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Abstract. Cographs constitute a small point in the atlas of graph
classes. However, by zooming in on this point, we discover a complex
world, where many parameters jump from finiteness to infinity. In the
present paper, we identify several milestones in the world of cographs and
create a hierarchy of graph parameters grounded on these milestones.

1 Introduction

Large things are seen from a distance, but to examine small things, one needs to
look up-close. Cographs constitute a small class and in this paper we analyse it
with a “magnifying glass”, trying to spot the details. With a closer look at this
class we discover a complex world and observe that many important parameters
can be arbitrarily large within cographs. This is the case, for instance, for chro-
matic number, co-chromatic number, matching number, tree-width, linear clique-
width and many others. Moreover, such parameters jump to infinity on specific
subclasses of cographs. This is due to the fact that the class of cographs is well-
quasi-ordered under the induced subgraph relation [8], and therefore, for every
parameter p which is unbounded in the class of cographs, there exists a finite col-
lection M(p) of inclusion-wise minimal hereditary subclasses of cographs, where
p can be arbitrarily large. This observation suggests a simple way of comparing
two parameters: a parameter p1 is stronger than a parameter p2 if for every class
X ∈ M(p1) there exists a class Y ∈ M(p2) such that Y ⊆ X. In other words,
p1 is stronger than p2 if the family of cograph subclasses where p1 is bounded
contains the family of cograph subclasses where p2 is bounded.

For some parameters, identifying minimal classes is an easy task. For
instance, since cographs are perfect, the chromatic number is bounded if and
only if the clique number is bounded and hence the class of complete graphs is
the only minimal hereditary subclass of cographs where the chromatic number
is unbounded. However, in general, identifying minimal classes is far from being
trivial, as the example of linear clique-width shows. The authors of [5] develop
a sophisticated approach to show that there exist precisely two minimal heredi-
tary subclasses of cographs where linear clique-width is unbounded: the class of
(P4, C4)-free graphs, also known as the quasi-threshold [21] or trivially perfect
[15] graphs, and the class of their complements.
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In the present paper, we characterise a variety of other graphs parameters in
terms of minimal hereditary subclasses of cographs where these parameters are
unbounded, which is the content of Sects. 3 and 4. In Sect. 2, we introduce basic
terminology and notation used throughout the paper.

2 Preliminaries

All graphs in this paper are simple, i.e., finite, undirected, without loops and
without multiple edges. The vertex set and the edge set of a graph G are denoted
by V (G) and E(G), respectively. As usual, Pn, Cn,Kn denote a chordless path,
a chordless cycle and a complete graph with n vertices, respectively. Also, Kn,m

is a complete bipartite graph with parts of size n and m.
The complement of a graph G is denoted by G. Given two graphs G and H,

we denote by G ∪ H the disjoint union of G and H and by G × H the join of G
and H, i.e., the graph obtained from G∪H by adding all possible edges between
G and H. Two sets A,B ⊆ V (G) are said to be complete to each other if every
possible edge between them appears in G, and anticomplete to each other if
they are complete to each other in G. The disjoint union of p copies of G will be
denoted by pG.

A clique in a graph is a subset of pairwise adjacent vertices and an indepen-
dent set is a subset of pairwise non-adjacent vertices. We say that a graph G is
H-free if G does not contain a copy of H as an induced subgraph.

A class of graphs is hereditary if it is closed under taking induced subgraphs.
It is well-known (and not difficult to see) that a class is hereditary if and only if
it can be characterised in terms of minimal forbidden induced subgraphs.

The class of cographs is the class of graphs that can be obtained from K1

by taking complements and disjoint unions. In particular, every cograph with at
least two vertices can be represented either as G ∪ H or as G × H for two non-
empty graphs G and H. It is well known that the class of cographs is precisely
the class of P4-free graphs.

Since the complement of a cograph is again a cograph, with every subclass
X of cographs we associate the subclass X of complements of graphs in X . The
following subclasses of cographs will play a critical role in our study:

Q the class of quasi-threshold graphs, i.e., (P4, C4)-free graphs,
T the class of threshold graphs. This is the class of (P4, C4, 2K2)-free graphs,

i.e., the intersection of Q and Q.
U the class of P3-free graphs, i.e., graphs every connected component of which

is a clique.
K the class of complete graphs.
F the class of star forests, i.e., graphs every connected component of which is

a star. This is the class of (P4, C4,K3)-free graphs, i.e., the class of bipartite
graphs in Q.

M the class of graphs of vertex degree at most 1. This is the class of (P3,K3)-
free graphs, i.e., the class of bipartite graphs in U .



32 B. Alecu et al.

B the class of complete bipartite graphs (an edgeless graph is counted as com-
plete bipartite with one part being empty). This is the class of (P 3,K3)-free
graphs, i.e., the class of bipartite graphs in U .

S the class of stars, i.e., graphs of the form K1,n and their induced subgraphs.

The Ramsey number R(a, b) is the smallest natural number such that any graph
with R(a, b) vertices contains a clique of size a or an independent set of size b.

3 Graph Parameters

We start by reporting some known results or results that readily follows from
known results. In particular, directly from Ramsey’s Theorem we derive the
following conclusion:

Proposition 1. The class K of complete graphs and the class of S of stars are
the only two minimal hereditary classes of graphs of unbounded maximum vertex
degree.

To report more results, we denote by

α(G) the independence number of G, i.e., the size of a maximum independent
set in G,

ω(G) the clique number of G, i.e., the size of a maximum clique in G,
χ(G) the chromatic number of G, i.e., the minimum number of subsets in a

partition of V (G) such that each subset is an independent set,
y(G) the clique partition (also known as clique cover) number, i.e., the minimum

number of subsets in a partition of V (G) such that each subset is a clique.

Clearly, the class K of complete graphs is the only minimal hereditary class
of unbounded clique number, i.e., by forbidding a complete graph we obtain
a class of bounded clique number. Also, it is not difficult to see that K is a
minimal hereditary class of unbounded chromatic number. However, it is not the
only minimal hereditary class of unbounded chromatic number, i.e., forbidding a
complete graph does not guarantee a bound on the chromatic number. Moreover,
as shown by Erdős [10] chromatic number is unbounded even in the class of
(C3, C4, . . . , Ck)-free graphs for any value of k, which means that in the universe
of hereditary classes chromatic number cannot be characterised by means of
minimal classes where this parameter is unbounded. On the other hand, when
we restrict ourselves to cographs such a characterization is possible, which is due
to the fact that cographs are perfect, and hence ω(G) = χ(G) for any cograph
G. As a result, we obtain the following conclusion.

Proposition 2. The class K of complete graphs is the only minimal hereditary
subclass of cographs of unbounded clique number and chromatic number.

The degeneracy of a graph G is the smallest value of k such that every induced
subgraph of G has a vertex of degree at most k. It is not difficult to see that
the class K of complete graphs and the class of B of complete bipartite graphs
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are minimal hereditary classes of unbounded degeneracy. However, these are not
the only minimal classes, because forbidding a complete graph and a complete
bipartite graph does not guarantee a bound on the degeneracy. To explain this,
we observe that the degeneracy of G is bounded from below by χ(G) − 1 and
from above by the tree-width of G. Therefore, degeneracy and tree-width are
unbounded in the class of (C3, C4, . . . , Ck)-free graphs for any value of k, and
for k ≥ 4 the set of forbidden induced subgraphs include both a complete graph
C3 and a complete bipartite graph C4. This discussion shows that, similarly to
chromatic number, in the universe of all hereditary classes neither degeneracy
nor tree-width admit a characterization in terms of minimal classes where these
parameters are unbounded. On the other hand, again similarly to chromatic
number, such a characterization is possible when restricting to cographs, and it
is presented in the next claim.

Proposition 3. The class K of complete graphs and the class of B of complete
bipartite graphs are the only two minimal hereditary subclasses of cographs of
unbounded degeneracy and tree-width.

Proof. To prove the claim, it suffices to show that for any s and p, the tree-width
of (P4,Ks,Kp,p)-free graphs is bounded by a constant. For this, we refer the
reader to the following result from [1]: for every t, p, s, there exists a z = z(t, p, s)
such that every graph with a (not necessarily induced) path of length at least z
contains either an induced Pt or an induced Kp,p or a clique of size s. From this
result it follows that (P4,Ks,Kp,p)-free graphs do not contain (not necessarily
induced) paths of length z(4, p, s). It is well known (see, e.g., [12]) that graphs of
bounded path number (the length of a longest path) have bounded tree-width.

��

The matching number of a graph G is the size of a maximum matching in G.
The following result was proved in [7].

Lemma 1. For any natural numbers s, t and p, there is a number N(s, t, p)
such that every graph with a matching of size at least N(s, t, p) contains either
a clique Ks or an induced bi-clique Kt,t or an induced matching pK2.

A natural corollary from this result is the following characterization of the
matching number in terms of minimal hereditary classes where this parameter
is unbounded.

Theorem 1. M, B and K are the only three minimal hereditary classes of
graphs of unbounded matching number.

The vertex cover number of a graph G is the size of a minimum vertex cover
in G. It is well known that the vertex cover number is never smaller than the
matching number and never larger than twice the matching number. Therefore,
the characterization of matching number given in Theorem 1 applies to the
vertex cover number as well.
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Theorem 2. M, B and K are the only three minimal hereditary classes of
graphs of unbounded vertex cover number.

The neighbourhood diversity of a graph was introduced in [16] and can be
defined as follows.

Definition 1. Let us say that two vertices x and y are similar if there is no
vertex z distinguishing them (i.e., if there is no vertex z adjacent to exactly one
of x and y). Vertex similarity is an equivalence relation. We denote by nd(G) the
number of similarity classes in G and call it the neighbourhood diversity of G.

Neighbourhood diversity was characterised in [17] by means of nine minimal
hereditary classes of graphs where this parameter is unbounded. Six of these min-
imal classes contain a P4. Therefore, when restricted to cographs, neighbourhood
diversity can be characterised by three minimal classes as follows.

Theorem 3. M, M, and T are the only three minimal hereditary subclasses of
cographs of unbounded neighbourhood diversity.

3.1 Co-chromatic Number

The co-chromatic number of G, denoted z(G), is the minimum number of subsets
in a partition of V (G) such that each subset is either a clique or an independent
set [11]. It is not difficult to see that the co-chromatic number can be arbitrarily
large in the class of P3-free graphs, where each graph is a disjoint union of cliques.
Therefore, it is also unbounded in the complements of P3-free graphs, also known
as complete multipartite graphs. In what follows, we show that these are the only
two minimal subclasses of cographs of unbounded co-chromatic number.

Lemma 2. Let n,m, t be positive integers with t ≥ 2. If G is a (nKt,mKt)-free
cograph, then z(G) ≤ 2m+n−1(t − 1).

Proof. Call a partition of V (G) good if it contains at least t− 1 cliques and t− 1
independent sets (empty sets in the partition may count as either). We prove
by induction on m + n that G admits a good partition into 2m+n−1(t − 1) sets,
each of which is a clique or an independent set.

If m+n = 2 (n = m = 1), then G is Kt-free. Hence χ(G) = ω(G) ≤ t−1; we
add empty sets to the partition until we reach 2(t − 1) sets in total. This makes
the partition good, and we have proved the basis for the induction. In general,
put G′ := G. We are in one of the following three cases:

(a) G′ = G1 ∪ G2, and both G1 and G2 are Kt-free, OR G′ = G1 × G2, and
both G1 and G2 are Kt-free.

(b) G′ = G1 ∪ G2, and both G1 and G2 contain a Kt, OR G′ = G1 × G2, and
both G1 and G2 contain a Kt.

(c) G′ = G1 ∪ G2, G1 contains a Kt and G2 is Kt-free, OR G′ = G1 × G2, G1

contains a Kt and G2 is Kt-free.
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As long as we are in case (c), iteratively put G′ := G1. We end up with
a graph G′ in either case (a) or (b). Note first that any good partition of G′

extends to a good partition of G without increasing the number of sets. Indeed,
at each step, G2 was either Kt-free and anticomplete to the rest of the graph or
Kt-free and complete to the rest of the graph. The disjoint union of all Kt-free
G2s is again Kt-free and hence can be partitioned into at most t−1 independent
sets, and we take the union of each of these sets with one of the independent
sets in the good partition of G′ injectively. Similarly, the join of the Kt-free G2s
can be partitioned into at most t− 1 cliques, each of which we join to one of the
cliques in the good partition of G′ injectively.

Now, if G′ is in case (a), then G′ is Kt-free or Kt-free and we act like in the
base case to obtain a good partition of G′ (and therefore of G) in 2(t−1) sets. If
G′ is in case (c), then G1 and G2 are both either (n−1)Kt-free or (m − 1)Kt-free.
In either case, the inductive hypothesis applies, and we have a good partition of
G′ of size at most

2m+n−2(t − 1) + 2m+n−2(t − 1) = 2m+n−1(t − 1).

Like before, this extends to a partition of G, concluding the proof. ��

Lemma 2 naturally leads to the following conclusion.

Theorem 4. The class U of P3-free graphs and the class U of P 3-free graphs
are the only two minimal hereditary subclasses of cographs of unbounded co-
chromatic number.

3.2 Lettericity

The notion of letter graphs was introduced in [19] and can be defined as follows.
Let A be a finite alphabet, D ⊆ A2 and w = w1w2 . . . wn a word over A

(repetitions allowed). The letter graph G(D,w) associated to w has {1, 2, . . . , n}
as its vertex set, and two vertices i < j are adjacent if and only if the ordered
pair (wi, wj) belongs to D. A graph G is said to be a letter graph if there exist
an alphabet A, a subset D ⊆ A2 and a word w = w1w2 . . . wn over A such that
G is isomorphic to G(D,w).

The role of D is to decode (transform) a word into a graph and therefore
we refer to D as a decoder. Every graph G is trivially a letter graph over the
alphabet A = V (G) with the decoder D = {(v, w), (w, v) : {v, w} ∈ E(G)}. The
lettericity of G, denoted �(G), is the minimum k such that G is representable as
a letter graph over an alphabet of k letters.

To give a less trivial example, consider the alphabet A = {a, b} and the
decoder D = {(a, a), (a, b)}. Then the word ababababab describes the graph
represented in Fig. 1. This graph can be constructed from a single vertex by
means of two operations: adding a dominating vertex (corresponds to adding
letter a as a prefix) or adding an isolated vertex (corresponds to adding letter b
as a prefix). The class of all graphs that can be constructed by means of these
two operations coincides with the class of threshold graphs defined in Sect. 2
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as (2K2, C4, P4)-free graphs [18]. The above discussion shows that a graph is
threshold if and only if it is a letter graph over the alphabet A = {a, b} with the
decoder D = {(a, a), (a, b)}.

Fig. 1. The letter graph of the word ababababab (the oval represents a clique). We use
indices to indicate in which order the a-letters and the b-letters appear in the word.

Lemma 3. �(nK2) = n.

Proof. First, it is not difficult to see that �(nK2) ≤ n, since n letters suffice
(one letter per edge). Assume �(nK2) < n, then there must exist a letter a
representing at least 3 vertices of the graph. Clearly, (a, a) 	∈ D, since otherwise
a triangle arises. Then the neighbour of the middle a is different from a, say b.
If this neighbour appears before the middle a, it must also be adjacent to the
last a. If it appears after the middle a, it must also be adjacent to the first a. In
both case, b has at least two neighbours. Therefore, �(nK2) ≥ n. ��

The above theorem shows that the lettericity is unbounded in the class M
of graphs of vertex degree at most 1. Therefore, it is also unbounded in the class
M, since �(G) = �(G).

Theorem 5. M and M are the only two minimal hereditary subclasses of
cographs of unbounded lettericity.

Proof. To prove the theorem, we will show that for any natural numbers p, t ≥ 2,
the lettericity of a (P4, pK2, tK2)-free graph G is at most 2p+t−3. This will be
shown by induction on p + t. Moreover, we will show that G can be represented
with a decoder D containing a source letter, i.e., a letter a such that (a, b) ∈ D
for any letter b, and a sink letter, i.e., a letter b such that (b, a) 	∈ D for any
letter a.

If p = t = 2, then G is a threshold graph and its lettericity is at most
2, because any threshold graph can be represented over the decoder D =
{(a, a), (a, b)}. In this decoder, a is a source letter and b is a sink letter.

Assume that every (P4, pK2, tK2)-free graph with p+t ≤ k can be represented
as a letter graph over an alphabet of at most 2p+t−3 letters with a decoder
containing a source vertex a and a sink vertex b. Consider now a (P4, pK2, tK2)-
free graph G with p + t = k + 1.

The presence of source and sink letters in the decoder allows us to assume
that G has neither dominating nor isolated vertices. Indeed, if v is dominating,



The Micro-world of Cographs 37

then a word for G can be constructed from a word for G − v by adding a source
letter as a prefix, and if v is isolated, then a word for G can be constructed from
a word for G − v by adding a sink letter as a prefix. Therefore, in the rest of the
proof we assume that G has neither isolated nor dominating vertices.

Case 1: G is disconnected. Denote by G1 a connected component of G and by
G2 the rest of the graph. Observe that each of G1 and G2 contains a K2, since
otherwise G has an isolated vertex. Therefore, each of G1 and G2 is (p − 1)K2-
free and hence we can apply induction to each of G1 and G2. In other words,
G1 can be represented by a word ω1 over an alphabet A1 of size at most 2p+t−4

with a decoder containing a source vertex a1 and a sink vertex b1, and G1 can
be represented by a word ω2 over an alphabet A2 of size at most 2p+t−4 with a
decoder containing a source vertex a2 and a sink vertex b2 (we assume that A1

and A2 are disjoint). Then the word ω = ω1ω2 represents G over the alphabet
A1 ∪ A2 of size at most 2p+t−3 with the decoder D = D1 ∪ D2. In this decoder,
vertex b2 is a sink vertex. To guarantee the presence of a source vertex, we add
to D the pair (a2, c) for every vertex c ∈ A1. This extension transforms a2 into
a source vertex and does not change the graph represented by the word ω, since
every letter from A1 appears in ω before any appearance of a2.

Case 2: G is connected. In this case, G is disconnected and (P4, tK2, pK2)-free.
A similar argument as above gives a representation for G with at most 2p+t−3

letters, and complementing the corresponding decoder produces one for G (note
that when doing that, sink letters become source letters and vice-versa). ��

3.3 Boxicity

The boxicity box(G) of a graph G is the minimum dimension in which G can be
represented as an intersection graph of hyper-rectangles. Equivalently, it is the
smallest number of interval graphs on the same set of vertices whose intersection
is G. The next lemma was shown in [20]; we give here a proof for the sake of
completeness.

Lemma 4. box(nK2) = n.

Proof. To see that box(nK2) ≤ n, note that K2n without an edge is an interval
graph, and nK2 is the intersection of n such graphs. Conversely, note that two
different matched non-edges in nK2 cannot belong to the same interval graph
(since the corresponding four vertices would induce a C4, which is not an interval
graph). Hence we need at least n interval graphs to obtain nK2 as an intersection.

��

Lemma 5. Let G1 and G2 be two graphs. Then

box(G1∪G2) ≤ max(box(G1),box(G2)) and box(G1×G2) ≤ box(G1)+box(G2).

Moreover, if G2 is a clique, then box(G1 × G2) = box(G1).
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Proof. Suppose G1 =
s⋂

i=1

Ai and G2 =
t⋂

i=1

Bi where the Ai and Bi are interval

graphs, and assume without loss of generality that s ≥ t. Put Ci = Ai ∪ Bi for
1 ≤ i ≤ t and Ci = Ai ∪ K|V (G2)| for t < i ≤ s. Put Di = Ai × K|V (G2)| for
1 ≤ i ≤ s and Di = K|V (G1)| × Bi−s for s < i ≤ s + t.

The Ci and Di are interval graphs, and with the obvious labellings of Ci and

Di, we have G1 ∪ G2 =
s⋂

i=1

Ci and G1 × G2 =
s+t⋂

i=1

Di.

For the final claim, if G2 = K|V (G2)| is a clique, then G1 × G2 =
s⋂

i=1

(Ai ×

K|V (G2)|), and each of those is an interval graph. ��

Theorem 6. M is the only minimal hereditary subclass of cographs of
unbounded boxicity.

Proof. Let n ≥ 2. We prove by induction on n that (P4, nK2)-free graphs have
boxicity at most 2n−2. The result is true for n = 2, since (P4, C4)-free graphs
are known to be interval graphs (see, e.g., [4]).

For the induction step, suppose the result is true for some n ≥ 2, and let
G be a cograph that is (n + 1)K2-free. By Lemma 5, we may assume that G is
connected, and in particular that G = G1 × G2 where neither of the cographs
G1 or G2 is a clique. But then G1 and G2 each have a K2, and so they are both
nK2-free. The induction hypothesis applies, and another application of Lemma 5
gives us that box(G) ≤ box(G1)+box(G2) ≤ 2n−2 + 2n−2 = 2n−1 as required. ��

3.4 H-Index

The H-index h(G) of a graph G is the largest k ≥ 0 such that G has k vertices
of degree at least k. This parameter is important in the study of dynamic algo-
rithms [9]. Clearly, H-index is unbounded for cographs, since it is unbounded for
complete graphs. To characterise this parameter in terms of minimal subclasses
of cographs with unbounded H-index, we start with a helpful lemma.

Lemma 6. Let G1, . . . , Gt be graphs. Then

h(
t⋃

i=1

Gi) ≤
t∑

i=1

h(Gi), and h(G1×G2)≤min(h(G1)+|V (G2)|, h(G2)+|V (G1)|).

Proof. For the first bound, note that for any j, 1+
∑

i h(Gi) > h(Gj). In partic-
ular, by definition of the H-index, each Gj has at most h(Gj) vertices of degree
1 +

∑
i h(Gi) or more, and so

⋃
j Gj has at most

∑
j h(Gj) vertices of degree at

least 1 +
∑

i h(Gi), from which the claim follows.
For the other bound, note that G1×G2 has at most |V (G2)| vertices of degree

at least h(G1)+|V (G2)|+1 coming from G2, and at most h(G1) coming from G1,
since1 degG1×G2

(v) = degG1
(v)+ |V (G2)| for any v ∈ G1, and G1 does not have

1 When a vertex v appears in more than one graph, we write degG(v) for the degree
of v in graph G.
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more than h(G1) vertices of degree h(G1) + 1. By definition of the H-index, we
obtain that h(G1 × G2) ≤ h(G1) + |V (G2)|, and the claim follows by symmetry.

��

Theorem 7. K, B and the class F of star forests are the only minimal heredi-
tary subclasses of cographs of unbounded H-index.

Proof. One can check that those are, indeed, minimal hereditary classes of
unbounded H-index. To see they are the only ones, let p, q, r, s ≥ 1. We will
show by induction on p + r that if G avoids Kp, Kq,q and rK1,s, then the H-
index of G is bounded by a constant H(p, q, r, s). For the base case, note that
if p = 1, this is trivial, and if r = 1, then G is (Kp,K1,s)-free and therefore the
maximum vertex degree in G is bounded by R(p, s). This in turn implies that
h(G) ≤ R(p, s). We may thus assume p, r ≥ 2.

If G = G1 × G2 is a join of non-empty graphs, then not both G1 and G2

have more than R(p, q) vertices. Indeed, if both do, then either one of them
contains a clique of size p, which is forbidden, or they both have independent
sets of size q, which again cannot happen since Kq,q is forbidden. Without loss
of generality, we may assume that |V (G2)| ≤ R(p, q). In this case, by Lemma 6,
h(G) ≤ h(G1)+R(p, q). Since |V (G2)| ≥ 1, G1 is Kp−1-free, so by the induction
hypothesis, h(G1) is bounded by H(p − 1, q, r, s).

If G =
t⋃

i=1

Gi is a union of connected graphs, we may write G = G1 ∪ . . . Gl ∪

G′, where G1, . . . , Gl each have a K1,s, and G′ is K1,s-free (we may have l = 0).
Since Kp and K1,s are forbidden for G′, the maximum vertex degree, and hence
the H-index of G′, is bounded by R(p, s). Moreover, if l ≥ 2 and so two of the
components of G do have a K1,s, then we may write G as the union of two graphs
that are (r − 1)K1,s-free, and by Lemma 6, h(G) ≤ 2H(p, q, r − 1, s). Finally,
if only one component has a K1,s, then that component is a join of non-empty
graphs and we obtain, again by Lemma 6 and from the previous paragraph,
h(G) ≤ H(p − 1, q, r, s) + R(p, q) + R(p, s).

Combining the above, we obtain

H(p, q, r, s) ≤ max(H(p − 1, q, r, s) + R(p, q) + R(p, s), 2H(p, q, r − 1, s)).

��

3.5 Achromatic Number

A complete k-colouring is a partition of G into k independent sets (the “colour
classes”) such that any two independent sets in the partition have at least one
edge between them. The achromatic number ψ(G) of a graph G is the maximum
number k such that G admits a complete k-colouring. Computing this parameter
is a difficult task even for cographs and interval graphs [3].

Note that the class K of complete graphs and the class M of matchings have
unbounded achromatic number. Indeed, this is clear for complete graphs, and we
note that

(
n
2

)
K2 admits a complete n-colouring where each edge of the matching
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joins two of the colour classes. We claim that among cographs, those are the
only minimal classes of unbounded achromatic number. To show this, we start
with a short lemma.

Lemma 7. Let r, s ∈ N. The class of (Kr, sK2, P4)-free graphs has bounded
neighbourhood diversity.

Proof. From Theorem 3, the only minimal subclasses of cographs where neigh-
bourhood diversity is unbounded are M, M and T . Kr belongs to both M and
T , while sK2 belongs to M. ��

We are now ready to prove the main result of this section.

Theorem 8. K and M are the only minimal hereditary subclasses of cographs
of unbounded achromatic number.

Proof. It suffices to show that for any r, s ∈ N, the class of (Kr, sK2, P4)-free
graphs has bounded achromatic number. Let G be a graph in this class. By
Lemma 7, the class has bounded neighbourhood diversity. In other words, there
is a constant k (independent of G) such that the vertex set of G can be partitioned
into k similarity classes, each similarity class being a clique or an independent set.
Moreover, since the size of cliques is bounded by r, we may further assume that
each of these similarity classes is an independent set. Let G′ be the quotient of G
by this partition, i.e., the graph whose vertices are the independents sets, with
two vertices being adjacent if and only if the corresponding sets are complete to
each other.

Now consider a t-colouring of G, and interpret the colours as vertices of the
complete graph Kt. From each edge e of G′, we obtain a complete bipartite
subgraph of Kt as follows: if the edge e in G′ joins independent sets A1 and A2,
then the two sets are complete to each other, so the sets of colours I1, I2 ⊆ V (Kt)
appearing in A1 and A2 respectively are disjoint. The complete bipartite graph
Be corresponding to e has I1 and I2 as its parts. With this set-up, the t-colouring
is complete if any only if the edges of the graphs Be

e∈E(G′) cover the edges of
Kt. From [13], we need at least 
log2(t)� complete bipartite graphs to cover Kt.
It follows that t ≤ 2|E(G′)| ≤ 2(k

2), as required. ��

4 The Hierarchy

In this section, we bring together the different pieces of our analysis and draw a
hierarchy of the parameters studied in this paper. Each parameter p is presented
in Fig. 2 together with a collection M(p) of minimal hereditary subclasses of
cographs where p is unbounded. We say that a parameter p1 is stronger than a
parameter p2 if the family of classes where p1 is bounded contains the family of
classes where p2 is bounded. It is not difficult to see that p1 is stronger than p2
if for every class X ∈ M(p1) there exists a class Y ∈ M(p2) such that Y ⊆ X.
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Fig. 2. A Hasse diagram of graph parameters within the universe of cographs

5 Conclusion and Open Problems

There are many other interesting parameters that are unbounded in the class
of cographs, such as linearity [6], shrub-depth [14] or distinguishing number [2].
However, surprisingly, there are not so many “interesting” subclasses of cographs
that appear in the characterization of those parameters. For instance, shrub-
depth and distinguishing number can be characterised without extending the set
of classes studied in this paper. Understanding this phenomenon is a challenging
research problem.

As we observed earlier, computing the achromatic number is an NP-complete
problem for cographs, and again due to well-quasi-orderability of cographs there
must exist a finite collection of minimal hereditary subclasses of cographs, where
the problem is NP-complete. Identifying this collection is one more open problem.

References

1. Atminas, A., Lozin, V.V., Razgon, I.: Linear time algorithm for computing a small
biclique in graphs without long induced paths. In: Fomin, F.V., Kaski, P. (eds.)
SWAT 2012. LNCS, vol. 7357, pp. 142–152. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-31155-0 13

2. Atminas, A., Brignall, R.: Well-quasi-ordering and finite distinguishing number. J.
Graph Theory. https://doi.org/10.1002/jgt.22523

https://doi.org/10.1007/978-3-642-31155-0_13
https://doi.org/10.1007/978-3-642-31155-0_13
https://doi.org/10.1002/jgt.22523


42 B. Alecu et al.

3. Bodlaender, H.L.: Achromatic number is NP-complete for cographs and interval
graphs. Inf. Process. Lett. 31, 135–138 (1989)
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