)

Check for
updates

1

The bin packing problem (BPP) [8,14], in its general formulation, consists of
packing a set of items (with their corresponding properties) by minimizing the
number of bins used. In general, BPP is an exciting problem since many other
optimization problems such as the cutting stock problem [7] and the knapsack
problem [10] can be modeled as BPPs [15]. Although there are many variants of
this problem, in this investigation, we have focused on the one-dimensional online
BPP (1D-BPP). Then, we assume that the only relevant property of the items

A Preliminary Study on Score-Based
Hyper-heuristics for Solving the Bin
Packing Problem

A. Silva-Galvez®, E. Lara-Cardenas®, I. Amaya@®, J. M. Cruz-Duarte

and J. C. Ortiz-Bayliss(®

School of Engineering and Sciences, Tecnologico de Monterrey,
Av. Eugenio Garza Sada 2501, 64849 Monterrey, NL, Mexico
artsgl130994Qgmail.com, a00398510Q@itesm.mx,
{iamaya2, jorge.cruz, jcobayliss}@tec.mx

Abstract. The bin packing problem is a widespread combinatorial prob-
lem. It aims at packing a set of items by using as few bins as possible.
Among the many available solving methods, approximation ones such as
heuristics have become popular due to their reduced cost and generally
acceptable solutions. A further step in this regard is given by hyper-
heuristics, which literature usually defines as “high-level heuristics to
choose heuristics”. Hyper-heuristics choose one suitable heuristic from
a set of available ones, to solve a particular portion of an instance. As
the search progresses, heuristics can be exchanged, adapting the solution
process to the current problem state under exploration. In this work, we
describe how to generate and use hyper-heuristics that keep a record
of the scores achieved by individual heuristics on previously solved bin
packing problem instances in the form of rules. Then, hyper-heuristics
manage those scores to estimate the performance of such heuristics on
unseen instances. In this way, the previous actions of the hyper-heuristics
determine which heuristic to use on future unseen cases. The experiments
conducted under different scenarios yield promising results where some
of the hyper-heuristics produced outperform isolated heuristics.

Keywords: Bin packing problem - Heuristic - Hyper-heuristic

Introduction

© Springer Nature Switzerland AG 2020
K. M. Figueroa Mora et al. (Eds.): MCPR 2020, LNCS 12088, pp. 318-327, 2020.
https://doi.org/10.1007/978-3-030-49076-8_30

)

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49076-8_30&domain=pdf
http://orcid.org/0000-0003-0394-5555
http://orcid.org/0000-0002-6357-4680
http://orcid.org/0000-0002-8821-7137
http://orcid.org/0000-0003-4494-7864
http://orcid.org/0000-0003-3408-2166
https://doi.org/10.1007/978-3-030-49076-8_30

A Preliminary Study on Score-Based HHs for Solving the BPP 319

is their length and that it is not possible to sort the items as a preprocessing
step. An example of such a scenario is given by a production line with a fixed
robot arm that packages items into the boxes. Here, items must be packed as
they arrived, even if the whole production schedule can be known.

The current literature is vast in methods for solving the BPP [1,3,23]. Unfor-
tunately, most of the methods that guarantee to find the optimal solution (also
known as exact ones) are limited in the size of the instances they can handle.
Conversely, approximation methods, such as heuristics, are fast to implement
and execute but cannot guarantee the optimality of the solutions. More impor-
tantly, since these heuristics are usually generic methods, their performance may
drastically change from one instance to the other, even within the same prob-
lem domain. A more robust way to tackle the BPP consists in combining the
strengths of single heuristics, employing a hyper-heuristic (HH). A HH is a high-
level method that decides when to use the individual heuristics throughout the
solving process [4].

This idea of combining solvers dates back to the mid 70s [21]. From that
moment onward, different solving strategies have emerged: algorithm port-
folios [11], instance-specific algorithm configuration [17], and hyper-heuristics
[20,23], just to mention some. In general, these methods manage a set of solvers
and apply the most suitable one for the problem instance. Aiming at unifying
terms, from this point on, we will use the term “hyper-heuristic” to refer to the
methods proposed in this paper.

In this work, we focus on developing score-based hyper-heuristics through a
process that updates the scores of different heuristics according to their perfor-
mance on a historical basis. Although a few studies have explored similar ideas in
the past, the solution model proposed in this work is, to the best of the authors’
knowledge, a novel approach. In the literature, we found no previous work that
deals with the idea of training hyper-heuristics for the 1D-BPP by using such a
straightforward reward-based strategy as the one described in this work.

We have organized the remainder of the document as follows. Section 2
presents the most relevant concepts and works related to this investigation.
Section 3 details the hyper-heuristic model proposed in this work. In Sect. 4, we
present the experiments conducted, their analysis, and discuss the most relevant
findings. Finally, we present the conclusions and future work in Sect. 5.

2 Background

The 1-Dimensional Bin Packing Problem (1D-BPP) is defined by a set of n items
and m bins, where w; and c; represent the length of item j and the capacity of
each bin, respectively. To solve this BPP, it requires assigning each item to one
bin such that the total weight of the items in each bin does not exceed ¢, and
the number of bins is minimum.

The current literature contains significant examples of recent advances in
solving the 1D-BPP. On the one hand, there are approaches based on metaheuris-
tics. Abdel-Basset et al. [1] enhanced the Whale Optimization Algorithm (WOA)

320 A. Silva-Gaélvez et al.

by adjusting positions inside the search space boundaries and implementing a
Lévy distribution to draw samples. Similarly, Zhang et al. [24] reported a buffered
version of the next fit heuristic. The objective of the buffer is to store some
items temporarily so that items with specific characteristics can be packed in
the same bin. This allows controlling the wasted space of the bins on a similar
range, and even filling the remaining open bins to its full capacity (whenever
possible). In a more recent study, Gherboudj [18] adapted the African Buffalo
Optimization (ABO) algorithm to solve the 1D-BPP. Their work combined four
heuristics with the ABO algorithm to improve its behavior. This combination
showed effective results in various test scenarios.

On the other hand, researchers have explored hyper-heuristics (HHs) to
solve 1D-BPPs indirectly, because they work on the heuristic space rather than
the solution one. When working with hyper-heuristics, they map the problem
state through a set of features, so the most suitable heuristic can be applied.
In the past, researchers have relied on metaheuristics, such as Genetic Algo-
rithms (GAs) [19], Simulated Annealing (SA) [13], and Ant Colony Optimiza-
tion (ACO) [6,9] to produce hyper-heuristics. Other authors have preferred
machine learning techniques devoting considerable efforts to exploring super-
vised learning methods [5,16].

2.1 Heuristics

For this preliminary investigation, we have focused on two popular heuristics for
solving the BPP: First Fit (FF) and Best Fit (BF). FF, as the name suggests,
packs the next item in the first open bin, as long as it fits. One by one, all the
bins are revised until it finds one where the item can be packed. If there is not
such a bin, it opens a new one to pack the item there. Subsequently, BF looks for
the bin with the minimum space to pack the item (i.e., it minimizes the waste).
As in FF, if no bin has enough space for the item, a new one is opened.

Forthwith, we describe how these heuristics work by using the instance
depicted in Fig. 1. In this example, the next item to pack has a length of four
units. Since two of those bins are full, they are considered to be closed. FF will
try to pack this item as soon as possible. So, it packs it in the fourth bin since
it has five units available. This action leads to a waste of one unit in such a bin.
Conversely, BF will try to minimize the waste, looking for the bin where the
item fits best. So, BF skips the fourth bin and packs the item into the fifth one,
where it fits perfectly.

We are aware that there are many other popular heuristics available for
solving the BPP, such as Djang and Finch and their multiple variants [22].
However, analyzing their effect went beyond the scope of this work.

2.2 Instances

In this work, we considered synthetic instances since they allow us to test the
methods under specific and controlled scenarios. We now briefly describe them:

A Preliminary Study on Score-Based HHs for Solving the BPP 321

Solution Unpacked items

2

] = el

Closed Open

[« [

Fig. 1. Example of the solving process of a 1D-BPP instance of 15 items with lengths
between one and six units and bins with a capacity of ten units. At the moment, ten
items have been packed by using five bins (two closed and three open), and five items
remain unpacked.

Training Set. It contains 100 small instances of 20 items with lengths between
1 and 32 units. The bins in these instances accept up to 64 units. This set has
a mixture of instances so that no single heuristic performs the best in every
instance. Such a fact forces the hyper-heuristic to switch between heuristics as
the search takes place. It is noteworthy to mention that this situation might
not hold for other sets of instances. To generate the Training Set, we used
the evolutionary-based BPP generator introduced by Amaya et al. [2].

Test Set A. It consists of instances similar to the ones used for training. It
contains 200 small instances of 20 items whose length varies between 1 and
32 units. The bin capacity is also defined at 64 units. To generate this set, we
used the same generator from the previous experiment.

Test Set B. It incorporates the 160 instances proposed by Falkenauer [12].
These instances are classified into two different groups. The first one contains
items with lengths uniformly distributed between 20 and 100 units and bins
with a capacity of 150 units. The second group has items with sizes between
25 and 50 and bins of 100 units.

To characterize these instances, we used two dynamic features (they change
throughout the solving process). These features are the proportion of open items
concerning the total number of bins used (OBINS) and the average waste among
all the open bins (AVGW). To exemplify how these features work, let us again
take a look at the instance depicted in Fig. 1. Under these conditions, we calculate
the value of OBINS as the number of open bins divided by the total number of
bins. In other words, OBINS equals 3/5 for this example. Regarding the average
waste, only open bins waste space. So, it sums 14 (3 + 5 4 6) units. This way,
the AVGW value for this instance is 14/5.

322 A. Silva-Gaélvez et al.

3 Model Description

Our hyper-heuristic (HH) model relies on a set of rules that works on two dif-
ferent levels: as a record the historical performance of single heuristics and as
an estimation of their future performance. A rule has the purpose of finding a
region on the problem space in which one specific heuristic behaves better than
the others. Each rule contains two parts: a condition and an action. They are
related to the instance state and the heuristic to apply, respectively.

Our HHs need to undergo a training process before we can use them in
practical situations. During such a process, the HH iteratively updates the set
of rules, one rule at a time. Then, when the hyper-heuristic deals with a new
instance, the information within the rules determines which heuristic to use. The
rules are different from the ones considered in other HH models, where the rule
directly states the actions. In our approach, given a rule, we require an additional
calculation to decide which heuristic to apply. The task of the training process is
to find a set of rules that best discriminates the instance space. Figure 2 depicts
an example of how a rule looks inside the HH.

OBINS AVGW : FF BF
n1| 050 || 030 |:| 3.75 " 225 |
R, | 010 120 | 689 206

1
:
:
R, | 042 096 || 860 0.27
Condition : Action
(problem state) (scores)

Fig. 2. An example of a hyper-heuristic produced by our solution model. Left: Condi-
tion contains the instance space description expressed in terms of the features OBINS
and AVGW. Right: Action has the scores of the heuristics (i.e., the larger, the better).

The model randomly initializes k rules by using a set of features that char-
acterize the instance space as the condition and the available heuristics as the
action of such rules. The scores of the heuristics in the rules are randomly initial-
ized with values between 0 and 10. When the model deals with a new instance,
it iteratively packs the items, one at a time. For each item, the hyper-heuristic
decides which heuristic to apply. Let r be the rule with the condition closest
to the instance state (via the Euclidean distance). Then, the heuristic with the
largest score in the action of r is returned to pack the item. For example, given
the rules depicted in Fig.2 and an instance with values for OBINS and AVGW
of 0.08 and 1.12, respectively, the rule with the closest condition to the current
problem state is Ry. Now that we know that Ry will be selected, the scores for

A Preliminary Study on Score-Based HHs for Solving the BPP 323

FF and BF are 6.89 and 2.06, respectively. Based on these values, the rule will
recommend using FF, since it has the highest score among all the heuristics
in RQ.

It is important to remark that the aforementioned rules are updated iff the
hyper-heuristic is on training mode. Such an update is performed in two different
moments, as described:

— Every time the HH makes a decision, it is “rewarded” based on the quality
of its decision. This process changes the scores of the selected rule (increases
the scores related to the right decisions and decreases the ones related to the
bad ones). To decide the value to add or subtract to the scores, we calculate
the reward as 0.01/(OBINS x AVGW).

— After the HH has packed all the items in the instance, the system replaces
the less used rule. The system generates a new rule according to one out of
three initialization functions: RANDOM (a random choice for the conditions),
MEAN (the average values of the points visited during the search of the last
instance), and LAST (the values of the features of the last visited point in
the instance space). In all cases, the scores for the heuristics are randomly
initialized by using a uniform distribution function between 0 and 10.

4 Experiments and Results

In this investigation, we conducted two experiments. The first one explored the
generation of hyper-heuristics by using three strategies to initialize the rules. For
each strategy, we generated 11 hyper-heuristics by using the approach described
in Sect. 3. Subsequently, the second experiment compared the performance of the
best hyper-heuristics produced from the first experiment on a set of instances
with features different from the ones used for training. In other words, the sec-
ond experiment analyzed the behavior of the most competent hyper-heuristics
produced by our solution model on a more realistic and challenging scenario.

4.1 Exploratory Experiment

The objective of this experiment was to evaluate three different methods for
initializing rules and their decisions. In all cases, hyper-heuristics contained 20
rules. This value was decided based on our previous experience with this problem.
The training process to produce one hyper-heuristic ran for 100 epochs in each
case—an epoch occurs when all the instances in the Training Set have been
analyzed. We obtained 11 hyper-heuristics by using each initialization function
(i.e., RANDOM, MEAN, and LAST). Then, the two heuristics and the 33 hyper-
heuristics were applied on the Test Set A. In all cases, the average waste across
all the items (AVGW) was used to estimate the quality of the solutions.
Figure 3 presents the resulting data. Among the hyper-heuristics produced,
there are two worth analyzing in more detail. Let us call these hyper-heuristics
HHA and HHB. The former represents the hyper-heuristic that performed best

324 A. Silva-Gaélvez et al.

when initializing them with the MEAN approach. Conversely, HHB represents
the best performing hyper-heuristic. It is worth remarking that HHB corresponds
to the LAST initialization. While FF and BF produced an average waste of 8.32
and 5.07 units in Test Set A, HHA and HHB reduced the average waste to 4.62
and 3.87 units, respectively. Despite these savings, both of them are still far from
the Oracle, which produced an average waste of only 2.76 units for the same set.

ole-3

8- . i
2
z : . -
=
o .
o6 -
o
q>,) iaaad S
<

4-

RANDOM MEAN LAST

Rule initialization method

Fig. 3. Average waste on the Test Set A produced by 11 hyper-heuristics generated
with each rule initialization method. The red, blue, and green horizontal lines represent
the average waste of First Fit (FF), Best Fit (BF), and the Oracle (the best performer
for each instance), respectively. (Color figure online)

We now consider the proportion of instances where the solving strategies
behave as competent as the Oracle. Let us refer to such a proportion as the
success rate. Then, the better the solving strategy, the closer to 100% the success
rate becomes. The reason: this would mean that the strategy performed as the
Oracle on every instance within the set. The success rate of FF and BF on the
Test Set A was 50% and 77.5%, respectively. Conversely, the success rate of HHA
and HHB on the same set increased to 82% and 89.5%, respectively.

4.2 Confirmatory Experiment

We are now interested in observing the behavior of the best hyper-heuristics,
HHA and HHB, on instances whose features differ from those of the ones used
for training. So, we use them to solve the Test Set B. Such a set contains the
instances generated by Falkenauer [12], as mentioned before. Once again, per-
formance data are compared against that of the Oracle. Based on the results
obtained, we observed many instances where both FF and BF behave in the
same way (88.13% of the instances). Nonetheless, both hyper-heuristics (HHA
and HHB) proved to be reliable and competent. HHA obtained a success rate of

A Preliminary Study on Score-Based HHs for Solving the BPP 325

95%, while HHB obtained 97.5%. These values mean that these hyper-heuristics
were unable to replicate the Oracle in only 8 and 4 out of the 160 instances,
respectively.

4.3 Discussion

The analysis conducted on three different initialization methods (i.e., RAN-
DOM, MEAN, and LAST) suggests that a simple random function is not pow-
erful enough to outperform individual heuristics. On a closer look, we found that
RANDOM tends to replicate the behavior of the single heuristics. Thus, it seems
that it reduces the capability of the hyper-heuristic to discriminate between
heuristics and alternate their use throughout the solving process. MEAN and
LAST methods demonstrate that it is indeed possible to improve the results
of the heuristics throughout the proposed approach. Among the three initial-
ization methods, on average, LAST performed best. However, better techniques
can likely be found by deepening the study on this matter.

When testing the two best HHs on the Falkenauer dataset [12], we observed
that these hyper-heuristics remain competitive, although they were not trained
for such instances. The two hyper-heuristics that we analyzed in more detail
(HHA and HHB, produced with MEAN and LAST, respectively) were close
to fully replicating the behavior of the Oracle, proving its contribution. The
difference between Oracle and these hyper-heuristics lies in the way decisions
are made. While the Oracle solves an instance with the same heuristic from
start to end, HHA and HHB use different heuristics depending on their decision
rules. This result means that there may be many different paths that lead to
similar and high-quality solutions.

5 Conclusion and Future Work

Throughout this study, we proposed a score-based hyper-heuristic (HH) model
for tackling the 1-Dimensional Bin Packing Problem (1D-BPP). This model iter-
atively updates its internal structure to capture the patterns in the instance
space, which suggests when one heuristic performs better than the others. There-
fore, the proposed model generates a set of rules that segments the 1D-BPP
instance space. This segmentation allows the system to discriminate between
heuristics throughout the search, as a means to improve the quality of the solu-
tions. Our findings suggest that the initialization method is crucial for this model
to work. By merely using arbitrary rules, the model does not reach a competitive
solution against a single heuristic. Moreover, from the three methods we tested,
LAST behaved best.

It is imperative to remark that this document describes the first study
towards a score-based HHs—at least in the way we propose it. Unfortunately,
due to space restrictions, we could only consider two heuristics and two features
to characterize the instance space. Moreover, for this preliminary investigation,
we wanted to keep a basic set of heuristics to estimate the contribution of the

326 A. Silva-Gaélvez et al.

proposed approach. Naturally, we expect to extend this idea and cover more
heuristics as part of future work. When new heuristics and features are intro-
duced, the model might behave differently. However, it is noticeable that our
proposed model requires no changes to incorporate more heuristics or features,
so it can quickly scale to more complex situations.

As part of the future work, we would like to explore how this model behaves
on a different problem domain, such as the knapsack problem or the graph col-
oring problem, which are some exciting and challenging combinatorial optimiza-
tion problems we would like to address through hyper-heuristics. Also, all the
instances considered for this work were synthetic, but other kinds are required
to validate the contributions of our approach thoroughly. We also plan on incor-
porating them as a future step of this work.

Acknowledgments. This research was partially supported by CONACyT Basic Sci-
ence Project under grant 287479 and ITESM Research Group with Strategic Focus on
Intelligent Systems.

References

1. Abdel-Basset, M., Manogaran, G., Abdel-Fatah, L., Mirjalili, S.: An improved
nature inspired meta-heuristic algorithm for 1-D bin packing problems. Pers.
Ubiquit. Comput. 22(5-6), 1117-1132 (2018). https://doi.org/10.1007/s00779-
018-1132-7

2. Amaya, 1., Ortiz-Bayliss, J.C., Conant-Pablos, S.E., Terashima-Marin, H., Coello
Coello, C.A.: Tailoring instances of the 1D bin packing problem for assessing
strengths and weaknesses of its solvers. In: Auger, A., Fonseca, C.M., Lourengo, N.,
Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp.
373-384. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99259-4_30

3. Asta, S., Ozcan, E., Parkes, A.J.: CHAMP: creating heuristics via many parameters
for online bin packing. Expert Syst. Appl. 63, 208-221 (2016)

4. Burke, E.K., et al.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res.
Soc. 64, 1695-1724 (2013)

5. Choong, S.S., Wong, L.P., Lim, C.P.: Automatic design of hyper-heuristic based
on reinforcement learning. Inf. Sci. 436, 89-107 (2018)

6. Cuesta-Canada, A., Garrido, L., Terashima-Marin, H.: Building hyper-heuristics
through ant colony optimization for the 2D bin packing problem. In: Khosla, R.,
Howlett, R.J., Jain, L.C. (eds.) KES 2005. LNCS (LNATI), vol. 3684, pp. 654-660.
Springer, Heidelberg (2005). https://doi.org/10.1007/11554028 91

7. Delorme, M., Iori, M., Martello, S.: Bin packing and cutting stock problems: math-
ematical models and exact algorithms. Eur. J. Oper. Res. 255(1), 1-20 (2016)

8. Drake, J.H., Swan, J., Neumann, G., Ozcan, E.: Sparse, continuous policy repre-
sentations for uniform online bin packing via regression of interpolants. In: Hu, B.,
Lépez-Ibanez, M. (eds.) EvoCOP 2017. LNCS, vol. 10197, pp. 189-200. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-55453-2_13

9. Duhart, B., Camarena, F., Ortiz-Bayliss, J.C., Amaya, 1., Terashima-Marin, H.:
An experimental study on ant colony optimization hyper-heuristics for solving
the Knapsack problem. In: Martinez-Trinidad, J.F., Carrasco-Ochoa, J.A., Olvera-
Lépez, J.A., Sarkar, S. (eds.) MCPR 2018. LNCS, vol. 10880, pp. 62-71. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-92198-3_7

https://doi.org/10.1007/s00779-018-1132-7
https://doi.org/10.1007/s00779-018-1132-7
https://doi.org/10.1007/978-3-319-99259-4_30
https://doi.org/10.1007/11554028_91
https://doi.org/10.1007/978-3-319-55453-2_13
https://doi.org/10.1007/978-3-319-92198-3_7

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.
22.

23.

24.

A Preliminary Study on Score-Based HHs for Solving the BPP 327

Eliiyi, U., Eliiyi, D.T.: Applications of bin packing models through the supply
chain. Int. J. Bus. Manag. 1(1), 11-19 (2009)

Epstein, S.L., Freuder, E.C., Wallace, R., Morozov, A., Samuels, B.: The adaptive
constraint engine. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp.
525-540. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46135-3_35
Falkenauer, E.: A hybrid grouping genetic algorithm for bin packing. J. Heuristics
2(1), 5-30 (1996)

Garza-Santisteban, F., et al.: A simulated annealing hyper-heuristic for job shop
scheduling problems. In: 2019 IEEE Congress on Evolutionary Computation
(CEC), pp. 57-64, June 2019

Hu, H., Zhang, X., Yan, X., Wang, L., Xu, Y.: Solving a new 3D bin packing
problem with deep reinforcement learning method. arXiv preprint, August 2017
Koch, T., et al.: MIPLIB 2010. Math. Programm. Comput. 3(2), 103-163 (2011)
Lara-Cardenas, E., Sanchez-Diaz, X., Amaya, 1., Ortiz-Bayliss, J.C.: Improv-
ing hyper-heuristic performance for job shop scheduling problems using neural
networks. In: Martinez-Villasenor, L., Batyrshin, 1., Marin-Herndndez, A. (eds.)
MICAI 2019. LNCS (LNAI), vol. 11835, pp. 150-161. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-33749-0_13

Malitsky, Y.: Evolving instance-specific algorithm configuration. In: Malitsky,
Y. (ed.) Instance-Specific Algorithm Configuration, pp. 93-105. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-11230-5_9

QOdili, J.B., Kahar, M.N.M., Anwar, S.: African buffalo optimization: a swarm-
intelligence technique. Procedia Comput. Sci. 76, 443-448 (2015)

Ozcan, S.0O., Dokeroglu, T., Cosar, A., Yazici, A.: A novel grouping genetic algo-
rithm for the one-dimensional bin packing problem on gpu. In: Czachérski, T.,
Gelenbe, E., Grochla, K., Lent, R. (eds.) ISCIS 2016. CCIS, vol. 659, pp. 52-60.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47217-1_6

Pillay, N., Qu, R.: Hyper-Heuristics: Theory and Applications. NCS. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96514-7_13

Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65-118 (1976)
Sim, K., Hart, E., Paechter, B.: A hyper-heuristic classifier for one dimensional
bin packing problems: improving classification accuracy by attribute evolution. In:
Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.)
PPSN 2012. LNCS, vol. 7492, pp. 348-357. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-32964-7_35

Sim, K., Hart, E., Paechter, B.: A lifelong learning hyper-heuristic method for bin
packing. Evol. Comput. 23(1), 37-67 (2015)

Zhang, M., Lan, Y., Li, H.: A new bin packing algorithm with buffer. In: 2018
International Conference on Intelligent Transportation, Big Data & Smart City
(ICITBS), pp. 625-628. IEEE, January 2018

https://doi.org/10.1007/3-540-46135-3_35
https://doi.org/10.1007/978-3-030-33749-0_13
https://doi.org/10.1007/978-3-319-11230-5_9
https://doi.org/10.1007/978-3-319-47217-1_6
https://doi.org/10.1007/978-3-319-96514-7_13
https://doi.org/10.1007/978-3-642-32964-7_35
https://doi.org/10.1007/978-3-642-32964-7_35

	A Preliminary Study on Score-Based Hyper-heuristics for Solving the Bin Packing Problem
	1 Introduction
	2 Background
	2.1 Heuristics
	2.2 Instances

	3 Model Description
	4 Experiments and Results
	4.1 Exploratory Experiment
	4.2 Confirmatory Experiment
	4.3 Discussion

	5 Conclusion and Future Work
	References

