Skip to main content

Semi-automatic Annotation of OCT Images for CNN Training

  • Conference paper
  • First Online:
Human-Computer Interaction. Design and User Experience (HCII 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12181))

Included in the following conference series:

  • 2545 Accesses

Abstract

Annotating image data is one of the most time-consuming parts of the training of machine learning algorithms. With this contribution, we are looking for a solution that decreases the time needed for annotating images of the human retina created by Optical coherence tomography (OCT). As a first step, we use a simple annotation tool to test whether the sorting of images by their predicted amount of parts that contain anomalies decreases the time needed for annotation without increasing the number of annotation mistakes. The predictions are made by a convolutional neural network (CNN) that was trained on a previously annotated image set. We investigated the annotation behaviour in two groups of five subjects each. The first group received the (OCT) images in the order of recording, the second group sorted by the number of predicted anomalies. We observed a significant increase in annotation speed in the subjects of the second group while the quality of annotation remained at least stable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://topos.averbis.de/.

References

  1. Acuna, D., Ling, H., Kar, A., Fidler, S.: Efficient interactive annotation of segmentation datasets with polygon-RNN++. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 859–868 (2018)

    Google Scholar 

  2. Culotta, A., McCallum, A.: Reducing labeling effort for structured prediction tasks. In: AAAI, vol. 5, pp. 746–751 (2005)

    Google Scholar 

  3. Dias, P.A., Shen, Z., Tabb, A., Medeiros, H.: Freelabel: a publicly available annotation tool based on freehand traces. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 21–30. IEEE (2019)

    Google Scholar 

  4. Dutta, A., Zisserman, A.: The via annotation software for images, audio and video. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 2276–2279 (2019)

    Google Scholar 

  5. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org

    MATH  Google Scholar 

  6. Hasan, R., Langner, H., Ritter, M., Eibl, M.: Investigating the robustness of pre-trained networks on OCT-dataset. In: Actual Problems of System and Software Engineering, November 2019

    Google Scholar 

  7. Karpathy, A.: Convnetjs. https://cs.stanford.edu/people/karpathy/convnetjs/index.html. Accessed 14 Feb 2020

  8. Podoleanu, A.G.: Optical coherence tomography. J. Microscopy 247(3), 209–219 (2012). https://doi.org/10.1111/j.1365-2818.2012.03619.x. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2818.2012.03619.x

    Article  Google Scholar 

  9. Qin, X., He, S., Zhang, Z., Dehghan, M., Jagersand, M.: ByLabel: a boundary based semi-automatic image annotation tool. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1804–1813. IEEE (2018)

    Google Scholar 

  10. Resnikoff, S., et al.: Global data on visual impairment in the year 2002. Bull. World Health Organ. 82(11), 844–851 (2004)

    Google Scholar 

  11. Schindelin, J., et al.: Fiji: an open-source platform for biological-image analysis. Nat. Methods 9(7), 676–682 (2012)

    Article  Google Scholar 

  12. Schmidt-Erfurth, U.M., et al.: Guidance for the treatment of neovascular age-related macular degeneration. Acta Ophthalmol. Scand. 85(5), 486–494 (2007)

    Article  Google Scholar 

  13. Schrader, W.F.: Altersbedingte makuladegeneration. Der Ophthalmol. 103(9), 742–748 (2006)

    Article  Google Scholar 

  14. Simeone, O.: A very brief introduction to machine learning with applications to communication systems. IEEE Trans. Cogn. Commun. Netw. 4(4), 648–664 (2018)

    Article  Google Scholar 

  15. Specht, D.F., et al.: A general regression neural network. IEEE Trans. Neural Netw. 2(6), 568–576 (1991)

    Article  Google Scholar 

  16. Swanson, E.A., et al.: In vivo retinal imaging by optical coherence tomography. Opt. Lett. 18(21), 1864–6 (1993)

    Article  Google Scholar 

  17. Tseng, Q., et al.: Spatial organization of the extracellular matrix regulates cell–cell junction positioning. Proc. Natl. Acad. Sci. (2012). https://doi.org/10.1073/pnas.1106377109. https://www.pnas.org/content/early/2012/01/09/1106377109

  18. Zysk, A.M., Nguyen, F.T., Oldenburg, A.L., Marks, D.L., Boppart, S.A.: Optical coherence tomography: a review of clinical development from bench to bedside. J. Biomed. Opt. 12(5), 051403 (2007)

    Article  Google Scholar 

Download references

Acknowledgement

We like to acknowledge that Prof. Dr. Andreas Stahl and the collaborators of the TOPOs project provided the OCT image data that was used in this study, as well as the ophthalmological background. TOPOs (“Therapievorhersage durch Analyse von Patientendaten in der Ophthalmologie”) is a collaborative project that is funded by BMBF (“Bundesministerium für Bildung und Forschung”, “Federal Ministry of Education & Resarch”) (FKZ: 13GW0170B) from March 2017 to January 2020.

The SMWK (“Sächsisches Staatsministerium für Wissenschaft, Kultur und Tourismus”) supported this work by funding the project “Digitale Produkt- und Prozessinnovationen 2020”, which contains a work package named “Entwicklung und Implementierung eines begehbaren Auges zur computergestützten Annotation von Augenkrankheiten in der virtuellen Realität”. This work describes findings that were made while working on this work package.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Schleier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schleier, S., Stolz, N., Langner, H., Hasan, R., Roschke, C., Ritter, M. (2020). Semi-automatic Annotation of OCT Images for CNN Training. In: Kurosu, M. (eds) Human-Computer Interaction. Design and User Experience. HCII 2020. Lecture Notes in Computer Science(), vol 12181. Springer, Cham. https://doi.org/10.1007/978-3-030-49059-1_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49059-1_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49058-4

  • Online ISBN: 978-3-030-49059-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics