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Abstract. Given a graph G = (V, E), A ⊆ V , and integers k and �,
the (A, �)-Path Packing problem asks to find k vertex-disjoint paths
of length � that have endpoints in A and internal points in V \ A. We
study the parameterized complexity of this problem with parameters |A|,
�, k, treewidth, pathwidth, and their combinations. We present sharp
complexity contrasts with respect to these parameters. Among other
results, we show that the problem is polynomial-time solvable when � ≤
3, while it is NP-complete for constant � ≥ 4. We also show that the
problem is W[1]-hard parameterized by pathwidth+ |A|, while it is fixed-
parameter tractable parameterized by treewidth + �.

Keywords: A-path packing · Fixed-parameter tractability · Treewidth

1 Introduction

Let G = (V,E) be a graph and A ⊆ V . A path P in G is an A-path if the first and
the last vertices of P belong to A and all other vertices of P belong to V \A. Given
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G and A, A-Path Packing is the problem of finding the maximum number of
vertex-disjoint A-paths in G. The A-Path Packing problem is well studied
and even some generalized versions are known to be polynomial-time solvable
(see e.g., [5,6,11,15,18,19]). Note that A-Path Packing is a generalization of
Maximum Matching since they are equivalent when A = V .

In this paper, we study a variant of A-Path Packing that also generalizes
Maximum Matching. An A-path of length � is an (A, �)-path, where the length
of a path is the number of edges in the path. Now our problem is defined as
follows:

(A, �)-Path Packing (ALPP)
Input: A tuple (G,A, k, �), where G = (V,E) is a graph, A ⊆ V , and k

and � are positive integers.
Question: Does G contain k vertex-disjoint (A, �)-paths?

To the best of our knowledge, this natural variant of A-Path Packing was
not studied in the literature. Our main motivation of studying ALPP is to see
theoretical differences from the original A-Path Packing, but practical motiva-
tions of having the length constraint may come from some physical restrictions or
some fairness requirements. Note that if � = 1, then ALPP is equivalent to Max-

imum Matching. Another related problem is �-Path Partition [16,20,21],
which asks for vertex-disjoint paths of length � (without specific endpoints).

In the rest of paper, we assume that k ≤ |A|/2 in every instance as otherwise
the instance is a trivial no-instance. The restricted version of the problem where
the equality k = |A|/2 is forced is also of our interest as that version corresponds
to a “full” packing of A-paths. We call this version Full (A, �)-Path Packing

(Full-ALPP, for short). In this paper, all our positive results showing tractability
of some cases will be on the general ALPP, while all our negative (or hardness)
results will be on the possibly easier Full-ALPP.

We assume that the reader is familiar with terminologies in the parameterized
complexity theory. See the textbook by Cygan et al. [8] for standard definitions.

Our Results

In summary, we show that ALPP is intractable even on very restricted inputs,
while it has some nontrivial cases that admit efficient algorithms. (See Fig. 1.)

We call |A|, k, and � the standard parameters of ALPP as they naturally arise
from the definition of the problem. We determine the complexity of ALPP with
respect to all standard parameters and their combinations. We first observe that
Full-ALPP is NP-complete for any constant |A| ≥ 2 (Observation 3.1) and for
any constant � ≥ 4 (Observation 3.2), while it is polynomial-time solvable when
� ≤ 3 (Theorem 3.3). On the other hand, ALPP is fixed-parameter tractable
when parameterized by k+ � and thus by |A|+ � as well (Theorem 3.5). We later
strengthen Observation 3.2 by showing that NP-complete for every fixed � ≥ 4
even on grid graphs (Theorem 5.1).

We then study structural parameters such as treewidth and pathwidth in
combination with the standard parameters. We first observe that ALPP can be
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solved in time nO(tw) (Theorem 4.1), where n and tw are the number of ver-
tices and the treewidth of the input graph, respectively. Furthermore, we show
that ALPP parameterized by tw + � is fixed-parameter tractable (Theorem 4.2).
We finally show that Full-ALPP parameterized by pw + |A| is W[1]-hard (Theo-
rem 4.5), where pw is the pathwidth of the input graph.

treewidth

pathwidth
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treedepth + |A|

treewidth + |A|

pathwidth + |A|

treedepth + �

treewidth + �

pathwidth + �
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Fig. 1. Summary of the results. An arrow α → β indicates that there is a function f
such that α ≥ f(β) for every instance of ALPP. Some possible arrows are omitted to
keep the figure readable. The results on the parameters marked with ∗ are explicitly
shown in this paper, and the other results follow by the hierarchy of the parameters.
We have a bidirectional arrow treedepth ↔ treedepth + � because the maximum length
of a path in a graph is bounded by a function of treedepth [17, Section 6.2].

2 Preliminaries

A graph G = (V,E) is a grid graph if V is a finite subset of Z
2 and E =

{{(r, c), (r′, c′)} | |r − r′| + |c − c′| = 1}. From the definition, all grid graphs
are planar, bipartite, and of maximum degree at most 4. To understand the
intractability of a graph problem, it is preferable to show hardness on a very
restricted graph class. The class of grid graphs is one of such target classes.

A tree decomposition of a graph G = (V,E) is a pair ({Xi | i ∈ I}, T =
(I, F )), where Xi ⊆ V for each i and T is a tree such that

– for each vertex v ∈ V , there is i ∈ I with v ∈ Xi;
– for each edge {u, v} ∈ E, there is i ∈ I with u, v ∈ Xi;
– for each vertex v ∈ V , the induced subgraph T [{i | v ∈ Xi}] is connected.

The width of a tree decomposition ({Xi | i ∈ I}, T ) is maxi∈I |Xi| − 1, and
the treewidth of a graph G, denoted tw(G), is the minimum width over all tree
decompositions of G.

The pathwidth of a graph G, denoted pw(G), is defined by restricting the
trees T in tree decompositions to be paths. We call such decompositions path
decompositions. It is easy to observe that pathwidth does not change significantly
by subdividing some edges and attaching paths to some vertices.
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Corollary 2.1 (�1). Let G = (V,E) be a graph without isolated vertices. If
G′ is a graph obtained from G by subdividing a set of edges F ⊆ E an arbitrary
number of times, and attaching a path of arbitrary length to each vertex in a set
U ⊆ V , then pw(G′) ≤ pw(G) + 2.

3 Standard Parameterizations of ALPP

In this section, we completely determine the complexity of ALPP with respect
to the standard parameters |A|, k, �, and their combinations. (Recall that k ≤
|A|/2.) We first observe that using one of them as a parameter does not make
the problem tractable. That is, we show that the problem remains NP-complete
even if one of |A|, k, � is a constant. We then show that the problem is tractable
when � ≤ 3 or when k + � is the parameter.

3.1 Intractable Cases

The first observation is that Full-ALPP is NP-complete even if |A| = 2 (and thus
k = 1). This can be shown by an easy reduction from Hamiltonian Cycle [12].
This observation is easily extended to every fixed even |A|.
Observation 3.1 (�). For every fixed even number α ≥ 2, Full-ALPP on grid
graphs is NP-complete even if |A| = α.

The NP-hardness of Full-ALPP for fixed � can be shown also by an easy
reduction from a known NP-hard problem, but in this case only for � ≥ 4. This
is actually tight as we see later that the problem is polynomial-time solvable
when � ≤ 3 (see Theorem 3.3).

Observation 3.2 (�). For every fixed � ≥ 4, Full-ALPP is NP-complete.

We can strengthen Observation 3.2 to hold on grid graphs by constructing
an involved reduction from scratch. As the proof is long and the theorem does
not really fit the theme of this section, we postpone it to Sect. 5.

3.2 Tractable Cases

Theorem 3.3. If � ≤ 3, then ALPP can be solved in polynomial time.

Proof. Let (G,A, k, �) with G = (V,E) be an instance of ALPP with � ≤ 3.
If � = 1, then the problem can be solved by finding a maximum matching in

G[A]. Since a maximum matching can be found in polynomial time [9], this case
is polynomial-time solvable.

Consider the case where � = 2. We reduce this case to the case of � = 3.
We can assume that G[A] and G[V \ A] do not contain any edges as such edges
are not included in any (A, 2)-path. New instance (G′, A, k, 3) is constructed by

1 A star � means that the proof is omitted.
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adding a true twin v′ to each vertex v ∈ V \A; i.e., V (G′) = V ∪{v′ | v ∈ V \A}
and E(G′) = E ∪ {{v, v′} | v ∈ V \ A} ∪ {{u, v′} | u ∈ A, v ∈ V \ A, {u, v} ∈ E}.
Clearly, (G,A, k, 2) is a yes-instance if and only if so is (G′, A, k, 3).

For the case of � = 3, we construct an auxiliary graph G′ = (A∪V1∪V2, EA,1∪
E1,2 ∪ E2,2) as follows (see Fig. 2):

Vi = {vi | v ∈ V \ A} for i ∈ {1, 2},

EA,1 = {{u, v1} | u ∈ A, v ∈ V \ A, {u, v} ∈ E},

E1,2 = {{v1, v2} | v ∈ V },

E2,2 = {{u2, v2} | u, v ∈ V \ A, {u, v} ∈ E}.

We show that (G,A, k, 3) is a yes-instance if and only if G′ has a matching of
size k + |V \ A|, which implies that the problem can be solved in polynomial
time.

Fig. 2. The construction of G′ (right) from G (left).

To prove the only-if direction, let P1, . . . , Pk be k vertex-disjoint (A, 3)-path
in G. We set M = MA,1 ∪ M1,2 ∪ M2,2, where

MA,1 = {{u, v1} ∈ EA,1 | edge {u, v} appears in some Pi},

M1,2 = {{v1, v2} ∈ E1,2 | vertex v does not appear in any Pi},

M2,2 = {{u2, v2} ∈ E2,2 | edge {u, v} appears in some Pi}.

Since the (A, 3)-paths P1, . . . , Pk are pairwise vertex-disjoint, M is a matching.
We can see that |M | = k + |V \ A| as |M2,2| = k and |MA,1| + |M1,2| = |V1| =
|V \ A|.

To prove the if direction, assume that G′ has a matching of size k + |V \ A|.
Let M be a maximum matching of G′ that includes the maximum number of
vertices in V1 ∪ V2 among all maximum matchings of G′. We claim that M
actually includes all vertices in V1 ∪ V2. Suppose to the contrary that v1 or v2 is
not included in M for some v ∈ V \ A. Now, since M is maximum, exactly one
of v1 and v2 is included in M .

Case 1: v1 ∈ V (M) and v2 /∈ V (M). There is a vertex u ∈ A such that
{u, v1} ∈ M . The set M − {u, v1} + {v1, v2} is a maximum matching that uses
more vertices in V1 ∪ V2 than M . This contradicts how M was selected.
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Case 2: v1 /∈ V (M) and v2 ∈ V (M). There is a vertex w2 ∈ V2 such that
{v2, w2} ∈ M . The edge set M ′ := M − {v2, w2} + {v1, v2} is a maximum
matching that uses the same number of vertices in V1 ∪ V2 as M . Since M ′ is
maximum and w2 is not included in M ′, the vertex w1 has to be included in M ′,
but such a case leads to a contradiction as we saw in Case 1.

Now we construct k vertex-disjoint (A, 3)-paths from M as follows. Let
{u2, v2} ∈ M ∩E2,2. Since M includes all vertices in V1, it includes edges {u1, x}
and {v1, y} for some x, y ∈ A. This implies that G has an (A, 3)-path (x, u, v, y).
Let (x′, u′, v′, y′) be the (A, 3)-path constructed in the same way from a differ-
ent edge in M ∩ E2,2. Since M is a matching, these eight vertices are pairwise
distinct, and thus (x, u, v, y) and (x′, u′, v′, y′) are vertex-disjoint (A, 3)-paths.
Since |M | ≥ k + |V \ A| and each edge in EA,1 ∪ E1,2 uses one vertex of V1, M
includes at least k edges in E2,2. By constructing an (A, 3)-path for each edge
in M ∩ E2,2, we obtain a desired set of k vertex-disjoint (A, 3)-paths. �	

In their celebrated paper on Color-Coding [1], Alon, Yuster, and Zwick
showed the following result.

Proposition 3.4 ([1, Theorem 6.3]). Let H be a graph on h vertices with
treewidth t. Let G be a graph on n vertices. A subgraph of G isomorphic to H,
if one exists, can be found in time O(2O(h) · nt+1 log n).

By using Proposition 3.4 as a black box, we can show that ALPP parameter-
ized by k + � is fixed-parameter tractable.

Theorem 3.5. ALPP on n-vertex graphs can be solved in O(2O(k�)n6 log n)
time.

Proof. Let (G,A, k, �) be an instance of ALPP. Observe that the problem ALPP
can be seen as a variant of the Subgraph Isomorphism problem as we search for
H = kP�+1 in G as a subgraph with the restriction that each endpoint of P�+1 in
H has to be mapped to a vertex in A, where P�+1 denotes an (�+1)-vertex path
(which has length �) and kP�+1 denotes the disjoint union of k copies of P�+1.
We reduce this problem to the standard Subgraph Isomorphism problem [12].

Let G′ and H ′ be the graphs obtained from G and H, respectively, by sub-
dividing each edge once. The graphs G′ and H ′ = kP2�+1 are bipartite. We then
construct G′′ from G′ by attaching a triangle to each vertex in A; that is, for each
vertex u ∈ A we add two new vertices v, w and edges {u, v}, {v, w}, and {w, u}.
Similarly, we construct H ′′ from H ′ by attaching a triangle to each endpoint of
each P2�+1. Note that |V (G′′)| ∈ O(n2), |V (H ′′)| = k(2� + 1), and tw(H ′′) = 2.
Thus, by Proposition 3.4, it suffices to show that (G,A, k, �) is a yes-instance of
ALPP if and only if G′′ has a subgraph isomorphic to H ′′.

To show the only-if direction, assume that G has k vertex-disjoint (A, �)-
paths P1, . . . , Pk. In G′′, for each Pi, there is a unique path Qi of length 2� plus
triangles attached to the endpoints; that is, Qi consists of the vertices of Pi,
the new vertices and edges introduced by subdividing the edges in Pi, and the
triangles attached to the endpoints of the subdivided path. Furthermore, since
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the paths Pi are pairwise vertex-disjoint, the subgraphs Qi of G′′ are pairwise
vertex-disjoint. Thus, G′′ has a subgraph isomorphic to H ′′ =

⋃
1≤i≤k Qi.

To prove the if direction, assume that G has a subgraph H ′ isomorphic to H.
Let R1, . . . , Rk be the connected components of H ′. Each Ri is isomorphic to a
path of length 2� with a triangle attached to each endpoint. Let u, v ∈ V (Ri)
be the degree-3 vertices of Ri. Since G′′ is obtained from the triangle-free graph
G′ by attaching triangles at the vertices in A, we have u, v ∈ A. Since the
u-v path of length 2� in Ri is obtained from a u-v path of length � in G by
subdividing each edge once, the graph G[V (Ri)∩V (G)] contains an (A, �)-path.
Since V (R1), . . . , V (Rk) are pairwise disjoint, G contains k vertex-disjoint (A, �)-
paths. �	

4 Structural Parameterizations

In this section, we study structural parameterizations of ALPP. First we present
XP and FPT algorithms parameterized by tw and tw + �, respectively.

The XP-time algorithm parameterized by tw is based on an efficient algorithm
for computing a tree decomposition [4] and a standard dynamic-programming
over nice tree decompositions [14]. The FPT algorithm parameterized tw + � is
achieved by expressing the problem in the monadic second-order logic (MSO2)
of graphs [2,3,7]. The proofs of them are omitted.

Theorem 4.1 (�). ALPP can be solved in time nO(tw).

Theorem 4.2 (�). ALPP parameterized by tw+� is fixed-parameter tractable.

Now we show that Full-ALPP is W[1]-hard parameterized by pathwidth (and
hence also by treewidth), even if we also consider |A| as an additional parame-
ter. We present a reduction from a W[1]-complete problem k-Multi-Colored

Clique (k-MCC) [10], which goes through an intermediate version of our prob-
lem. Specifically, we will consider a version of Full-ALPP with the following mod-
ifications: the graph has (positive integer) edge weights, and the length of a path
is the sum of the weights of its edges; the set A is given to us partitioned into
pairs indicating the endpoints of the sought A-paths; for each such pair the value
of � may be different.

More formally, Extended-ALPP is the following problem: we are given a
graph G = (V,E), a weight function w : E → Z

+, and a sequence of r triples
(s1, t1, �1), . . . , (sr, tr, �r), where all the si, ti ∈ V are distinct vertices and
�i ∈ Z

+ for all i ∈ [r]2. We are asked if there exists a set of r vertex-disjoint
paths in G such that for all i ∈ [r] the i-th path in this set has endpoints si, ti
and the sum of the weights of its edges is �i. We first show that establishing that
this variation of the problem is hard implies also the hardness of Full-ALPP.

Lemma 4.3. There exists an algorithm which, given an instance of Extended-
ALPP on an n-vertex graph G with r triples and maximum edge weight W ,
2 For a positive integer r, we denote the set {1, 2, . . . , r} by [r].
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constructs in time polynomial in n + W an equivalent instance (G′, A, |A|/2, �)
of Full-ALPP with the properties: (i) |A| = 2r, (ii) pw(G′) ≤ pw(G) + 2.

Proof. First, we simplify the given instance of Extended-ALPP by removing edge
weights: for every edge e = {u, v} ∈ E(G) with w(e) > 1, we remove this edge
and replace it with a path from u to v with length w(e) going through new
vertices (in other words we subdivide e w(e) − 1 times). It is not hard to see
that we have an equivalent instance of Extended-ALPP on the new graph, which
we call G1, where the weight of all edges is 1 and |V (G1)| ≤ n2W . We now
give a polynomial-time reduction from this new instance of Extended-ALPP to
Full-ALPP.

Let n1 = |V (G1)| and � = n3
1. For each i ∈ [r] we do the following: we

construct a new vertex s′
i and connect it to si using a path of length i · n2

1 going
through new vertices; we construct a new vertex t′i and connect it to ti using a
path of length (n1 − i) · n2

1 − �i through new vertices. We set A to contain all
the vertices s′

i, t
′
i for i ∈ [r]. This completes the construction and it is clear that

|A| = 2r (because the si, ti vertices are distinct), the new graph G′ has order at
most n5

1 ≤ n10 · W 5 and can be constructed in time polynomial in n + W .
We claim that the new graph G′ has |A|/2 vertex-disjoint (A, �)-paths if and

only if the Extended-ALPP instance of G1 has a positive answer. Indeed, if there
exists a collection of r vertex-disjoint paths in G1 such that the i-th path has
endpoints si, ti and length �i, we add to this path the paths from s′

i to si and from
ti to t′i and this gives a path of length � = n3

1 with endpoints in A. Observe that
all these paths are vertex-disjoint, so we obtain a yes-certificate of Full-ALPP.
For the converse direction, suppose that G′ has a set A of |A|/2 vertex-disjoint
(A, �)-paths. If A contains a path P with endpoints s′

i and s′
j , then considering

the length of P we get (i + j) · n2
1 + 1 ≤ n3

1 ≤ (i + j) · n2
1 + n1 − 1. The first

inequality implies i + j ≤ n1 − 1, but then this implies (i + j) · n2
1 + n1 − 1 ≤

n3
1 − n2

1 + n1 − 1 < n3
1, a contradiction. Also, there cannot be a path in A with

endpoints t′i and t′j , since existence of such a path implies, by the pigeon hole
principle, that there is a path in A with endpoints s′

p and s′
q. Assume that A

contains a path with endpoints s′
i and t′j . Then the length of this path is at least

i · n2
1 + (n1 − j) · n2

1 − �j + 1 and at most i · n2
1 + (n1 − j) · n2

1 − �j + n1 − 1.
Therefore, if this path has length exactly � = n3

1, it must be the case that i = j.
Furthermore, if i = j we infer that the length of the part of the path from si to
ti is exactly �i. We therefore obtain a solution to the Extended-ALPP instance.

Finally, observe that the only modifications we have done on G is to subdivide
some edges and to attach paths to some vertices. By Corollary 2.1, the pathwidth
is increased only by at most 2. �	

We can now reduce the k-MCC problem to Extended-ALPP.

Lemma 4.4. There exists a polynomial-time algorithm which, given an instance
of k-MCC on a graph G with n vertices, produces an equivalent instance of
Extended-ALPP on a graph G′, with r ∈ O(k2) triples, pw(G′) ∈ O(k2), and
maximum edge weight W ∈ nO(1).
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Proof. We are given a graph G = (V,E) with V partitioned into k sets V1, . . . , Vk,
and are asked for a clique of size k that contains one vertex from each set. To
ease notation, we will assume that n is even and |Vi| = n for i ∈ [k] (so the graph
has kn vertices in total) and that the vertices of Vi are numbered 1, . . . , n. We
define two lengths L1 = n3 + (k + 1)(2n + 2) and L2 = n6.

For i ∈ [k] we construct a vertex-selection gadget as follows (see Fig. 3): we
make 2n + 3 paths of length k, call them Pi,j , where j ∈ [2n + 3]. Let ai,j , bi,j

be the first and last vertex of path Pi,j respectively. We label the remaining
vertices of the path Pi,j as xi,j,i′ for i′ ∈ {1, . . . , k}\{i} in some arbitrary order.
Then for each j ∈ [2n + 2] we connect ai,j to ai,j+1 and bi,j to bi,j+1. All edges
constructed so far have weight 1. We add two vertices si, ti, connect si to ai,1

with an edge of weight n3/2 and ti to ai,2n+3 also with an edge of weight n3/2.
We add to the instance the triple (si, ti, L1).

Fig. 3. An example of the vertex-selection gadget for n = 3, k = 4, and i = 2.

We now need to construct an edge-verification gadget as follows (see Fig. 4):
for each i1, i2 ∈ [k] with i1 < i2 we construct three vertices si1,i2 , ti1,i2 , pi1,i2 . For
each edge e of G between Vi1 and Vi2 we do the following: suppose e connects
vertex j1 of Vi1 to vertex j2 of Vi2 . We add the following four edges:

1. An edge from si1,i2 to xi1,2j1,i2 . This edge has weight L2/4 + j1n
4 + j2n

2.
2. An edge from xi1,2j1,i2 to pi1,i2 . This edge has weight L2/4.
3. An edge from pi1,i2 to xi2,2j2,i1 . This edge has weight L2/4.
4. An edge from xi2,2j2,i1 to ti1,i2 . This edge has weight L2/4 − j1n

4 − j2n
2.

We call the edges constructed in the above step heavy edges, since their
weight is close to L2/4. We add the k(k − 1)/2 triples (si1,i2 , ti1,i2 , L2) to the
instance, for all i1, i2 ∈ [k], with i1 < i2.
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Fig. 4. An example of the edge-verification gadget for Vi1 and Vi2 (i1 < i2). In this
example, there are exactly three edges between Vi1 and Vi2 .

Note that in the above description we have created some parallel edges, for
example from si1,i2 to xi1,2j1,i2 (if the vertex j1 of Vi1 has several neighbors in
Vi2). This can be avoided by subdividing such edges once and assigning weights
to the new edges so that the total weight stays the same. For simplicity we ignore
this detail in the remainder since it does not significantly affect the pathwidth
of the graph (see Corollary 2.1). This completes the construction.

Let us now prove correctness. First assume that we have a k-multicolored
clique in G, encoded by a function σ : [k] → [n], that is, σ(i) is the vertex of
the clique that belongs in Vi. For the i-th vertex-selection gadget we have the
triple (si, ti, L1). We construct a path from si to ti as follows: we take the edge
(si, ai,1), then for each j < 2σ(i) we follow the path Pi,j from ai,j to bi,j if j
is odd, and in the reverse direction if j is even. We thus arrive to the vertex
bi,2σ(i)−1. We then skip the path Pi,σ(i), proceed through bi,2σ(i) to the vertex
bi,2σ(i)+1 and traverse the paths by reversing our parity rule: for j > 2σ(i) we
traverse Pi,j from bi,j to ai,j if j is odd, and in the reverse direction otherwise.
Hence, the last vertex of this traversal is ai,2n+3, after which we reach ti. The
first and last edge of this path have total cost n3; we have traversed 2n+2 paths
Pi,j , each of which has k edges; we have also traversed 2n + 2 edges connecting
adjacent paths. The total length is therefore, n3 + (2n + 2)k + 2n + 2 = L1.
In this way we have satisfied all the k triples (si, ti, L1) and have not used the
vertices xi,2σ(i),i′ for any i′ �= i.

Consider now a triple (si1,i2 , ti1,i2 , L2), for i1 < i2. Because we have selected
a clique, there exists an edge between vertex σ(i1) of Vi1 and σ(i2) of Vi2 .
For this edge we have constructed four edges in our new instance, linking
si1,i2 to ti1,i2 with a total weight of L2. We use these paths to satisfy the
(
k
2

)
triples (si1,i2 , ti1,i2 , L2). These paths are disjoint from each other: when

i1 < i2, xi1,2σ(i1),i2 is only used in the path from si1,i2 to ti1,i2 and when i1 > i2,
xi1,2σ(i1),i2 is only used in the path from si2,i1 to ti2,i1 . Furthermore, these paths
are disjoint from the paths in the vertex-selection gadgets, as we observed that
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xi,2σ(i),i′ are not used by the path connecting si to ti. We thus have a valid
solution. See Fig. 5.

Fig. 5. Construction of paths from σ.

For the converse direction, suppose we have a valid solution for the Extended-
ALPP instance. First, consider the path connecting si to ti. This path has length
L1, therefore it cannot be using any heavy edges, since these edges have cost at
least L2/4 − n5 − n3 > L1. Inside the vertex-selection gadget, the path may
use either all of the edges of a path Pi,j or none. Let us now see how many
Pi,j are unused. First, a simple parity argument shows that, because si, ti are
both connected to an ai,j vertex, the number of paths traversed in the ai,j → bi,j

direction is equal to those traversed in the opposite direction, so the total number
of used paths is even. Since we have an odd number of paths in total, at least
one path is not used. We conclude that exactly one Pi,j is not used, otherwise
the path from si to ti would be too short. Let σ(i) be defined as the index j such
that the internal vertices of Pi,j are not used in the si → ti path of the solution.
We define a clique in G by selecting for each i the vertex �σ(i)/2
.

Let us argue why this set induces a clique. Let j1, j2 be the vertices selected
in Vi1 , Vi2 respectively, with i1 < i2, and consider the triple (si1,i2 , ti1,i2 , L2).
This triple must be satisfied by a path that uses exactly four heavy edges, since
each heavy edge has weight strictly larger than L2/5 and strictly smaller than
L2/3 and all other edges together are either incident on another terminal or have
weight smaller than L2/5n2. Hence, every such path is using at least two internal
vertices of some Pi,j because every heavy edge is incident on such a vertex. But,
by our previous reasoning, the paths that satisfy the (si, ti, L1) triples have used
all such vertices except for one path Pi,j for each i. There exist therefore exactly
k(k −1) such vertices available, so each of the k(k −1)/2 triples (si1,i2 , ti1,i2 , L2)
has a path using exactly two of these vertices. Hence, each such path consists of
four heavy edges and no other edges.

Such a path must therefore be using one edge incident on si1,i2 , one edge
incident on ti1,i2 and two edges incident on pi1,i2 . The used edge incident on
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si1,i2 must have as other endpoint xi1,2j1,i2 , which implies that its weight is
L2/4 + j1n

4 + j′
2n

2, for some j′
2. Similarly, the edge incident on ti1,i2 must have

weight L2/4 − j′
1n

4 − j2n
2, as its other endpoint is necessarily xi2,2j2,i1 . We

conclude that the only way that the length of this path is L2 is if j1 = j′
1 and

j2 = j′
2. Therefore, we have an edge between the two selected vertices, and as a

result a k-clique.
To conclude we observe that deleting the O(k2) vertices si1,i2 , pi1,i2 , ti1,i2

disconnects the graph into components that correspond to the vertex gadgets.
Each vertex gadget has pathwidth at most 4 as it can be seen as a subgraph of a
subdivision of the 2 × (2n + 4) grid. As a result the whole graph has pathwidth
O(k2). �	
Theorem 4.5. Full-ALPP is W[1]-hard parameterized by pw + |A|.
Proof. We compose the reductions of Lemmas 4.3 and 4.4. Starting with an
instance of k-MCC with n vertices this gives an instance of Full-ALPP with
nO(1) vertices, |A| = O(k2), and pathwidth O(k2). �	

5 Hardness on Grid Graphs

We first reduce Planar Circuit SAT to Full-ALPP on planar bipartite graphs
of maximum degree at most 4. We then modify the instance by subdividing
edges and adding terminal vertices in a appropriate way, and have an equivalent
instance on grid graphs. All proofs in this section are omitted.

Theorem 5.1 (�). For every fixed � ≥ 4, Full-ALPP is NP-complete on grid
graphs.

6 Concluding Remarks

In this paper, we have introduced a new problem (A, �)-Path Packing and
showed tight complexity results. One possible future direction would be the
parameterization by clique-width cw, a generalization of treewidth (see [13]). In
particular, we ask the following two questions.

– Does ALPP admit an algorithm of running time O(ncw)?
– Is ALPP fixed-parameter tractable parameterized by cw + �?
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