
Onboard CNN-Based Processing
for Target Detection and Autonomous

Landing for MAVs

A. A. Cabrera-Ponce1 and J. Martinez-Carranza1,2(B)
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Abstract. In this work, we address the problem of target detection
involved in an autonomous landing task for a Micro Aerial Vehicle
(MAV). The challenge is to detect a flag located somewhere in the envi-
ronment. The flag is posed on a pole, and to its right, a landing platform
is located. Thus, the MAV has to detect the flag, fly towards it and once
it is close enough, locate the landing platform nearby, aiming at centring
over it to perform landing; all of this has to be carried out autonomously.
In this context, the main problem is the detection of both the flag and the
landing platform, whose shapes are known in advanced. Traditional com-
puter vision algorithms could be used; however, the main challenges in
this task are the changes in illumination, rotation and scale, and the fact
that the flight controller uses the detection to perform the autonomous
flight; hence the detection has to be stable and continuous on every cam-
era frame. Motivated by this, we propose to use a Convolutional Neural
Network optimised to be run on a small computer with limited com-
puter processing budget. The MAV carries this computer, and it is used
to process everything on board. To validate our system, we tested with
rotated images, changes in scale and the presence of low illumination. Our
method is compared against two conventional computer vision methods,
namely, template and feature matching. In addition, we tested our sys-
tem performance in a wide corridor, executing everything on board the
MAV. We achieved a successful detection of the flag with a confidence
metric of 0.9386 and 0.9826 for the Landing platform. In total, all the
onboard computations ran at an average of 13.01 fps.
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1 Introduction

Nowadays, target detection is a traditional problem in computer vision, which
involves having to identify features describing relevant information about an
object or set of objects. In robotics, target detection is a problem for robots
that perform some tasks in real scenarios, mostly due to poor illumination.
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Fig. 1. Target detection for autonomous landing based on a mission of indoors com-
petition in IMAV2019. A video of this work for reviewing purpose is found at https://
youtu.be/sYn9mo-2hvA

Although the use of sensors can facilitate target detection, the information can
be different in indoor and outdoor environments, thus varying the information
around of the target.

Micro Aerial Vehicles (MAVs) have become popular in the research commu-
nity for easy control and manipulation using the GPS devices and RGB cameras
for solving multiple problems like inspection, detection, surveillance, rescue and
localisation in indoors and outdoors environments. These tasks have been carried
out with vision methods such as optical flow, segmentation, edge detector, mor-
phological operations, feature extractor, feature matching and template match-
ing. Besides, some methods have been combined with two or more techniques for
suitable detection, while a MAV performs an autonomous flight in an unknown
environment. Also, the combination of different types of cameras such as depth
cameras, thermal cameras and stereo cameras enable to capture other types of
information useful for detection. Nevertheless, the use of this information can
be computationally expensive to perform detection onboard of the MAV in real-
time, affect the speed performance. Likewise, it can be affected much for changes
of illumination and environments, including oblique views, scale and rotations
even that the object is partially occluded.

From the above, several events around the world have proposed competitions
of robotics focused on the use of MAVs to solve tasks in real-time. The Inter-
national Micro Aerial Vehicles and competition (IMAV) is an event focused on
aerial robotics, including conference and competition in outdoors and indoors
environments. The event consists of the development of new systems and meth-
ods to solve problems such as detection, control, pose estimation and autonomous
navigation.

Deep learning has become a useful tool for classification, segmentation and
detection without having to explicitly design a detector, descriptor and matcher
components, typical of traditional computer vision techniques. Convolutional
Neural Networks (CNNs) have been used to obtain results by training a dataset,
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allowing the learning of features to recognise multiple objects in one single pass
without importance the views, occlusion and changes of illumination. YOLO,
FRCNs and Single Shot Detector (SSD) are CNNs to detect classes of objects
in an image, learning their features without using much computationally cost.

Therefore, motivated by the effectiveness of deep learning for the detecting
task, in this work, we present a detection system to solve one of the missions
included in the indoors competition of the IMAV2019. This mission consisted in
detect a given flag, which is used to indicate the position of a landing platform.
The goal is to a MAV navigate autonomously detecting the flag to fly towards its
location, and then identify the landing platform. Once the landing platform is
detected, the MAV has to maintain the detection, while performing autonomous
flight to centre its position w.r.t. the platform, seeking to secure the landing on
the platform in an autonomous manner, see Fig. 1.

Our detection system is based on Single Shot Detector architecture with seven
convolutional layers (SSD7). We have manually generated a training dataset of
the flag and platform in several views, environments and changes of illumination
to obtain an improved result before realising the autonomous landing. The SSD
network was chosen due to its fast performance on micro computer boards with
low budget processing powers and without GPU. In average, we have tested and
observed that detection tasks can be performed with an average processing speed
of 15 fps; this includes the controller responsible for the autonomous flight and
landing routines.

In order to present our work, this paper is organised as follows. Section 2
provides related works about object detection and autonomous landing using
deep learning and vision methods. Section 3 describes the dataset generation, the
hardware used for the training and experiments, and our approach for detection.
Section 4 shows the experimental design and the comparison of our approach
with other methods for the flag and platform detection. In Sect. 5, we present
the results running on board the MAV. Finally, conclusions and future work are
outlined in Sect. 6.

2 Related Work

Object detection is a problem that has addressed for a long time in image process-
ing, pattern recognition, and robotics using multiples techniques of recognition.
In aerial robotics, recent works have sought out new techniques for target detec-
tion using sensors or vision during autonomous flight. However, due to onboard
cameras of the MAVs, vision methods have used to perform tasks of detection,
search and tracking with visual descriptors being the most widely used due to
its fast application. For instance, in [6] detect regions of interest to the runway
of wind-fixes UAVs applying sparse coding spatial pyramid matching (ScSPM),
others create a keypoints database for feature matching [17] or the improve-
ment of a descriptor using CamShift based on colour information [24]. Others
prefer the use patterns or marks to detect a landing platform [2,3] and template-
based matching in an image pyramid scheme for the target detection in multiple
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scales [5]. Likewise, methods based on RANSAC allow the search and detection
of landing sites with multi-scale features using 3D maps for pose estimation of
landing sites [21,22].

For one hand, machine learning and Artificial Neural Networks have leveraged
the learning to detect and recognise landing targets using several methods in
combination. For instance, the use of nearest neighbour with CNN layers to have
effective in recognition [7] and category maps using counter propagation networks
(CPNs) to identify multiple objects from aerial images [8]. Also, they are suitable
for learning the skill of pilots through generated models from datasets [1], even to
cooperative detections and tracking onboard [13]. Likewise, deep reinforcement
learning can identify the position of the land the UAV on uniform textures using
a Deep Q-Networks (DQNs) for vertical descent on a variety of simulated and
real-world environments [10] or in several simulated environments with relevant
noise [11]. Some works employ different deep reinforcement learning methods for
the autonomous landing. Thus, [19] they show an improved deep reinforcement
learning (DRL) trained on Gazebo simulation for the autonomous landing. In
[12], use Deep Q-Networks (DQNs) to perform autonomous landing on the deck
of a USV subject to perturbations induced by sea, and [15] use a Gazebo-based
reinforcement learning framework for UAV landing on a moving platform.

On the other hand, the target detection onboard of the MAVs using deep
learning has promising results, such as YOLO, FRCN and SSD. The training
of CNN models is an alternative for target detection, estimating heading angles
to guide the aircraft to runway landing [4] or to obtain high-level commands
directly to MAV respect to target [20]. Furthermore, some CNN allows detect-
ing broad zones for autonomous landing using depth estimation networks in real
environments from a simulate dataset [16]. However, it is necessary to take into
account that some sites are not wides and a precise landing is required, pro-
viding a bounding box of the landing target [14]. Hence, the detection of the
targets is one of the main tasks in aerial robotics before to do an autonomous
landing, in [23] uses YOLO and SqueezeNet to detect marks on the landing
zone in synthesised and real-world scenarios. Finally, another work performs
deep learning-based reconstruction and marker detection for MAV landing with
YOLOv2 [18], and [9] uses lightDenseYOLO in combination with Kalman Filter
for detecting markers and estimating the direction to perform the autonomous
landing.

Despite detect targets and landing zones with deep learning, these works per-
form an onboard detection using computers with GPU architecture like Nvidia
TX1, Nvidia TX2 and Snapdragon. Therefore, in this paper, we present a detec-
tion system using an SSD network for target detection and autonomous landing
onboard of a MAV without a computer with GPU architecture.

3 Methodology

Our detection system is based on SSD architecture with seven convolution layers
(SSD7). This CNN is an optimised network build to be used in computers with
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low performs or without GPU architecture, including on micro computer boards.
The SSD is a CNN for detect multiples objects through predictions of bounding
boxes around them with the capability to learn up to twenty classes of an only
image and being faster to train than Yolo, FRCN and tinyYolo. In this paper, we
have been trained the SSD7 with two classes: Mexican flag and Landing platform,
using images captured with the Drone Bebop 2 through ROS (Robot Operating
System) establishing communication between the MAV and the computer. The
images were resized to QVGA (320 × 240) resolution to accelerate the training
of the network and manually labelled selecting the bounding box around of the
interest object. The configuration in Fig. 2 has used to detect the flag, and the
platform to then send control commands in Roll, Pitch and Yaw to the aerial
vehicle.

Fig. 2. System of communication used to send control commands in Roll, Pitch and
Yaw to the MAV.

3.1 Single Shot Detector (SSD)

The SSD is a detection network composes of 2 parts: extract feature maps,
and apply convolution filters to make predictions and detect objects, using a
VGG16 network as a feature extractor (Fig. 3). Each convolution filter makes
a prediction composes of bounding boxes and scores for each class. In contrast
to other detection techniques, learn main features such as the form, colour,
aspect, scale, saturation and texture regardless of illumination changes, partial
occlusion and changes in the environment that may impair the appearance of the
object. Therefore, in this paper, we use SSD7 architecture (Fig. 3) to perform the
object detection onboard of the MAV in the Intel Stick Computer without GPU
architecture. The input of the network is an RGB image with QVGA (320×240)
resolution passing for filters in each convolution layer to producing bidimensional
maps that generate bounding boxes around of the object.
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(a) VGG16

(b) Single Shot Detector (SSD7).

Fig. 3. Network architectures. (Color figure online)

To cover more forms of bounding boxes, the SSD uses Multi-scale features
maps and data augmentation to improve the accuracy, flipping, cropping and
distorting the colour of the image to handle variants in various object sizes
and shapes. Our SSD architecture makes 6340 predictions for better coverage
of location, scale and aspect ratios, more than many other detection methods.
Besides, the predictions are classified as the intersection over the union and are
a measure of the ratio between the intersected area over the joined area for
two regions. This strategy makes that each prediction have shapes closer to the
corresponding ground truth (Fig. 4), where its value is of 0.0 to 1.0, being the
value 1.0 the proper detection.

In the last layer, is apply Non-maximum Suppression (NMS) to clear the
unnecessary bounding boxes and remove duplicate predictions to the same
object. On this way, we keep 200 predictions per image and drawing the bound-
ing box whose confidence value is above 0.8. In Fig. 5, we show an example of the
bounding boxes predicted and the final result applying the threshold. Finally,
in the output of the network, we obtain a vector whose information have the
bounding box coordinates (x min, x max, y min, y max), class id and a confi-
dence metric where the object is localised in the image.
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Fig. 4. Confidence metric to object detection. (Color figure online)

Fig. 5. Top left: original image; Top right: bounding boxes obtain with SDD; Bottom
left: bounding box selected applying the confidence threshold; Bottom right: final result.
(Color figure online)

3.2 System Overview

Our system has tested with two different computers Fig. 6. The first computer
was used to train the SSD network and to validate our system offboard the MAV,
whose specifications are: Lenovo Y700 with 16 GB of RAM, Nvidia GTX 960M
with 640 CUDA cores, with CUDA 9.0, Keras 2.2.4 and TensorFlow 1.12.0. The
second computer was used to validate our system onboard the MAV, whose speci-
fications are: Intel Computer Stick with a processor core M3-Y30 2.20 Ghz, 4 Mb,
64 GB, 4 GB DDR3 without GPU, with Keras 2.1.4 and TensorFlow nightly
(optimised version to computers without GPU architecture).

(a) Lenovo Y700 (b) Intel Stick M3

Fig. 6. Computers used by our detection system.
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3.3 Dataset Generation

The dataset was generated inside of our laboratory using the Bebop 2 drone and
ROS to obtain images of the Mexican flag and landing platform. The dataset
consists of 9000 images to the “Mexican flag” class and 5000 to “Landing plat-
form” class in multiple views, rotations, scales and changes of illumination. We
labelled whole the images manually using the LabelImg tool selecting with a
bounding box in the image the object that we require to identify. It is important
to carefully label the bounding boxes since the predictions start based on those.
In Fig. 7, we show an example of the images captured to train the SSD whose
training parameters are: the Batch size of 16, Adam Optimiser and 100 epochs
with 1000 steps of training.

Fig. 7. Training dataset generated for the “Mexican flag” and “Landing platform”.

4 Experiments

The carried out experiments focus on the two target detection in different rota-
tions, scales and change of illumination, using our system, and the comparison
with Template matching and Feature matching. The tests have performed in a
wide corridor with low illumination Fig. 8, adapting to an indoor environment
like the one presented in the competition. In addition, we use the same search
template with respect to the bounding box labelled for detection Fig. 9, validat-
ing the effectiveness of the features extracted and learned by our network and
the features of the methods of comparison.
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Fig. 8. Wide corridor where we perform the experiments.

Fig. 9. Search templates used for template matching and feature matching.

4.1 Mexican Flag Detection

We evaluated detection performance using 999 images of validation, splitting
into 333 images rotated, 333 scaled and 333 with changes of illumination. The
results obtained are shown in Table 1, presenting the number of times the flag is
detected by each method and the percentage of success. In Fig. 10, we show the
results of the detection.

Table 1. Mexican flag detection with different methods.

Method Rotated Scaled With illumination % successful

Template matching 117 294 33 74.47

Feature matching 85 107 238 43.04

Our system 308 326 331 96.59

The results obtained with Feature Matching achieves a 43.04% due to the
lack of features in the template, causing the search for the flag to be missed
in some cases. Instead, Template Matching obtains a suitable result 74.47% by
using the cross-correlation and pyramidal scale, detecting the flag more times
than Feature Matching. However, that method has problems of detection with
rotated images in different angles. Nonetheless, our system implement with the
SSD network finds the majority of images no matter the illumination, scales and
rotations.
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(a) Random images

(b) Mexican flag detection with Template Matching

(c) Mexican flag detection with Feature Matching

(d) Mexican flag detection with our system

Fig. 10. Detection of the Mexican flag with different methods.

4.2 Landing Platform Detection

The landing platform detection was performed in the same way that the flag
detection. We evaluated our system using 999 images which 333 are rotated, 333
scales, and 333 in the presence of changes of illumination, presenting the results
in Table 2. Also, we show the landing platform detection using our system and
the comparison with other methods in Fig. 11.

Table 2. Landing platform detection with different methods.

Method Rotated Scaled With illumination % successful

Template matching 25 280 184 48.94

Feature matching 10 17 29 5.60

Our system 298 329 333 96.09

The second result shows that the feature matching is not suitable for this
test due to not finding enough features. The template matching method achieves
48.94% by realises a sweep in all the input image to localise the search template,
obtaining a better result that feature matching method. Notwithstanding the
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(a) Random images

(b) Landing platform detection with Template Matching

(c) Landing platform detection with Feature Matching

(d) Landing platform detection with our system

Fig. 11. Detection of the landing platform with different methods.

result, the speed performance is slow by performing the sweep in the whole image;
therefore, it is not suitable for real-time tasks. For another hand, our system
achievement 96.09% finding the landing platform in the different conditions of
the image and faster than the other methods.

5 Autonomous Landing Results

The final test consists of the target detection and autonomous landing onboard
of the MAV using our system in the Intel Computer Stick, communicating the
vehicle with the computer via WIFI to obtain the images in real-time. This test
is focused on the problem presented in the mission of the indoors competition
in IMAV2019, which consist of autonomous navigation to detect a flag and then
perform an autonomous landing. We validate our detection system carry out 40
autonomous flights split into 20 to offboard and 20 onboard of the MAV, taking
the average confidence metric when detecting the targets, and the computation-
ally cost of our system in fps. Table 3 shows the data of the autonomous flight
offboard and onboard, obtaining a constant velocity of 90 fps offboard and 13 fps
onboard. Fps represents the speed performance in frame per second.
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Table 3. Autonomous landing results offboard and onboard of MAV.

Flight Average flag confidence Average platform confidence Fps

Offboard 0.8971 0.9843 90.5913

Onboard 0.9386 0.9826 13.0199

Figure 12 and Fig. 13, we present a set of images that show all the process
since that MAV taking off to detect the flag until detecting the landing platform
to perform the autonomous landing.

Fig. 12. Images sequence of the flights performed where we show the detection of the
Mexican flag and landing platform. A video o this work for reviewing purpose is found
at https://youtu.be/sYn9mo-2hvA

Fig. 13. Images sequence that shows all the process since the drone is taking off until
detecting the landing platform to perform the autonomous landing. A video o this work
for reviewing purpose is found at https://youtu.be/sYn9mo-2hvA

6 Conclusion

We have presented a target detection system using a deep learning implemen-
tation based on the SSD network to detect a flag and a Landing platform. This

https://youtu.be/sYn9mo-2hvA
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work is motivated by the challenge of having to perform autonomous landing as
part of a mission included in the indoors competition of the IMAV 2019. The
mission represents an existing problem in aerial robotics which consists of target
detection while a MAV performs autonomous navigation, where the place to land
has to be located by detecting a flag and then, the landing has to be performed
by centring on a landing platform performing a landing routine autonomously.
Thus, we have presented a detection system using the SSD7 network running on
the Intel Computer Stick without GPU and architecture carried by the MAV,
thus enabling it to perform onboard processing. This enabled the MAV to detect
a flag and later on the landing platform while performing an autonomous flight.
We validated our detection system with image datasets under multiple conditions
of illumination even when the object is scaled or rotated, obtaining success of
96.59% for the flag detection and 96.09% for the landing platform detection. We
compared our approach against other methods based on traditional computer
vision techniques such as template and feature matching. Also, we test our sys-
tem in real-time with offboard and onboard flights, obtaining metric confidence
output of 0.9386 for the flag, and 0.9826 for the Landing platform, everything
running on the Intel Stick at an average of 13.01 fps.

Future work involves the use of this framework for more sophisticated tasks
such as object tracking during autonomous flight, involving much more targets
and in outdoor environments.
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