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Abstract. LiDARs and cameras are two widely used sensors in robotics
and computer vision, particularly for navigation and recognition in 3D
scenarios. Systems combining both may benefit from the precise depth of
the former and the high-density information of the latter, but a calibra-
tion process is necessary to relate them spatially. In this paper, we intro-
duce COUPLED, a method that finds the extrinsic parameters to relate
information between them. The method implies the use of a setup consist-
ing of three planes with charuco patterns to find the planes in both sys-
tems. We obtain corresponding points in both systems through geomet-
ric relations between the planes. Afterward, we use these points and the
Kabsch algorithm to compute the transformation that merges the planes
between both systems. Compared to recent single plane algorithms, we
obtain more accurate parameters, and only one pose is required. In the
process, we develop a method to automatically find the calibration tar-
get using a plane detector instead of manually selecting the target in the
LiDAR frame.

1 Introduction

In the field of mobile robotics, sensors to understand the world around them are
required. Two commonly used sensors are cameras and LiDARs (Light Detection
and Ranging). Cameras allow proper feature extraction, but it is challenging to
obtain depth information from a single camera. In contrast, LiDARs provide
precise spatial details but at a much lower density, which makes feature extrac-
tion difficult. In our research, we study systems that combine both technologies
to take advantage of their strengths. Nonetheless, one of the main challenges is
that while each sensor outputs spatial data in its reference frame, typically we
process their information in a common one, which requires a calibration process.

To calibrate a camera with a LiDAR, one usually finds corresponding points
in both systems, which we use to calculate a transformation that relates them.
Often, one uses the corner points of a checkerboard on a rectangular board. The
LiDAR can capture the boards pose by finding its edges, and the camera can
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estimate the pose of the checkerboard. These methods typically suffer from noise
in using edge points to find the corners in the LiDAR [3,15]. Also, even though
finding the target in the camera is easy, finding the target in the LiDAR frame
is relatively more complicated. LiDARs typically use an array of angled lasers
rotating over an axis to generate a point cloud that is denser in the horizontal
direction than in the vertical one. This configuration makes it difficult to find
the target with conventional plane detection methods. Thus, most calibration
methods either manually find the target and isolate it [3,10], which can be time-
consuming when making acquisitions to reduce calibration error. Alternatively,
other methods physically isolate the target from other objects to facilitate plane
detection [15], which is not ideal because we would need to reserve a dedicated
area exclusively for calibration.

In this paper, we introduce COUPLED, a method for calibrating a LiDAR-
camera rig that uses three planes. In the process, we develop an approach to
automatically find the target in the LiDAR reference frame using a plane detec-
tor. Combining both, we develop a system for automatic calibration, no longer
requiring a dedicated area or manually selecting the target for the LIDAR frame.
We divide the rest of the paper into a review of related literature, followed by
our methodology, then our experiments, and finally, a conclusion summarizing
the relevant findings.

2 Related Literature

We review the literature on two fronts: Methods for the automatic detection of
planar surfaces and the calibration of a LiDAR-camera rig.

Plane Detection with LiDAR. Finding planes within 3D point clouds is a fun-
damental step for complex algorithms. The introduction of LiDAR and other
light-based distance sensors has made this activity vital. Usually, when working
with dense homogenous point clouds, Hough transform and RANSAC are tried
and true approaches [1,16]. However, the mechanical workings of certain LiDAR
and MLS (Mobile Laser Scanning) sensors do not output point clouds favorable
for these techniques, so novel methods are required.

Commonly, LiDARs have an array of angled lasers rotating on an axis from
point clouds that are sparse on its vertical axis relative to its horizontal axis. The
path traced by any of the lasers forms a cone, and when a plane intersects the
cone, we get a conic section. Grant et al. [7] segments the LiDAR lines into conic
sections and then uses a Hough transform where they accumulate the planes that
can be formed by each line, and the planes with enough votes are taken. Another
sensor that presents problems with classic plane detection methods is MLS since
it usually has its laser head perpendicular to the trajectory of a carrier vehicle.
Nguyen et al. [13] uses a similar approach segmenting scan points into straight
lines, then parallel lines are grouped, and the singular vectors for each group are
obtained to determine whether the grouped lines form a plane.
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LiDAR-Camera Rig Calibration. In mobile robotics, combining sensors such
as multiple cameras or cameras and LiIDAR has become common [2,5,8]. Many
techniques have been developed to accomplish this task. Single checkerboards are
the most usually involved [10,15] but also researchers have developed techniques
using different kinds of targets [3,11] or no targets at all [9,12].

Practitioners have created variations using a single checkerboard. For
instance, Verma et al. [15] detect the centroid of the target, in at least three
poses, and its normal, then they use genetic algorithms to obtain the param-
eters. Kim et al. [10] proposed another technique that requires three poses. In
their case, they employ the normals and use an energy function to calculate the
rotation and the translation that minimizes the distance to the camera and the
LiDAR’s plane. Kiimmerle et al. [11] use a spherical target because its center
can be more accurately extracted relative to checkerboards. Chai et al. [3] use a
cube with aruco markers printed on its sides. The LiDAR detects the three sides,
and the aruco markers are used to detect the poses of the sides in the camera.

Researchers have developed techniques that require no target at all to allow
calibration when no target is available. For instance, Kang et al. [9] use edge
detection in both the camera and LiDAR to find the transformation between
both sets of edges. Similarly, Nagy et al. [12] use structure from motion to create
a 3D point cloud for the camera reference frame. Then, they detect objects in
both systems by grouping near points.

3 Method

Calibrating our LiDAR~camera rig means finding the parameters of a rotation
matrix R € SO(3) and translation vector t© € R? that transforms a 3D point
set P = {py, Py, ..., P, } in the camera reference frame into Q@ = {q4, 4, .--, 4, },
its corresponding in the LiDAR reference frame, as Rip; +tL = q;, Vi =
1,...,m. Because of noise in the sensors, a perfect solution normally does not
exist, so we instead minimize the sum of squares as

(R7.t7) — argmin | Rp; +t — q;||*. (1)
Ti=1

3.1 Calibration Pattern

First, we need a target for which we can find corresponding points in the LiDAR
and the camera. We propose to use a pattern that consists of three planes with
charuco boards [6]. We use OpenCV to find the planes by detecting the charucos
for the camera, and plane fitting to find the three planes in the LiDAR. However,
to find precise point to point correspondences, we use geometric relations such as
the vertex common to the three planes, and the lines formed by the intersection
of a pair of planes, as there are three pair combinations we obtain three lines.
With this, we can obtain four point correspondences and proceed to obtain the
parameters minimizing (1).
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To compute the pose of our target planes in the camera reference frame, we
use charuco markers printed on our pattern. Our design combines aruco markers
and checkerboards into charuco [6]. It uses the aruco markers to interpolate the
corners of the checkerboards, and since each aruco has a unique ID, each checker-
board corner can also be identified even if part of the checkerboard is occluded.
Then, we refine the position of the checkerboard corners with subpixel accuracy.
Finally, we compute the pose of the board, as with regular checkerboards, using
PnP (Fig.1).

Fig. 1. Calibration pattern. (a) Each plane has a different set of charuco markers for
the camera to detect. (b) The full point cloud: The calibration target is enclosed in
the green rectangle. (¢) Zooming in on the target in the previous point cloud: The
calibration pattern is enclosed in the green rectangle.

3.2 Automatic Target Detection for LiDAR

To find the target in the LiDAR reference frame, we developed an algorithm
to detect the planes in the point cloud sensed by the LiDAR and segment the
three planes belonging to our target. There exist many methods to find planes
within a point cloud [1,16], but for some LiDARs, with few lasers, the problem
is particularly challenging. Take, for instance, the VLP-16 sensor, which consists
of 16 laser range finders spinning along an axis, making the density of points
much higher horizontally than vertically. This arrangement causes problems with
RANSAC and Hough transform-based plane finders, when the best fits for a
plane erroneously end up being horizontal planes that contain all the points of
a single beam. Note that rotating laser LiDAR beams form cones as they spin.
When a cone is intersected by a plane, a conic section is formed. This observation
is the basis of our algorithm, which consists in finding the curves, grouping them
into planes and segmenting the target from the planes found.

Curve Finding. The first step for our plane detection is finding the conic sections.
Because fitting such a high number of points to a conic section equation is
computationally intensive, we use an approximation and instead look for smooth
curves. We start by sampling each of the lasers separately.
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Fig. 2. Illustration of the steps of the plane detection process. (a) The point cloud is
segmented into smooth curves with a normal vector assigned to them. (b) We group
the lines by similar normals. We end up with groups containing one or more parallel
planes. (c) We use RANSAC plane fitting to segment the points to their appropriate
planes.

First, we take a single beam and treat its points as a 1D signal ordered by
the azimuth given by the LiDAR, which starts at positive Y and runs along
the Z axis clockwise. Then, we apply a spatial Gaussian filter with a standard
deviation o to reduce the noise in the point cloud. Now, to segment parts of the
1D signal that have a smooth trajectory, we apply a custom kernel k that was
made empirically to simulate a Laplacian to help detect rapid changes in the
signal. We run the kernel through the signal and threshold to highlight where
we separate the curves. We also discard segments that have less than a certain
number of points p to avoid short curves. Finally, we combine curves by verifying
whether their direction is similar, and they are close enough together.

Grouping Plane Proposals. Once we have curves, we need to find a way to
group lines belonging to the same plane. To do this, we take a random line, and
the nearest line to it. We calculate the principal components for the group of
points of the two curves via SVD (Singular Value Decomposition). Then, we test
whether the ratio between the first and second singular values is below a certain
threshold r12 to avoid planes formed from very narrow lines, which can be noisy.
Next, we test wether the ratio ro3 between the second and third components
is large to determine that the points form a valid flat plane. If both tests are
passed, the normal vector of the plane is saved in an accumulator. We repeat this
process for the lines within a certain maximum distance [, from our original
line. Finally, we assign the normal vector with the most votes. We do this for
each line, so the lines end up with a normal vector assigned. We then group lines
by normal vectors in the same direction using DBSCAN [4] (see Fig.2). After
this process, we have groups of lines likely belonging to one or more planes with
the same normal as the lines. We can now easily segment applying RANSAC on
each group.

Finding the Target. We have now extracted the planes in our point cloud, but
for our application, we need the planes that correspond to our target. To isolate
these planes, we use OpenCV to calculate the pose of our three target planes in
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the camera frame. We also calculate the center of the target planes. So now, we
can calculate the angles between the normals and the distances between centroids
of any two planes of the target. With this, we end up with three angles and three
distances that we use as a descriptor for the target. Finally, we use brute force
matching to find the combination of three planes found by our detector that best
matches the descriptor of our target.

3.3 Camera and LiDAR Calibration

Once we have our target in the LiDAR and the cameras, we get the poses in
the camera reference frame using the charucos. OpenCV gives us a translation
and rotation from a reference frame with its origin on one of the outer most
corners of the board, and its X and Y axis aligned with the sides of the board
to the camera frame [6]. We obtain a vector normal to the board in the camera
reference frame using n{ = Rfe,, where n.; is the vector normal to plane 7 in
the camera frame, RS is the rotation from the charuco 4 frame to the camera
frame, and el = (0,0,1). With this rotation, we obtain the normals for the
planes containing the targets. For the LiDAR, we get the principal components
of the planes obtained in the previous section.

Next, we calculate the vertex between the three planes and the three inter-
sections from two planes. The intersections can be defined as vectors of uni-
tary magnitude. Now, we have four corresponding points to obtain the extrinsic
parameters, P points in the camera frame, and ) points in the LiDAR frame.
We use Kabsch algorithm [14] to obtain the rotation and translation from the
camera to the LIDAR that minimizes the mean square error expressed in (1).

We call COUPLED to our method to calibrate the LiDAR-camera rig using
automatic plane detection.

4 Experimental Results

To test our algorithm, we took 40 readings with our system, moving the LiDAR-
camera rig to different positions, making sure that the target remains within the
fields of view of both sensors. To show the relevance of COUPLED, we compare
our results with a method recently introduced.

4.1 Experimental Setup

For our experiments, we used a Velodyne VLP /16 LiDAR. It consists of 16 lasers
operating at a wavelength of 903 nm and turning at a programmable rotational
speed between 5 and 20 Hz. With a range of 100 m, it has a range accuracy of
+3 cm and a vertical field of view of +15°. Also, we employed a MicaSense Parrot
Sequoia multispectral camera, which weighs about 72 g (the additional sunshine
sensor weights 35 g). It produces images with spectral response peaking at 550 nm
(green), 660nm (red), 735nm (red edge), and 790 nm (near infrared). Each of
these images has a spatial resolution of 1,280 (horizontal) x 960 (vertical) pixels.
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Fig. 3. Our LiDAR-camera rig, consisting of a VLP-16 LiDAR and a Sequoia Multi-
spectral camera. (Color figure online)

Also, the Sequoia includes an RGB color camera with a resolution of 4,068 (h) x
3,456 (v) pixels resolution. We print the charucos targets on 3 mm thick mirror
surfaces measuring 0.5m per side each (Fig. 3).

In our experiments, the Gaussian filter has a spread of o = 0.08. We discard
segments with fewer than p = 5 points. Also, we set the distance between end-
points d = 10 cm. In addition the angle between them has to be a < 5°. To filter
out elongated segments, we set 12 = 1/80 and 793 = 1/200. Finally, we define
the maximum distance between lines at 40 cm.

4.2 LiDAR-Camera Rig Calibration

With the data, we used three procedures to find the calibration target. In the
first one, we manually selected the three planes of our target from the LiDAR
point cloud. In the second one, we automatically found the target by introducing
the entire point cloud to our plane detector and finding the best three planes
(the method introduced in this paper). In the third procedure, we limited the
point cloud to an azimuth between 230° and 330° and automatically find the
planes within the limited point cloud (we call this procedure restricted). We
know the target is in this azimuth because this direction is required in our rig
for the camera to see the target.

We calculated the extrinsic parameters for the 40 views using the three pro-
cedures described. Moreover, to verify the effect of using multiple views, we
calculate the accumulated extrinsic parameters in which we use the Kabsch
algorithm on the points from the concatenation of the current frame points and
the previous frames. Although our target detection algorithm finds the correct
target for most of the frames, there are still outliers. We eliminated the outliers
by using the DBSCAN clustering algorithm on the translation vectors, knowing
that the correct translation will form the largest cluster. After the clustering
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step, 10 out of the 40 frames were discarded in the fully automatic procedure,
while only 4 out of 40 were discarded in the restricted procedure.
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Fig. 4. Results of 40 calibrations (best seen in color). The blue, green, red and yellow
lines show when we manually select the LiDAR planes, give the entire point cloud to the
target detector, provided the target detector a reduced azimuth point cloud knowing
that the target is within that cloud, and for Kim et al. [10] method for comparison.
(a) Calibration results for accumulated acquisitions to demonstrate convergence. (b)
Plotted error from the accumulated calibration.
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We compared our method against Kim et al. [10] who uses a checkerboard
and fits a normal vector to his target, but only uses one plane. In Fig. (4a), we
plot the results of accumulated acquisitions. We can see that the estimation of
rotation is similar, deviating by a maximum of three degrees. At the same time,
the translation differs by as much as 12 cm and does not converge after 40 acqui-
sitions. In Fig. (4b), we plot the error between the calculated translation and
the one we measured, we can see that our method allows us to obtain extrin-
sic parameters with a single acquisition compared with the three acquisitions
required by Kim et al.’s method and is more accurate. Both methods run in a
couple of seconds.

5 Conclusion

In this paper, we present COUPLED, a method to obtain the extrinsic parame-
ters of a LiDAR-camera rig that uses three planes with charuco boards printed
on them. We use the charuco boards to find the pose of the planes and a plane
detection algorithm to find the planes in the LiDAR frame. Our experimental
results show its benefits when compared with the manual selection of the target
or the region of interest.

By using multiple frames, we can refine the extrinsic parameter calibration.
Here, using the automatic target detector can be very beneficial because it
allows us to quickly find our target in multi-capture settings instead of man-
ually selecting it. However, notice that using the automatic detector with a
restricted azimuth is an excellent middle ground as it only requires the input of
the azimuth, and it has a better performance than the plane detector on the full
point cloud. We also presented a new method for plane detection in point clouds
generated by LiDARs. Rotational LiDARs have a much higher horizontal den-
sity compared to vertical density, which makes it challenging to use traditional
methods such as RANSAC and Hough Transform. Our system combines both
methods, allowing for automatic calibration by using the plane detector to find
the target in the LiDAR frame as opposed to manually selecting it. This permits
smooth refinement since we can quickly capture many frames and compute the
extrinsic parameters using the points from the different frames.
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