorting and
searching objects [15]. While any algorithm for that model can be reduced to
the noiseless comparison model at the cost of a logarithmic factor (boosting
each comparison so that by union bound all are correct), [15] shows that this
additional logarithmic factor can be spared for sorting and for maxima queries,
though it cannot be spared for median selection. [17,26] and [8] investigate the
trade-off between the total number of queries and the number of rounds for (vari-
ants of) top-k queries in the noisy comparison model and some other models.
The noisy comparison model has been refined in [14] for top-k queries, where
the probability of incorrect answers to a comparison increase with the distance
between the two items.

Other models for uncertain data have also been considered in the literature,
where the location of points is determined by a probability distribution, or when
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data is incomplete. Some previous work [3,27] model uncertainty about the out-
put by computing a p-skyline: points having probability at least p to be in the
skyline. We refer to [5] for skyline computation using the crowd and [23] for a
survey in crowdsourced data management.

Our paper aims to establish the worst-case number of comparisons required
to compute skylines with output-sensitive algorithms, i.e., when the cost is
parametrized by the size of the result set. While one of our algorithm is random-
ized, we do not make any further assumption on the input (we do not assume
input points are uniformly distributed, for instance). In the classic noiseless com-
parison model, the problem of computing skylines has received a large amount of
attention i7,20,22]. For any constant d, [20] show that skylines can be computed
in O(nlog?~2k). In the RAM model, the fastest algorithms we are aware of run in
O(nlog?3n) expected time [10], and O(nloglogn/kn(logn/kn)d*3 deterministic
time [2]. When d € {2,3}, the problem even admits “instance-optimal” algo-
rithms [4]. [11] investigates the constant factor for the number of comparisons
required to compute skyline, when d € {2,3}. The technique does not seem to
generalize to arbitrary dimensions, and the authors ask among open problems
whether arbitrary skylines can be computed with fewer than dnlogn compar-
isons. To the best of our knowledge, our O(ndlog(dk)) is the first non-trivial
output-sensitive upper bound that improves on the folklore O(dnk) for comput-
ing skylines in arbitrary dimensions. Many other algorithms have been proposed
that fit particular settings (big data environment, particular distributions, etc),
as evidenced in the survey [19], but those works are further from ours as they
generally do not investigate the asymptotic number of comparisons. Other sky-
line algorithms in the literature for the noiseless setting have used bucketing.
In particular, [1] computes the skyline in a massively parallel setting by par-
titioning the input based on quantiles along each dimension. This means they
define similar buckets to ours, and they already observed that the buckets that
contain skyline points are located in hyperplanes around the “bucket skyline”,
and therefore those buckets only contain a small fraction of the whole input.
Organization. In Sect. 2, we recall standard results about the noisy comparison
model and introduce some procedure at the core of our algorithms. Section 3
introduces our algorithm for high dimensions (Theorem 4) and Sect. 4 introduces
the counterpart for low dimensions (Theorem 6). Section 5 establishes our lower
bound (Theorem 7).

2 Preliminaries

The complexity measured is the number of comparisons in the worst case. When-
ever the running time and the number of comparisons differ, we will say so. With
respect to the probability of error, our algorithms are supposed to fail with prob-
ability at most §. Following standard practice we only care to prove that our
algorithms have error in O(0): 54, for instance, because the asymptotic com-
plexity of our algorithms would remain the same with an adjusted value for the
parameter: ¢’ = 4/5.
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Given two points, p = (p1,p2...,pd) and ¢ = (q1,G2 . - ., ¢4) point p is lexico-
graphically smaller than ¢, denoted by p <iex q , if p; < g; for the first ¢ where
p; and ¢; differ. If there is no such ¢, meaning that the points are identical, we
use the id of the points in the input as a tie-breaker, ensuring that we obtain a
total order. We next describe and name algorithms that we use as subroutines
to compute skylines.

Algorithm NoisySearch takes as input an element y, an ordered list
(y1,92,---,Ym), accessible by comparisons that each have error probability at
most p, and a parameter §. The goal is to output the interval I = (y;_1,y;] such
that y € I.

Algorithm NoisySort relies on NoisySearch to solve the noisy sort prob-
lem. It takes as input an unordered set Y = {y1, 42, ..., ym}, and a parameter d.
The goal is to output an ordering of Y that is the correct non-decreasing sorted
order. In the definition above, the order is kept implicit. In our algorithms,
the input items are d-dimensional points, so NoisySort will take an additional
argument ¢ indicating on which coordinate we are sorting those points.

Algorithm NoisyMax returns the maximum item in the unordered set Y
whose elements can be compared, but we will rather use another variant: algo-
rithm MaxLex takes as input an unordered set Y = {y1, 92, ...,Ym}, a point
and a parameter §. The goal is to output the maximum point in lexicographic
order among those that dominate z. Algorithm SetDominates is the boolean
version whose goal is to output whether there exists a point in Y that domi-
nates x.

Algorithm NoisyFirstTrue takes as input a list (y1,¥s, ..., ¥m) of boolean
elements that can be compared to true with error probability at most p (typically
the result of some comparison or subroutines such as SetDominates). The goal
is to output the index of the first element with value true (and m+ 1, which we
assimilate to false, if there are none).?

Theorem 1 ([15,18])). When the input comparisons have error probability at
most p = 1/3, the table below lists the number of comparisons performed by the
algorithms to return the correct answer with success probability 1 — §:

Algorithm NoisyMax | NoisySort | NoisySearch | SetDominates | MaxLex
Comparisons O(mlog%) O(mlog) | O(log’3) O(mdlog%) O(mdlog%)

We denote by CheckVar(x,d) the procedure that checks if # = true with
error probability § by majority vote, and returns the corresponding boolean.

Theorem 2. Algorithm NoisyFirstTrue solves the first positive variable prob-
lem with success probability 1 —0 in O(j-log(1/5)) where j is the index returned.

2 Asin [18] (but with stronger bounds), this improves upon an O(mlog(1/4)) algorithm
from [15] that only answers whether at least one of the elements is true.
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Proof. The proof, left for the long version [24], shows that the error (resp. the
cost) of the whole algorithm is dominated by the error (resp. the cost) of the
last iteration.

Algorithm NoisyFirstTrue(zy,...,2,,0) (see Theorem 2)
input: {z1,...,z,} set of boolean random variables, § error probability
output: the index j of the first positive variable, or n + 1 (=false).

73— 1
8 —45/2
while ¢ < n do
j < NoisyOr(z1,...,z;,d8")
if CheckVar(z;,d’/2") then
return j
else
1— 2.1
return false

3 Skyline Computation in High Dimension

We first introduce Algorithm SkyHighD — param which assumes that an esti-
mate k of k is known in advance. We will show afterwards how we can lift that
assumption.

Theorem 3. Given 6 € (0,1/2) and a set X of data items, SkyHighD—
param(X, ) outputs min(|X|, k) skyline points, with probability at least 1 — 4.
The running time and number of queries is O(ndklog(k/9)).

Proof. Each iteration through the loop adds a point to the skyline S with proba-
bility of error at most &/k. The final result is therefore correct with success prob-
ability 1 — 4. The complexity is O((i’ — i) * dklog(k/8)) to find a non-dominated
point p;s at line 3, and O(ndlog(ic/é)) to compute the maximal point above p;
at line 4. Summing over all iterations, the running time and number of queries
is O(ndklog(k/5)).

Algorithm SkyHighD — param(X, ) needs a good estimate of the skyline
cardinality k € O(k) to return the skyline in O(ndklog(k/d)). To guarantee that
complexity, algorithm SkyHighDim exploits the classical trick from Chan [9] of
trying a sequence of successive values for k — a trick that we also exploit in algo-

rithms NoisyFirstTrue and SkyLowDim. The sequence grows exponentially
to prevent failed attempts from penalizing the complexity.

Theorem 4. Givend € (0,1/2) and a set X of data items, SkyHighDim(X, ¢)
outputs a subset of X which, with probability at least 1 — §, is the skyline. The
running time and number of queries is O(ndklog(k/J)).

Proof. The proof is relatively straightforward and left for the long version.
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Algorithm SkyHighD — param(k, X, ) (see Theorem 3)

input: X = {p1,...,pn} set of points, k upper bound on skyline size, § error
probability

output: min{k,skyline(X)} skyline points w.p. 1 — &

L: Initialize S 0, i1
2: while i # —1 and |S| < k do
i’ « index of the first point p;; not dominated by current skyline points.*

w

{Find a skyline point dominating p;}

Compute p* — MaxLex(p;/, {pi,---,Pn}, 6/(21;))
S—Su{p’}

i1

: Output S

A

This point can be computed using algorithm NoisyFirstTrue on the
boolean variables: —SetDominates(S, pi,5/(2k)),..., —SetDominates(S,p,,
6/(2k)), where we denote by — the negation. This means that ~SetDominates
(S, pn,8/(2k)) returns true when the procedure SetDominates(S, p,, §/(2k)) indi-
cates that p, is not dominated.

Algorithm SkyHighDim(X, ) (see Theorem 4)
input: X set of points, § error probability
output: skyline(X) w.p. 1 —4¢

1: Initialize j — 0, k «— 1

2: repeat

3t je—j+1;k«2k;S— SkyHighD — param(k, X,§/27)
4: until |S| <k

5: Output S

4 Skyline Computation in Low Dimension

Let us first sketch our algorithm SkyLowD — param(k, X, ). The algorithm
works in 3 phases. The first phase partitions input points in buckets. We sort the
i-th coordinate of a random sample to define s + 1 intervals in each dimension
i € [d], hence (s + 1) buckets, where each bucket is a product of intervals of
the form [], /;; then we assign each point p of X to a bucket by searching in
each dimension for the interval I; containing p;. Of course we do not materialize
buckets that are not assigned any points.

The second phase eliminates irrelevant buckets: those that are dominated by
some non-empty bucket and therefore have no chance of containing a skyline
point. In short, the idea is to identify the “skyline of the buckets”, and use it
to discard the dominated buckets, as defined in Sect.4.2. With high probability
the bucketization obtained from the first phase will be “accurate enough” for
our purpose: it will allow to identify efficiently the irrelevant buckets, and will
also guarantee that the points in the remaining buckets form a small fraction of
the input (provided k and d are small).
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In phase 3, we thus solve the skyline problem on a much smaller dataset,
calling Algorithm SkyHighD — param to find the skyline of the remaining
points.? The whole purpose of the bucketization is to discard most input points
while preserving the actual skyline points, so that we can then run a more
expensive algorithm on the reduced dataset.

Figure 3 illustrates our algorithm: the grey buckets (¢, f,g) are dominated
by some (non-empty) orange buckets (a,b,d,e) so they cannot contain skyline
points: in phase 3, the algorithm solves the reduced problem on the points con-
tained in the orange buckets.

4.1 Identifying “Truly Non-empty” Buckets

Our bucketization does not guarantee that all points are assigned to the proper
bucket, because it would be too costly with noisy comparisons. In particular,
empty buckets may erroneously be assumed to contain some points (e.g., the
buckets above a,b on Fig.3). Those empty buckets also are irrelevant, even if
they are not dominated by the “skyline” buckets. To drop the irrelevant buckets,
we thus design a subroutine First-Nonempty-Bucket that processes a list of
buckets, and returns the first bucket that really contains at least one point.
Incidentally, we will not double-check the emptiness of every bucket using this
procedure, but will only check those that may possibly belong to the skyline:
those that we will define more formally as buckets of type (i), (ii) and (iv) in
the proof of Theorem 5. We could not afford to “fix” the whole assignment as it
may contain too many buckets.

In the First-Nonempty-Bucket problem, the input is a sequence of pairs
[(B1,X1),...,(Bn, X)) where B; is a bucket and X is a set of points. The goal is
to return the first ¢ such that B; N X; # () with success probability 1 —4. The test
B;NX; # () can be formulated as a DNF with | X;| conjunctions of O(d) boolean
variables each. To solve First-Nonempty-Bucket, we can flatten the formulas
of all buckets into a large DNF with conjunctions of O(d) boolean variables (one
conjunction per bucket point). We call FirstBucket([(B1, X1), ..., (Bn, X,)],0)
the algorithm that executes NoisyFirstTrue to compute the first true conjunc-
tion, while keeping tracks of which point belongs to which bucket with pointers:

Lemma 1. Algorithm FirstBucket([(B1, X1),. .., (Bn, Xn)],d) solves problem
First-Nonempty-Bucket in O(3_,; d - |X;|log(1/0)) with success probability
1 — 6, where j is the index returned by the algorithm.

4.2 Domination Relationships Between Buckets

In the second phase, Algorithm SkyLowD — param(k, X, ) eliminates irrele-
vant buckets. To manage ties, we need to distinguish two kinds of intervals: the

3 Alternatively, one could use an algorithm provided by Groz and Milo [18], it is only
important that the size of the input set is reduced to n/k to cope with the larger
runtime of the mentioned algorithms.
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Fig. 3. An illustration of the bucket dominance and its role in SkyLowD — param.
Here bucket b dominates ¢ and f but not a, d, e or g. Buckets ¢, f, g are dominated by
some non-empty bucket and therefore cannot contain a skyline point. Bucket a does
not contain a skyline point, but this cannot be deduced from the bucket assignments,
therefore points in bucket a are passed on to the reduced problem. In this figure we may
assume to simplify that a bucket contains its upper boundary. But in our algorithm
bucket a would actually contain only the 4 leftmost points, and the fifth point would
belong to a distinct bucket with a trivial interval on z. (Color figure online)

trivial intervals that match a sample coordinate: I = [z, z], and the non-trivial
intervals I =la,b[ (a < b) contained between samples (or above the largest
sample, or below the smallest sample). To compare easily those intervals, we
adopt the convention that for a non-trivial interval I =]a,b[, min I = a + € and
max I = b — € for some infinitesimal ¢ > 0: ¢ = (b — a)/3 would do. We say
that a bucket B = [[, I; is dominated by a different bucket B’ = [], I} if in
every dimension max I; < min If. Equivalently: we say that B’ dominates B
if every point (whether in the dataset or hypothetical) in B’ dominates every
point in B. The idea is that no skyline point belongs to a bucket dominated by a
non-empty bucket. We observe that the relative position of buckets is known by
construction, so deciding whether a bucket dominates another one may require
time O(d) but does not require any comparison query.

Figure 3 illustrates the relevant and discarded buckets. On that figure, we
depicted a few empty buckets above the skyline that are erroneously assumed
to contain some points as a result of noise during the assignment. Of course,
there are also incorrect assignments of points into empty or non-empty buckets
below the skyline, as well as incorrect assignments into the “skyline buckets”.
These incorrect assignments are not an issue as long as there are not too many of
them: dominated buckets will be discarded as such, whether empty or not, and
the few irrelevant points maintained into the reduced dataset will be discarded
in phase 3, when the skyline of this dataset is computed.
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4.3 Algorithm and Bounds for Skyline Computation in Low
Dimension

Theorem 5. Given 6 € (0,1/2), k> 0, and a set X of data items, algorithm
SkyLowD — param(l%, X, 0) outputs min(| X/, lAc) skyline points, with probability
at least 1 — 8. The number of queries is O(ndlog(dk/8)). The running time is
O(ndlog(dk/8) + nd - min(k, | skyline(X))))

Proof. The proof, left for the long version, first shows by Chernoff bounds that
the assignment satisfies with high probability some key properties: (1) few points
are erroneously assigned to incorrect buckets (2) the skyline points are assigned
to the correct bucket, and (3) there are at most O(n/(dk?)) points on any hyper-
plane (i.e., in buckets that are ties on some dimension). The proof then shows
that:

— there are at most O(n/l%) points in the reduced problem. This is because those
points belong to skyline buckets or buckets that are tied with a skyline bucket
on at least one dimension (every other non-empty bucket is dominated), and
property (3) of the assignment guarantees that the union of all such buckets
has at most O(n/k) points.

— the buckets above the skyline buckets which are erroneously assumed to con-
tain points can quickly be identified and eliminated since they contain few
points.

Algorithm SkyLowD — param(l%,X ,0) needs a good estimate of the sky-
line cardinality to return the skyline in O(ndlog(dk/d)): we must have k > k

and log(k) € O(log(k)). Algorithm SkyLowDim(X, ) (left for the long version)
guarantees the complexity by trying a sequence of successive values for k. The
successive values in the sequence grow super exponentially (similarly to [9,18])
to prevent failed attempts from penalizing the complexity.

Theorem 6. Given § € (0,1/2) and a set X of data items, SkyLowDim(k,
X,0) outputs a subset of X which, with probability at least 1 — 0, is the sky-

line. The number of queries is O(ndlog(dk/d)). The running time is O(ndlog
(dk/0) + ndk).

Proof. For iteration j, the algorithm bounds the probability of error by §/27,
and the corresponding cost is given by Theorem 5, hence the complexity we
claim by summing those terms over all iterations.

Remark 1. In the noiseless setting, we could adopt the same sampling approach
to assign points to buckets and reduce the input size. On line 18 we could use
any noiseless skyline algorithm such as the O(ndk) algorithm from [13], or our
own similar SkyHighDim which can clearly run in O(dnk) in the noiseless
case. The cost of the bucketing phase remains O(ndlog(dk/6)). The elimination
phase becomes rather trivial since all points get assigned to their proper bucket,
and therefore there is no need to check buckets for emptiness as in Line 13. By
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Algorithm SkyLowD — param(k, X, 8) (see Theorem 5)
input: k integer, X set of points, § error probability

output: min{k, |skyline(X)|} points of skyline(X)

error probability: §

1: if k°>nord® > nor (log(1/8))° > n then

2:  Compute the skyline by sorting every dimension, as in [18]. Return that skyline.
3: §' « §/(2dk)® and s « dk?log(d*k?/5")
{Phase (i): bucketing}
4: for each dimension i € {1,2,...,d} do
5: S, « NoisySort(sample of X of size s,i,d’/d)
6:  Remove duplicates so that, with prob. 1 —§’/d, the values in S; are all distinct.®
7: for each point p € X do
8:  Place p in set Xp associated to B = Hle I;, with I; = NoisySearch(p;, S;,
&'/ (dk)).
9: Drop all empty buckets (those that were assigned no point).
10: Sort buckets into a sequence Bi, ..., By so that each bucket comes before buckets

it dominates.

{Phase (ii): eliminating irrelevant buckets}

11: Initialize X' < 0, 1 « 1

12: while i # —1 do

13: i — FirstBucket([(B1, X35,), ..., (Bn, XB,)],8' /k))

14: X' — X'UXjp,

15:  if |X'| > 8n/k then

16: Raise an error.

17:  Drop from By, ..., By all buckets dominated by B;, and also buckets B; to B;.
{Phase (iii): solve reduced problem}

18: Output SkyHighDim(X’,§’).

*Note that X can contain points sharing the same coordinate meaning that the S;
are not necessarily distinct.

setting 0 = 1/k failures are scarce enough so that the higher cost of O(ndk) in
case of failure is covered by the cost of an execution corresponding to a satisfying
sample. Consequently, the expected query complexity is O(ndlog(dk)), and the
running time O(ndlog(dk) + ndk).

Better yet: we can replace random sampling with quantile selection to obtain
a deterministic algorithm with the same bounds. Algorithms for the multiple
selection problem are surveyed in [11]. Actually, our algorithm can be viewed
as some kind of generalization to higher dimensions of an algorithm from [11]
which assigns points to buckets before recursing, the buckets being the quantiles
along one coordinate.

5 Skyline Lower Bound

To achieve meaningful lower bounds (that do not reduce to the noiseless setting),
we assume here that the input comparisons have a probability of error at least
1/3. Of course, we just need the probability to be bounded away from 0.
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Theorem 7. For anyn > k > d > 0, any algorithm that recovers with error
probability at most 1/10 the skyline for any input having exactly k skyline points,
requires 2(ndlog(k/d)) queries in expectation on a worst-case input.

Proof. The proof is left for the long version.

6 Conclusion and Related Work

We introduced 2 algorithms to compute skylines with noisy comparisons. The
most involved shows that we can compute skylines in O(ndlogdk/J) comparisons.
We also show that this bound is optimal when the dimensions is low (d < k¢
for some constant ¢), since computing noisy skylines requires {2(dnlogk) com-
parisons. All our algorithms but SkyLowDim in O(ndlogdk/d) are what we
call trust-preserving([18]), meaning that when the probability of errors in input
comparisons is already at most § < 1/3, we can discard from the complexity the
dependency in ¢ (replacing § by some constant).

We leave open the question of the optimal number of comparisons required
to compute skylines for arbitrarily large dimensions. Even in the noiseless case,
it is not lear whether the skyline could be computed in O(dnlogk) comparisons.
Our algorithm is output sensitive (the running time is optimized with respect
to the output size) but we did not investigate its instance optimality. However,
knowing the input set up to a permutation of the points does not seem to help
identifying the skyline points in the noisy comparison model, so we believe that
for every k and on any input of skyline cardinality k, even with this knowledge
any skyline algorithm would still require £2(dnlogk) comparisons. We leave open
the question of establishing such a stronger lower bound.
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