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Abstract. Mader conjectured in 2010 that for any tree T of order m,
every k-connected graph G with minimum degree at least � 3k

2
� + m − 1

contains a subtree T ′ ∼= T such that G − V (T ′) is k-connected. This
conjecture has been proved for k = 1; however, it remains open for gen-
eral k ≥ 2; for k = 2, partially affirmative answers have been shown,
all of which restrict the class of trees to special subclasses such as trees
of order at most 8, trees with diameter at most 4, trees with at most
5 internal vertices, and caterpillars. Instead of restricting the class of
trees, we consider 2-connected graphs with girth conditions. We then
show that Mader’s conjecture is true for every 2-connected graph G with
g(G) ≥ δ(G) − 6, where g(G) and δ(G) denote the girth of G and the
minimum degree of a vertex in G, respectively. Besides, we show that
for every 2-connected graph G with g(G) ≥ δ(G) − 3, the lower bound
of m + 2 on δ(G) in Mader’s conjecture can be improved to m + 1 if
m ≥ 6. Moreover, the lower bound of δ(G)−6 (respectively, δ(G)−3) on
g(G) in these results can be improved to δ(G)− 7 (respectively, δ(G)− 4
with m ≥ 7) if no six (respectively, four) cycles of length g(G) have a

common path of length
⌈

g(G)
2

⌉
−1 in G. Mader’s conjecture is interesting

not only from a theoretical point of view but also from a practical point
of view, since it may be applied to fault-tolerant problems in commu-
nication networks. Our proofs lead to O(|V (G)|4) time algorithms for
finding a desired subtree in a given 2-connected graph G satisfying the
assumptions.
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1 Introduction

Throughout this paper, a graph G = (V,E) means a simple undirected graph
unless stated otherwise. The minimum degree of a vertex in G is denoted by
δ(G). For a proper subset S � V (G), we denote by G − S the graph obtained
from G by deleting every vertex in S, where G − {v} is abbreviated to G − v.
For two sets A and B, we denote by A \ B the set difference {x | x ∈ A, x �∈ B}.
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For a nonempty subset S ⊆ V (G), the subgraph of G induced by S is denoted
by 〈S〉G, i.e., 〈S〉G = G − (V (G) \ S).

In 1972, Chartrand, Kaigars, and Lick proved the following result on the
existence of a vertex whose removal does not influence k-connectedness of a
graph.

Theorem 1 (Chartrand, Kaigars, and Lick [1]). Every k-connected graph G
with δ(G) ≥ � 3k

2 	 contains a vertex v such that G − v is k-connected.

After more than 30 years, Fujita and Kawarabayashi considered a similar
problem for an edge of a graph and showed the following.

Theorem 2 (Fujita and Kawarabayashi [3]). Every k-connected graph G with
δ(G) ≥ � 3k

2 	 + 2 contains an edge uv such that G − {u, v} is k-connected.

In the same paper, they conjectured the next statement.

Conjecture 1. There is a function f(m) such that every k-connected graph G
with δ(G) ≥ � 3k

2 	 + f(m) contains a connected subgraph W of order m such
that G − V (W ) is k-connected.

Note that the condition that W is connected is essential, since by iteratively
applying Theorem1, we can see that every k-connected graph G with δ(G) ≥
� 3k

2 	+m−1 contains a subgraph X of order m such that G−V (X) is k-connected.
In 2010, Mader [8] settled Conjecture 1 by showing the following result. Mader’s
result in fact improves the lower bound on δ(G) in Theorem 2 and generalizes
Theorem 1.

Theorem 3 (Mader [8]). Every k-connected graph G with δ(G) ≥ � 3k
2 	+m−1

contains a path P of order m such that G − V (P ) is k-connected.

Based on this result, Mader conjectured the following, i.e., a path in Theo-
rem 3 can be generalized to any tree of the same order.

Conjecture 2 (Mader [8]). For any tree T of order m, every k-connected graph
G with δ(G) ≥ � 3k

2 	 + m − 1 contains a subtree T ′ ∼= T such that G − V (T ′) is
k-connected.

Mader’s conjecture is a generalization not only from Theorem1 but also from
the next well-known result on the existence of a subtree isomorphic to any given
tree.

Proposition 1. For any tree T of order m, every graph G with δ(G) ≥ m − 1
contains a subtree T ′ ∼= T .

Apart from Mader’s conjecture, Locke’s conjecture concerning nonseparating
trees in connected graphs is known. A k-cohesive graph is a non-trivial connected
graph in which for any two distinct vertices u and v, the sum of the degrees of
u and v and the distance between u and v is at least k.



318 T. Hasunuma

Conjecture 3 (Locke [5]). For any tree T of order m ≥ 3, every 2m-cohesive
graph G has a subtree T ′ ∼= T such that G − V (T ′) is connected.

Motivated by Locke’s conjecture, Diwan and Tholiya proved a theorem which
is weaker than the conjecture, but it is the same as Mader’s conjecture for
k = 1 (Mader in fact mentioned their result in the paper [8]). Note that if G is
connected and δ(G) ≥ m, then G is 2m-cohesive.

Theorem 4 (Diwan and Tholiya [2]). For any tree T of order m, every con-
nected graph G with δ(G) ≥ m contains a subtree T ′ ∼= T such that G − V (T ′)
is connected.

For general k ≥ 2, Mader’s conjecture remains open; however for k = 2,
partially affirmative answers have been shown. Tian et al. [10] first proved that
Mader’s conjecture for k = 2 is true when T is a star or a double-star, and
they [11] further extended their results to a path-star or a path-double-star.
Hasunuma and Ono [4] showed that for any tree T of order m, every 2-connected
graph G with δ(G) ≥ max{m+n(T )− 3,m+2} contains a subtree T ′ ∼= T such
that G − V (T ′) is 2-connected, where n(T ) is the number of internal vertices
of T . As a corollary, it follows that Mader’s conjecture for k = 2 holds for any
tree T with n(T ) ≤ 5 and for any tree of order m ≤ 8. Lu and Zhang [6] also
proved that Mader’s conjecture for k = 2 is true for any tree with diameter at
most 4. Very recently, it was reported that Lu and Ye [7] proved that Mader’s
conjecture for k = 2 holds for any caterpillars. Note that every known result
which is a partially affirmative answer to Mader’s conjecture for k = 2 restricts
the class of trees to special subclasses. In this paper, we employ another approach
to Mader’s conjecture for k = 2. Namely, we add girth conditions to 2-connected
graphs. The girth of a 2-connected graph G denoted by g(G) is the length of a
smallest cycle in G. We then show that Mader’s conjecture is true for every 2-
connected graph G with girth at least δ(G)− 6. Note that for any given integers
r ≥ 2 and g ≥ 3, there exists an r-regular graph with girth g, which has been
shown in [12].

Theorem 5. For any tree T of order m, every 2-connected graph G with δ(G) ≥
m + 2 and g(G) ≥ δ(G) − 6 contains a subtree T ′ ∼= T such that G − V (T ′) is
2-connected.

By increasing the lower bound of δ(G)−6 on g(G), we can improve the lower
bound of m + 2 on δ(G) to m + 1 if m ≥ 6. Namely, a stronger statement holds
in such a case.

Theorem 6. For any tree T of order m ≥ 6, every 2-connected graph G with
δ(G) ≥ m+1 and g(G) ≥ δ(G)−3 contains a subtree T ′ ∼= T such that G−V (T ′)
is 2-connected.

Moreover, by adding structural conditions, we can improve the girth condi-
tions in Theorems 5 and 6.
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Theorem 7. For any tree T of order m, every 2-connected graph G with δ(G) ≥
m+2 and g(G) ≥ δ(G)−7 in which no six cycles of length g(G) have a common
path of length

⌈
g(G)
2

⌉
− 1 contains a subtree T ′ ∼= T such that G − V (T ′) is

2-connected.

Theorem 8. For any tree T of order m ≥ 7, every 2-connected graph G with
δ(G) ≥ m+1 and g(G) ≥ δ(G)−4 in which no four cycles of length g(G) have a
common path of length

⌈
g(G)
2

⌉
−1 contains a subtree T ′ ∼= T such that G−V (T ′)

is 2-connected.

Mader’s conjecture is interesting not only from a theoretical point of view
but also from a practical point of view, since it may be applied to fault-tolerant
problems in communication networks. That is, it is considered that Mader’s
conjecture guarantees the reliability of a communication network for a faulty
subtree structure rather than a set of faulty vertices. Our proofs are constructive
and lead to O(|V (G)|4) time algorithms for finding a desired subtree in a given
2-connected graph G in Theorems 5 and 6 (respectively, Theorems 7 and 8) if
g(G) ≥ δ(G) − 3 (respectively, g(G) ≥ δ(G) − 4).

This paper is organized as follows. Section 2 presents notations, terminology,
and known results used in this paper. Section 3 gives an outline of our proofs.
Detailed proofs of Theorems 5 and 6 (respectively, Theorems 7 and 8) are given in
Sect. 4 (respectively, Sect. 5). Section 6 concludes the paper with several remarks.

2 Preliminaries

For a nonempty subset E′ ⊆ E(G), we denote by G − E′ and 〈E′〉 the graph
obtained from G by deleting every edge in E′ and the edge-induced subgraph of
G by E′, respectively. For v ∈ V (G), we denote by NG(v) the set of neighbors of
v in G, i.e., vertices adjacent to v in G. The cardinality of NG(v) may be written
by degG(v). Let Δ(G) = maxv∈V (G) degG(v). For S ⊆ V (G), NG(S) is defined
as (∪v∈SNG(v)) \ S. For G′ ⊆ G, let NG(G′) = NG(V (G′)).

A component of G is a maximal connected subgraph of G, while a block of
G is a maximal connected subgraph of G without a cut vertex. A cyclic block
is a block with order at least 3. For a tree T , the set of internal vertices, i.e.,
vertices with degree at least two, is denoted by VI(T ), while the set of leaves,
i.e., vertices with degree one, is denoted by VL(T ). For a vertex v of a tree T , if
v is adjacent to at least degT (v) − 1 leaves, then v is called a pseudo-leaf of T .
A caterpillar is a tree T such that 〈VI(T )〉T is a path if VI(T ) �= ∅.

We denote by dG(u, v) the distance between two vertices u and v in
a connected graph G. The eccentricity eccG(v) of v in G is defined as
maxw∈V (G) dG(v, w). A central vertex of G is a vertex u with eccG(u) =
minv∈V (G) eccG(v), while a peripheral vertex is a vertex u with eccG(u) =
maxv∈V (G) eccG(v). The diameter of a connected graph G denoted by diam(G)
is the maximum distance for every pair of vertices in G, i.e., diam(G) =
maxu,v∈V (G) dG(u, v). Let diam(G) = 0 if |V (G)| = 1.

Proposition 1 can be stated in a more general form as follows.
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Lemma 1 [4]. Let T be a tree of order m and S a subtree obtained from T
by deleting leaves adjacent to a vertex in VS ⊆ VI(T ). If a graph G contains a
subtree S′ ∼= S such that degG(u) ≥ m − 1 for any u ∈ {φ(v) | v ∈ VS} where φ
is an isomorphism from V (S) to V (S′), then G contains a subtree T ′ ∼= T such
that S′ ⊆ T ′.

Since any tree T of order m with diam(T ) ≥ m − 2 is a caterpillar and
Mader’s conjecture holds for any caterpillars [7], the following result is obtained.

Lemma 2. For any tree T of order m with diam(T ) ≥ m−2, Mader’s conjecture
for k = 2 is true.

An orientation D of a graph G is a directed graph obtained from G by
replacing each edge by an arc (directed edge) with the same end-vertices. The
outdegree deg+D(v) (respectively, indegree deg−

D(v)) of a vertex v in D is the
number of arcs from (respectively, to) v in D. If for any v ∈ V (G), degG(v) is
even, then G is eulerian and has an orientation D in which for any v ∈ V (D),
deg+D(v) = deg−

D(v). If G has a vertex with odd degree, we can find a directed
walk W connecting two vertices with odd degree, and by inductively applying a
similar discussion for G−E(W ), we can see the following lemma holds. We here
remark that Lemma 3 holds for multigraphs.

Lemma 3. Every graph G has an orientation D such that |deg+D(v)−deg−
D(v)| ≤

1 for any v ∈ V (D).

3 Outline of Proofs

In this section, we explain the outline of our constructive proofs and the time
complexity for the algorithms based on the proofs.

Let T be a tree of order m. Let G be a 2-connected graph with δ(G) ≥ m+2.
From Proposition 1, G contains a subtree T ′ ∼= T . Let B be a maximum block
in G − V (T ′), i.e., a block with the maximum order among all the blocks in
G−V (T ′). Note that B is a cyclic block since δ(G−V (T ′)) ≥ 2. If B = G−V (T ′),
then T ′ is a desired subtree. Suppose that B �= G−V (T ′). Then there is a vertex
in G−V (T ′)∪V (B). For any vertex w ∈ V (G)\(V (T ′)∪V (B)), |NG(w)∩V (B)| ≤
1. Now let P = (v1, v2, . . . , vt), where v1, vt ∈ V (B) and vi �∈ V (B) for 1 < i < t,
be a shortest path among all the paths of G connecting two vertices in B such
that every internal vertex is not in B. Since G is 2-connected, there are internally
disjoint paths from a vertex in G − V (B) to two vertices in B. Thus, P is well-
defined. Suppose that t ≥ 4. Then, we have that NG(v2) ∩ V (B) = {v1} and
NG(v2) ∩ V (P ) = {v1, v3}. Therefore, |NG(v2) \ (V (P ) ∪ V (B))| ≥ m + 2 − 2 ≥
m, which implies that V (G) \ (V (P ) ∪ V (B)) �= ∅. Let w be any vertex in
G − V (P ) ∪ V (B). By the definition of P , w can be adjacent to at most three
vertices in V (B) ∪ V (P ). Thus, δ(G − V (P ) ∪ V (B)) ≥ m + 2 − 3 = m − 1.
Hence, by Proposition 1, G − V (P ) ∪ V (B) contains a subtree T ′′ ∼= T such that
G − V (T ′′) has a block B′ ⊇ 〈V (B) ∪ V (P )〉G. Thus, we can find a block with
order at least |V (B)| + 2.
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Suppose that t = 3. Then v2 ∈ V (T ′). If there exists a subtree T ′′ in G −
V (B)∪{v2} such that T ′′ ∼= T , then G−V (T ′′) has a block B′ ⊇ 〈V (B)∪{v2}〉G,
i.e., we can find a block with order at least |V (B)|+1. If we have a manipulation
to find such a subtree T ′′, then by applying the manipulations for t ≥ 4 or
t = 3 iteratively, we finally obtain a desired subtree T ′′, i.e., T ′′ ∼= T such that
G − V (T ′′) is 2-connected. Therefore, if we can show the following statement,
then it is concluded that Mader’s conjecture for k = 2 is true.

Statement 1. Let T be a tree of order m and G a 2-connected graph with δ(G) ≥
m + 2. For any subtree T ′ ∼= T in G and a maximum block B in G − V (T ′), if
B �= G−V (T ′) and VB(T ′) = {u ∈ V (T ′) | |NG(u)∩V (B)| ≥ 2} �= ∅, then there
exist a vertex v ∈ VB(T ′) and a subtree T ′′ ∼= T in G − V (B) ∪ {v}.

The above manipulations can be algorithmically described as follows.

1. Compute a subtree T ′ ∼= T in G.
2. Compute a maximum block B in G − V (T ′).
3. If B = G − V (T ′) then output T ′ as a desired subtree of G and stop.
4. If B �= G − V (T ′) then compute a shortest path P connecting vertices in B

such that every internal vertex is not in B.
5. Compute a subtree T ′′ in G−V (B)∪V (P ), let T ′ = T ′′, and return to Step 2.

We here check the complexity of the above algorithm under the assumption
that there exists a constructive proof of Statement 1. A subtree T ′ ∼= T in G
can be computed in O(|E(G)|) time in Step 1, and a maximum block B can
also be found in O(|E(G)|) time in Step 2. In Step 4, a shortest path P can
be found by computing all shortest paths for vertices of V (B) in G − E(B).
Thus, it takes O(|V (G)|3) time. Since the number of iterations is O(|V (G)|),
if Statement 1 can be shown by a constructive proof from which a procedure
within O(|V (G)|3) time is obtained, we have an O(|V (G)|4) time algorithm.
These observations are summarized as follows.

Lemma 4. If Statement 1 holds, then G contains a subtree T ′ ∼= T such that
G−V (T ′) is 2-connected. Besides, if there is a procedure for Statement 1 within
O(|V (G)|3) time, we have an O(|V (G)|4) time algorithm for finding a desired
subtree.

Next, we consider the case that a 2-connected graph G has no triangle, i.e.,
g(G) ≥ 4. In such a case, we can show a similar lemma using the following
statement. Note that the minimum degree condition δ(G) ≥ m + 2 is replaced
with δ(G) ≥ m + 1 ≥ 3.

Statement 2. Let T be a tree of order m ≥ 2 and G a 2-connected graph with
δ(G) ≥ m+1 and g(G) ≥ 4. For any subtree T ′ ∼= T in G and a maximum block B
in G−V (T ′), if B �= G−V (T ′) and VB(T ′) = {u ∈ V (T ′) | |NG(u)∩V (B)| ≥ 2} �=
∅, then there exist a vertex v ∈ VB(T ′) and a subtree T ′′ ∼= T in G−V (B)∪{v}.
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Lemma 5. If Statement 2 holds, then G contains a subtree T ′ ∼= T such that
G−V (T ′) is 2-connected. Besides, if there is a procedure for Statement 2 within
O(|V (G)|3) time, we have an O(|V (G)|4) time algorithm for finding a desired
subtree.

Proof. We show that the algorithm for Lemma4 also works well under the
assumption that Statement 2 holds.

Let T ′ ⊂ G such that T ′ ∼= T . Let B be a maximum block in G − V (T ′).
Since δ(G − V (T ′)) ≥ 1, it may happen that B is not a cyclic block, i.e., B is
a block with two vertices. Note that if B is not a cyclic block, then B is not
2-connected. Suppose that B is not a cyclic block. Assume that B = G−V (T ′).
Then, |V (G)| = m + 2. Since δ(G) ≥ m + 1, G must be a complete graph
with at least four vertices, which contradicts the girth condition that g(G) ≥ 4.
Therefore, if B is not a cyclic block, then B �= G − V (T ′). Hence, in the case
that G − V (T ′) has no cyclic block, the algorithm does not incorrectly output a
subtree in Step 3.

Let P = (v1, v2, . . . , vt) be a shortest path between two vertices in B such that
every internal vertex is not in B. Suppose that t ≥ 4. By the definition of P and
the girth condition g(G) ≥ 4, any vertex w in G−V (P )∪V (B) can be adjacent
to at most two vertices in V (B) ∪ V (P ). Thus, δ(G − V (P ) ∪ V (B)) ≥ m − 1.
Therefore, G − V (P ) ∪ V (B) contains a subtree T ′′ ∼= T . Hence, if t ≥ 4, then
we can find a subtree T ′′ in G − V (P ) ∪ V (B) in Step 5. We here remark that
the condition m ≥ 2 is necessary to guarantee that V (G) \ (V (P ) ∪ V (B)) �= ∅.

For the time complexity, similarly to Lemma 4, we have an O(|V (G)|4) time
algorithm, if Statement 2 can be shown by a constructive proof which induces a
procedure within O(|V (G)|3) time. ��

Note that in Statement 2, if B is not a cyclic block, then by the girth condition
g(G) ≥ 4, we have that VB(T ′) = {u ∈ V (T ′) | |NG(u) ∩ V (B)| ≥ 2} = ∅. Thus,
in Statement 2, we may assume that a maximum block B is a cyclic block.

4 Proofs of Theorems 5 and 6

In order to show our main results, we prove the following lemma.

Lemma 6. Let T be a tree of order m and G a 2-connected graph with δ(G) ≥
m + 1 and g(G) ≥ diam(T ) − 1. For any subtree T ′ ∼= T in G and a maximum
block B in G − V (T ′), if B �= G − V (T ′) and VB(T ′) = {u ∈ V (T ′) | |NG(u) ∩
V (B)| ≥ 2} �= ∅, then there exist a vertex v ∈ VB(T ′) and a subtree T ′′ ∼= T in
G − V (B) ∪ {v} such that v and T ′′ can be found in O(|E(G)|) time.

Proof. Let T ′ ⊂ G such that T ′ ∼= T . Let B be a maximum block in G − V (T ′)
such that B �= G−V (T ′). Also, let v ∈ VB(T ′) and H = G−V (T ′)∪V (B). When
m ≤ 2, the lemma can be easily checked. Let m ≥ 3. Suppose that v is a leaf of T ′

and for the neighbor v′ of v in T ′, v′ �∈ VB(T ′), i.e., |NG(v′) ∩ V (B)| ≤ 1. Then,
|NG(v′)∩V (H)| ≥ 1. For any v′′ ∈ NG(v′)∩V (H), T ′′ = 〈(E(T ′−v)∪{v′v′′}〉 ∼= T
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such that T ′′ ⊂ G − V (B) ∪ {v}. Thus, w.l.o.g., we may assume that v is not a
leaf of T ′. Let S′ = 〈VI(T ′)〉T ′ . Then v ∈ V (S′). Since diam(S′) = diam(T ′)− 2,
g(G) ≥ diam(S′) + 1. We regard S′ as a rooted tree at v and denote by C(u)
the set of children of a vertex u in S′. Besides, we denote by h(S′) the height of
S′, i.e., h(S′) = eccS′(v).

Since δ(G) ≥ m + 1, it holds that for any vertex w ∈ V (H),
degG−V (B)∪{v}(w) ≥ m − 1. If there exists a subtree W ⊂ 〈V (H) ∪ V (T ′ − v)〉G
such that W is isomorphic to a subtree U obtained from T ′ by deleting leaves
adjacent to a vertex in V ′ ⊆ V (S′) and φ(V ′) = {φ(u) | u ∈ V ′} ⊆ V (H)
where φ is an isomorphism from V (U) to V (W ), then by Lemma 1, there exists
a subtree T ′′ in G − V (B) ∪ {v} such that T ′′ ∼= T . In particular, if there exists
a vertex w in H such that C(v) ⊆ NG(w), then we can employ the subtree
〈E(T ′ − v) ∪ {wu | u ∈ C(v)}〉 as a desired subtree W where V ′ = {v} and
φ(V ′) = {w}. Note that C(v) = ∅ when diam(S′) = 0, i.e., |V (S′)| = 1. Suppose
that v is a leaf of S′. Let C(v) = {v′}. If there is no vertex in H adjacent to
v′, i.e., C(v) �⊆ NG(w) for any w ∈ V (H), then δ(H) ≥ 1 and v′ ∈ VB(T ′). In
such a case, we can employ 〈{xy}〉 as a desired subtree W for xy ∈ E(H) where
V ′ = {v, v′} and φ(V ′) = {x, y} when diam(S′) = 1. From these observations,
we may assume that there is no vertex w in H with NG(w) ⊇ C(v), v is not a
leaf of S′ (since we can employ v′ instead of v if v′ ∈ VB(T ′)) and diam(S′) ≥ 2.

Let x ∈ V (H) and C(v)\NG(x) = {v1, v2, . . . , vp}. Since |NG(x)∩V (B)| ≤ 1
and |NG(x) ∩ V (T ′)| ≤ m − p, |NH(x)| ≥ p, i.e., there are at least p neighbors
of x in H. Let {x1, x2, . . . , xp} ⊆ NH(x). If h(S′) = 1, then we can employ
〈E(T ′ − v) ∪ {xu | u ∈ C(v) ∩ NG(x)} ∪ {xxi | 1 ≤ i ≤ p}〉 as a desired subtree
W where V ′ = {v, v1, v2, . . . , vp} and φ(V ′) = {x, x1, x2, . . . , xp}. Suppose that
h(S′) ≥ 2. Let |C(vi) \ NG(xi)| = qi for each i. Since |C(v) \ NG(xi)| ≥ 1,
there are at least qi + 1 neighbors of xi in H, which means that we can select
qi vertices yi,1, yi,2, . . . , yi,qi

as children of xi in the subtree 〈{xxi | 1 ≤ i ≤ p}〉
rooted at x. By letting these children correspond to the qi children of vi in
C(vi) \ NG(xi) for each i with qi > 0, we can obtain a desired subtree W if
h(S′) = 2. Note that when diam(S′) = 3, there is exactly one i such that
C(vi) �= ∅, and if qi > 0, then {x1, x2, . . . , xp} ∩ {yi,1, yi,2, . . . , yi,qi

} = ∅, since
g(G) ≥ diam(S′) + 1 = 4. When diam(S′) = 4, by the girth condition, we can
see that {x1, x2, . . . , xp} ∩ {yi,1, yi,2, . . . , yi,qi

} = ∅ for each i with qi > 0 and
{yi,1, yi,2, . . . , yi,qi

}∩{yi′,1, yi′,2, . . . , yi′,qi′ } = ∅ for any pair of i and i′ with qi > 0
and qi′ > 0. Thus, the subtree defined by 〈E(T ′ − {v, v1, v2, . . . , vp}) ∪ {xu | u ∈
C(v) ∩ NG(x)} ∪ {xxi | 1 ≤ i ≤ p} ∪ (∪1≤i≤p({xiu | u ∈ C(vi) ∩ NG(xi)} ∪
{xiyi,j | 1 ≤ j ≤ qi}))〉 can be employed as a desired subtree W . If h(S′) ≥ 3, by
inductively applying similar manipulations to descendants of x, we can finally
obtain a desired subtree W . Note that in each extension step, disjointness of the
sets of new children for descendants of x is guaranteed by the girth condition
g(G) ≥ diam(S′) + 1.

The assumption that v is neither a leaf of T ′ nor a leaf of S′ can be realized by
preferentially selecting a vertex in VB(T ′)\(VL(T ′)∪VL(S′)) if VB(T ′)\(VL(T ′)∪
VL(S′)) �= ∅. For v ∈ VB(T ′) \ (VL(T ′) ∪ VL(S′)), we apply the manipulations
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for constructing W in a depth-first search order for S′. The selection process
for new children of a descendant of x and the extension process from W to T ′′

can be done greedily. If VB(T ′) \ (VL(T ′) ∪ VL(S′)) = ∅, then we can directly
obtain either W or T ′′. Therefore, a desired subtree T ′′ can finally be found in
O(|E(G)|) time. ��

Lemma 6 is stronger than Statement 1 under the assumption that g(G) ≥
diam(T ) − 1. Therefore, by Lemmas 4 and 6, we have the following.

Theorem 9. For any tree T of order m, every 2-connected graph G with δ(G) ≥
m + 2 and g(G) ≥ diam(T ) − 1 contains a subtree T ′ ∼= T such that G − V (T ′)
is 2-connected.

For any 2-connected graph G, it holds that g(G) ≥ 3. Thus, the following
result by Lu and Zhang [6] is obtained from Theorem 9.

Corollary 1 [6]. For any tree T of order m with diam(T ) ≤ 4, every 2-connected
graph G with δ(G) ≥ m + 2 contains a subtree T ′ ∼= T such that G − V (T ′) is
2-connected.

Besides, by combining Lemmas 5 and 6, we have the following.

Theorem 10. For any tree T of order m ≥ 2, every 2-connected graph G with
δ(G) ≥ m + 1 and g(G) ≥ max{diam(T ) − 1, 4} contains a subtree T ′ ∼= T such
that G − V (T ′) is 2-connected.

From Theorem 10, the following result for 2-connected graphs without a tri-
angle is obtained.

Corollary 2. For any tree T of order m ≥ 2 with diam(T ) ≤ 5, every 2-
connected graph G with δ(G) ≥ m + 1 and g(G) ≥ 4 contains a subtree T ′ ∼= T
such that G − V (T ′) is 2-connected.

Now, we are ready to show our main two results stated in the introduction.
Let T be a tree of order m. Suppose that G is a 2-connected graph with δ(G) ≥
m + 2 and g(G) ≥ δ(G) − 6. Then, g(G) ≥ m − 4. From Lemma 2, it is sufficient
to consider a tree T with diam(T ) ≤ m−3. That is, we have g(G) ≥ diam(T )−1.
Therefore, Theorem 5 follows from Theorem 9. Next, suppose that m ≥ 6 and
G is a 2-connected graph with δ(G) ≥ m + 1 and g(G) ≥ δ(G) − 3. Then,
g(G) ≥ m − 2 ≥ 4, i.e., g(G) ≥ max{diam(T ) − 1, 4}. Hence, Theorem 6 follows
from Theorem 10.

From Lemmas 4, 5 and 6, we can see that a desired subtree T ′ in Theorem 5
(respectively, Theorem 6) can be found in O(|V (G)|4) time if g(G) ≥ δ(G) −
4 (respectively, g(G) ≥ δ(G) − 3). Note that such a restriction on g(G) for
Theorem 5 follows from the fact that we use Lemma 2.



Connectivity Keeping Trees in 2-Connected Graphs with Girth Conditions 325

5 Proofs of Theorems 7 and 8

In this section, we try to improve the lower bounds on g(G) in Theorems 5 and 6,
and show that such improvements are possible if a 2-connected graph G satisfies
a structural property on the smallest cycles. Note that for any two cycles C1 and
C2 of length g(G), it holds that |E(C1) ∩ E(C2)| ≤

⌊
g(G)
2

⌋
.

Lemma 7. Let T be a tree of order m. Let G be a 2-connected graph with δ(G) ≥
m + 2 and g(G) ≥ diam(T ) − 2 in which no six cycles of length g(G) have a
common path of length

⌈
g(G)
2

⌉
− 1 in G. For any subtree T ′ ∼= T in G and

a maximum block B in G − V (T ′), if B �= G − V (T ′) and VB(T ′) = {u ∈
V (T ′) | |NG(u) ∩ V (B)| ≥ 2} �= ∅, then there exist a vertex v ∈ VB(T ′) and a
subtree T ′′ ∼= T in G − V (B) ∪ {v}.
Proof. We use the notations such as T ′, B, v,H, S′, C(u),W , and x with the same
meaning in the proof of Lemma6. If diam(S′) ≤ 2, then we can easily construct
a desired subtree W without an additional structural property. Suppose that
diam(S′) ≥ 3. By the discussion in the proof of Lemma 6, we suppose that v is
not a leaf of S′ and there is no vertex w in H such that C(v) ⊆ NG(w). For
u ∈ C(v), we denote by S′

u the subtree rooted at u in S′. Let F be a component
of H containing x. Note that |NG(F ) ∩ V (B)| ≤ 1. In the following discussion,
w.l.o.g., we may assume that NG(F )∩V (B) �= ∅. Then, let NG(F )∩V (B) = {vB}
and F ′ = 〈V (F ) ∪ {vB}〉G.

Suppose that v is a pseudo-leaf of S′ and v′ is the non-leaf vertex adjacent
to v in S′. If there exists a vertex y in H such that v′ ∈ NG(y), then by letting
the vertex y correspond to v, we can obtain a desired subtree W . If there is no
vertex in H which is adjacent to v′, then v′ ∈ VB(T ′). Thus, we may assume that
if diam(S′) ≥ 4, v is not a pseudo-leaf of S′, and if diam(S′) = 3, the central
vertices v, v′ are in VB(T ′) such that {v, v′} ∩ NG(w) = ∅ for any w ∈ V (H).
Suppose that diam(S′) = 3. Let xy ∈ E(F ). Then, |NF ′(x)| ≥ |C(v)\NG(x)|+3
and |NF ′(y) \ {x}| ≥ |C(v′) \ NG(y)| + 3. The assumption on the smallest cycles
implies that |NF ′(x) ∩ NF ′(y)| ≤ 5. Therefore, we can find y ∈ C(x) ⊂ NF (x)
and C(y) ⊂ NF (y) \ {x} so that C(x) ∩ C(y) = ∅, |C(x)| = |C(v) \ NG(x)| and
|C(y)| = |C(v′)\NG(y)|. Thus, a desired subtree W can be constructed. In what
follows, we suppose that diam(S′) ≥ 4.

It is sufficient to consider the case that g(G) = diam(T ) − 2 = diam(S′). Let
P (S′) and Q(S′) be the set of peripheral vertices in S′ and the set of parents of a
peripheral vertex in S′, respectively. Let S′′ = S′ −P (S′). Note that diam(S′′) =
diam(S′) − 2, and v �∈ P (S′) ∪ Q(S′) since any vertex in P (S′) is a leaf of S′

and any vertex in Q(S′) is a pseudo-leaf of S′. For the subtree S′′, we apply the
manipulations in the proof of Lemma6. Let W ′ be the subtree obtained after such
manipulations and let W ′

F = 〈V (W ′) ∩ V (F )〉W ′ . Suppose that {z1, z2, . . . , zq}
is the set of vertices in W ′

F which are corresponding to vertices in Q(S′). Note
that q may be less than |Q(S′)|. Let {u1, u2, . . . , uq} ⊆ Q(S′) such that ui is
corresponding to zi for 1 ≤ i ≤ q. For each 1 ≤ i ≤ q, let D(zi) = NF (zi)\{p(zi)}
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where p(zi) is the parent of zi in W ′
F rooted at x. Also let ri = |C(ui) \ NG(zi)|

for each 1 ≤ i ≤ q, where C(ui) is the set of children of ui in S′. Since g(G) =
diam(S′), it may happen that D(zi) ∩ D(zj) �= ∅ for 1 ≤ i < j ≤ q. It follows
from δ(G) ≥ m + 2 and |C(v) \ NG(zi)| ≥ 1 that |D(zi)| ≥ ri + 1 for each i.

Suppose that |D(zk)| = rk + 1 for some k ∈ {1, 2, . . . , q}. Then |C(v) \
NG(zk)| = 1 and zk is adjacent to every vertex in T ′ except for ones in
(C(v) ∪ C(uk)) \ NG(zk). Thus, we may assume that VB(T ′) ⊆ NT ′(C(v) \
NG(zk)) ∪ NT ′(C(uk) \ NG(zk)), since otherwise, there exists v′ ∈ VB(T ′) such
that NT ′(v′) ⊆ NG(zk). Let C(v) \ NG(zk) = {wk}. Instead of x, we let zk
correspond to v and apply the manipulations in the proof of Lemma6. Let
W ′′

F be the resultant subtree in F . If wk is a pseudo-leaf of S′, then we can
immediately obtain a desired subtree W in this setting. Otherwise, there is
no pseudo-leaf adjacent to v in S′ which corresponds to a vertex in the sub-
tree W ′′

F . Thus, w.l.o.g., we may assume that uk �∈ C(v). Consider the case
that uk ∈ VB(T ′). Since uk is a pseudo-leaf of S′, by the previous discus-
sion, we may assume that p(uk) ∈ VB(T ′) where p(uk) is the parent of uk in
S′. Since p(uk) �∈ NT ′(C(uk) \ NG(zk)), p(uk) ∈ NT ′(wk). This means that
wk = p(p(uk)). Next consider the case that uk �∈ VB(T ′). In this case, we
may assume that no descendant of uk in T ′ is in VB(T ′). Hence, it is con-
cluded that VB(T ′) ∩ (∪u∈C(v)\{wk}V (S′

u)) = ∅. Note that wk �∈ VB(T ′). Let
H ′ = 〈V (H)∪(∪u∈C(v)\{wk}V (S′

u))〉G. For every vertex u′ ∈ ∪u∈C(v)\{wk}V (S′
u),

|NG(u′)∩V (B)| ≤ 1. Thus, it holds that δ(H ′) ≥ 1+
∑

u∈C(v)\{wk} |V (S′
u)|. Let

w′
k ∈ NG(wk) ∩ V (H). Then, there exists a subtree U ′

H′ in H ′ which is isomor-
phic to S′ − V (S′

wk
) such that w′

k corresponds to v in an isomorphism from
V (S′)\V (S′

wk
) to V (U ′

H′). Then, 〈E(S′
wk

)∪{wkw
′
k}∪E(U ′

H′)〉 can be employed
as a desired subtree W . Consequently, we may assume that any vertex zi in
{z1, z2, . . . , zq} satisfies that |D(zi)| ≥ ri + 2.

Let D′(zi) = NF ′(zi) \ {p(zi)} for 1 ≤ i ≤ q. Then, |D′(zi)| ≥ ri + 3 for
each i. Note that either D′(zi) = D(zi) or D′(zi) = D(zi) ∪ {vB}. Define IG as
the (multi)graph with vertex set {z1, z2, . . . , zq} in which zi and zj are joined by
|D′(zi) ∩ D′(zj)| edges. Note that IG may be a multigraph only if diam(S′) = 4.
The assumption that no six cycles of length g(G) have a common path of length⌈
g(G)
2

⌉
− 1 =

⌈
diam(S′′)

2

⌉
in G implies that Δ(IG) ≤ 5, i.e., each vertex in

IG is incident to at most five edges. Besides, the intersection of at least seven
(respectively, three) sets in {D′(z1),D′(z2), . . . , D′(zq)} is empty if diam(S′′)
is even (respectively, odd). Modify the graph IG as follows, and let JG be the
resultant (multi)graph.

1. Delete every edge generated by a vertex in the intersection of at least three
sets D′(zi1),D

′(zi2), and D′(zi3).
2. Delete the edge generated by vB if vB is contained in exactly two sets D′(zi1)

and D′(zi2).

Note that if vB is contained in exactly one set D′(zi), then |D(zi)| ≥ ri + 2 and
|D(zj)| ≥ rj +3 for any j �= i. By Lemma 3, JG has an orientation DG such that
|deg+DG

(z) − deg−
DG

(z)| ≤ 1 for any z ∈ V (DG) and if vB is contained in exactly
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one set D′(zi) then deg−
DG

(zi) ≤ 2. Note that if an orientation of JG satisfying
the first condition does not satisfy the second condition, the reverse orientation
satisfies both the conditions since Δ(IG) ≤ 5. Based on DG, we can disjointly
select ri vertices in D(zi) for 1 ≤ i ≤ q as follows. For each arc from zi1 to zi2
in DG, we select the vertex in D(zi1) ∩ D(zi2) corresponding to the edge zi1zi2
as a child of zi1 . Note that we do not select the vertex vB and any vertex in
the intersection of at least three sets D′(zi1),D

′(zi2), and D′(zi3). In this way,
we can appropriately extend W ′

F for a desired subtree W and finally obtain a
subtree T ′′ ∼= T in G − V (B) ∪ {v}. ��

Next, we consider the case that δ(G) ≥ m + 1. In this case, we need to
strengthen the structural condition on the smallest cycles in Lemma 7.

Lemma 8. Let T be a tree of order m. Let G be a 2-connected graph with δ(G) ≥
m + 1 and g(G) ≥ diam(T ) − 2 in which no four cycles of length g(G) have a
common path of length

⌈
g(G)
2

⌉
− 1 in G. For any subtree T ′ ∼= T in G and

a maximum block B in G − V (T ′), if B �= G − V (T ′) and VB(T ′) = {u ∈
V (T ′) | |NG(u) ∩ V (B)| ≥ 2} �= ∅, then there exist a vertex v ∈ VB(T ′) and a
subtree T ′′ ∼= T in G − V (B) ∪ {v}.
Proof. We use the notations in the proof of Lemma7 with the same meaning. A
desired subtree W can be constructed without an additional structural property
if diam(S′) ≤ 2. Suppose that diam(S′) = 3. Applying a similar discussion in the
proof of Lemma 7, we have that |NF ′(x)| ≥ |C(v)\NG(x)|+2 and |NF ′(y)\{x}| ≥
|C(v′)\NG(y)|+2. Since the condition on smallest cycles implies that |NF ′(x)∩
NF ′(y)| ≤ 3, we can find y ∈ C(x) ⊂ NF (x) and C(y) ⊂ NF (y) \ {x} so that
C(x)∩C(y) = ∅, |C(x)| = |C(v)\NG(x)| and |C(y)| = |C(v′)\NG(y)|. Suppose
that diam(S′) ≥ 4. From a similar discussion in the proof of Lemma7, we may
assume that every vertex zi in {z1, z2, . . . , zq} satisfies that |D(zi)| ≥ ri + 1 and
|D′(zi)| ≥ ri + 2. Note that the degree condition δ(H ′) ≥ ∑

u∈C(v)\{w} |V (S′
u)|

is sufficient to construct a subtree U ′
H′ in H ′. The assumption that no four

cycles of length g(G) have a common path of length
⌈
g(G)
2

⌉
− 1 in G implies

that Δ(IG) ≤ 3. By Lemma 3, JG has an orientation DG such that |deg+DG
(z) −

deg−
DG

(z)| ≤ 1 for any z ∈ V (DG) and if vB is contained in exactly one set
D′(zi) then deg−

DG
(zi) ≤ 1. Based on DG, we can disjointly select ri vertices in

D(zi) for 1 ≤ i ≤ q. Hence, we can appropriately extend W ′
F in order to obtain

a desired subtree T ′′. ��
From Lemmas 4, 5, 7, and 8, we have the following results.

Theorem 11. For any tree T of order m, every 2-connected graph G with
δ(G) ≥ m + 2 and g(G) ≥ diam(T ) − 2 in which no six cycles of length g(G)
have a common path of length

⌈
g(G)
2

⌉
− 1 contains a subtree T ′ ∼= T such that

G − V (T ′) is 2-connected.
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Theorem 12. For any tree T of order m ≥ 2, every 2-connected graph G with
δ(G) ≥ m+1 and g(G) ≥ max{diam(T )−2, 4} in which no four cycles of length
g(G) have a common path of length

⌈
g(G)
2

⌉
− 1 contains a subtree T ′ ∼= T such

that G − V (T ′) is 2-connected.

Theorems 7 and 8 follow from Theorem 11 with Lemma 2 and Theorem 12,
respectively. Manipulations in the proofs of Lemmas 7 and 8 can be done in
O(|E(G)|) time, although they are more complicated than those in the proof of
Lemma 6. Therefore, we can find a desired subtree T ′ in Theorem 7 (respectively,
Theorem 8) in O(|V (G)|4) time if g(G) ≥ δ(G)−5 (respectively, g(G) ≥ δ(G)−4).

6 Concluding Remarks

In this paper, we have shown that Mader’s conjecture for k = 2 (with a weak
degree condition δ(G) ≥ m + 1) holds for graphs with large girth. Mader’s con-
jecture was posed in a purely mathematical interest; however, it has a potential
application to fault-tolerant problems in communication networks. We then have
shown that our constructive proofs lead to O(|V (G)|4) time algorithms.

Our lower bounds on the girth in Theorems 5 and 7 can be improved if the
upper bound on the diameter of a tree for which Mader’s conjecture for k = 2
holds is improved. Namely, the following result follows from Theorem9.

Theorem 13. If Mader’s conjecture for k = 2 holds for any tree T with
diam(T ) ≥ |V (T )| − �, then Mader’s conjecture for k = 2 holds for any 2-
connected graph G with g(G) ≥ δ(G) − � − 4.

In particular, by checking the proof in [7], we can see that Statement 2 holds
for any caterpillars; thus, the lower bounds on g(G) in Theorems 6 and 8 can be
improved to δ(G) − 5 and δ(G) − 6, respectively. Besides, the restriction that
g(G) ≥ δ(G)−4 (respectively, g(G) ≥ δ(G)−5) for an O(|V (G)|4) time algorithm
can be removed for Theorem 5 (respectively, Theorem 7). On the other hand, in
order to improve the lower bounds on the girth in Theorems 9, 10, 11, and 12
directly, we may need some other techniques.

Even though Mader’s conjecture for k = 2 still remains open, from Lemma 5
and Corollary 2, we may conjecture the following.

Conjecture 4. For any tree T of order m ≥ 2, every 2-connected graph G with
δ(G) ≥ m + 1 and g(G) ≥ 4 contains a subtree T ′ ∼= T such that G − V (T ′) is
2-connected.

Although we consider Mader’s conjecture only for k = 2, it would be inter-
esting to approach Mader’s conjecture for general k ≥ 2 by considering girth
conditions.
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