
Basic Pattern Graphs for the Efficient
Computation of Its Number

of Independent Sets

Guillermo De Ita , Miguel Rodŕıguez(B) , Pedro Bello ,
and Meliza Contreras

Faculty of Computer Science,
Benemérita Universidad Autónoma de Puebla, Puebla, Mexico

{deita,mrodriguez,pbello,mcontreras}@cs.buap.mx

Abstract. The problem of counting the number of independent sets of a
graph G (denoted as i(G)) is a classic #P-complete problem. We present
some patterns on graphs that allows us the polynomial computation of
i(G).

For example, we show that for a graph G where its set of cycles can
be arranged as embedded cycles, i(G) can be computed in polynomial
time. Particularly, our proposal counts independent sets on outerplanar
graphs.

Keywords: Recognition of graph patterns · Counting the number of
independent sets · Exact counting

1 Introduction

Counting problems are not only mathematically interesting, but they arise in
many applications. For example, if we want to know the probability that a for-
mula in propositional calculus is true, or the probability that a graph remains
connected given a probability of failure of an edge, we have to count to approx-
imate such probabilities.

Regarding hard counting problems, the computation of the number of inde-
pendent sets of a graph has been a key for determining the frontier between
efficient counting and intractable counting procedures. Vadhan [8] showed that
counting the number of independent sets in graphs of maximum degree 4 is #P-
complete. Greenhill [3] refined the previous result showing that counting the
number of independent sets on graphs of degree 3 is also #P-complete.

Following the line of exact algorithms, Dahllöf [1] has designed a method for
counting independent sets and whose exact algorithm has a worst-case upper
bound of O(1.3247n), n being the number of vertices of the input graph. While
Okamoto [5] has shown a linear-time algorithm for counting the number of inde-
pendent sets for chordal graphs. Efficient algorithms for counting independent

c© Springer Nature Switzerland AG 2020
K. M. Figueroa Mora et al. (Eds.): MCPR 2020, LNCS 12088, pp. 57–66, 2020.
https://doi.org/10.1007/978-3-030-49076-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49076-8_6&domain=pdf
http://orcid.org/0000-0001-7948-8253
http://orcid.org/0000-0002-6628-462X
http://orcid.org/0000-0001-8862-064X
http://orcid.org/0000-0003-3375-4493
https://doi.org/10.1007/978-3-030-49076-8_6

58 G. De Ita et al.

sets have been achieved after to capture structure relations lying in the topol-
ogy of the graphs, allowing to design special mathematical patterns for counting
independent set only on those topologies.

On the other hand, many combinatorial problems ask about embeddings of
graphs into other objects [4]. For instance, the polynomial time solvable graph
planarity problem ask whether a given graph G can be embedded in the plane in
such a way that no two edges intersect (except at a common endpoint). In our
case, we are interested in a particular subclass of planar graphs, those graphs
whose set of vertices can be arranged as incident with the outerface, this class
of graphs are called outerplanar graphs. We present here, a novel algorithm for
counting the number of independent sets on outerplanar graphs.

2 Notation

Let G = (V,E) be an undirected graph with vertex set V and set of edges E. Two
vertices v and w are called adjacent if there is an edge {v, w} ∈ E, connecting
them. Sometimes, the shorthand notation of u v is used for denoting the edge
{u, v} ∈ E.

The neighborhood for x ∈ V is N(x) = {y ∈ V : {x, y} ∈ E} and its closed
neighborhood is N(x)∪{x} which is denoted by N [x]. We denote the cardinality
of a set A, by |A|. The degree of a vertex x, denoted by δ(x), is |N(x)|, and the
degree of G is Δ(G) = max{δ(x) : x ∈ V }. The size of the neighborhood of x,
δ(N(x)), is δ(N(x)) =

∑
y∈N(x) δ(y). A vertex v is pendant if δ(x) = 1; and edge

e = {x, y} is pendant if x or y is a pendant vertex.
A path from v to w is a sequence of edges: v0v1, v1v2, . . . , vn−1vn such that

v = v0 and vn = w and vk is adjacent to vk+1, for 0 ≤ k < n. The length of
the path is n. A simple path is a path where v0, v1, . . . , vn−1, vn are all distinct.
A cycle is a nonempty path such that the first and last vertices are identical,
and a simple cycle is a cycle in which no vertex is repeated, except that the first
and last vertices are identical. A graph G is acyclic if it has no cycles. Pn, Cn,
Rn, Kn, Nn denote respectively, a path graph, a simple cycle, a start with one
center node, the complete graph and the set of n nodes without any edge, all of
those graphs have n vertices.

Given a graph G = (V,E), let G′ = (V ′, E′) be a subgraph of G if V ′ ⊆ V
and E’ contains edges v, w ∈ E such that v ∈ V ′ and w ∈ V ′. If E′ contains every
edge v, w ∈ E where v ∈ V ′ and w ∈ V ′ then G′ is called the induced graph of
G. A connected component of G is a maximal induced subgraph of G, that is, a
connected component is not a proper subgraph of any other connected subgraph
of G. Note that, in a connected component, for every pair of its vertices x, y,
there is a path from x to y. If an acyclic graph is also connected, then it is called
a free tree.

Given a graph G = (V,E), S ⊆ V is an independent set in G if for every two
vertices v1, v2 in S, {v1, v2} /∈ E. Let I(G) denote the set of all independent
sets of G. An independent set S ∈ I(G) is maximal if it is not a subset of any
larger independent set and, it is maximum if it has the largest size among all

Basic Pattern Graphs for the Efficient Computation of Its I(G) 59

independent sets in I(G). The determination of the maximum independent set
has received much attention since it is a NP-complete problem.

The corresponding counting problem on independent sets, denoted by i(G),
consists of counting the number of independent sets of a graph G. i(G) is a #P-
complete problem for graphs G where Δ(G) ≥ 3. i(G) remains #P-complete
when it is restricted to 3-regular graphs [3]. There are different polynomial pro-
cedures for computing i(G) when Δ(G) ≤ 2 [1,6,7]. In fact, all of them have
linear-time complexity. In the following sections, we present exact combinato-
rial procedures for computing i(G) according to special patterns existing on the
graphs.

3 Basic Graph Patterns for the Efficient Counting
of Independent Sets

Since i(G) =
∏k

i=1 i(Gi) where Gi, i = 1, . . . , k are the connected components of
G [6], then the total time complexity for computing i(G), denoted as T (i(G)),
is given by the maximum rule as T (i(G)) = max{T (i(Gi)): Gi is a connected
component of G}. Thus, a first helpful decomposition of the graph is done via
its connected components and from here on, we consider as an input graph only
one connected component. We start analyzing the most simple cases for one
connected component.

Case A:
Let Pn = G = (V,E) be a graph consisting of a single sequence of nodes (path),
i.e. V = {1, 2, ..., n} and there exists an edge ei = {i, i + 1}, i = 1, . . . , n − 1, for
each pair of sequential vertices.

We build the family fi = {Gi}, i = 1, . . . , n where each Gi = (Vi, Ei) is the
induced graph of G formed by just the first i vertices of V .

We associate to each vertex vi ∈ V a pair (αi, βi) where αi expresses the
number of sets in I(Gi) where the vertex vi does not appear, while βi conveys
the number of sets in I(Gi) where the vertex vi appears, thus i(Gi) = αi + βi.

The first pair (α1, β1) is (1, 1) since for the induced subgraph G1 = {v1},
I(G1) = {∅, {v1}}. If we know the value for (αi, βi) for any i < n, and as the
next induced subgraph Gi+1 is built from Gi adding the vertex vi+1 and the edge
{vi, vi+1}, it is not hard to see that the pair (αi+1, βi+1) is built from (αi, βi)
applying the recurrence equation:

αi+1 = αi + βi ; βi+1 = αi (1)

The series (αi, βi), i=1,...,n, built from recurrence (1), lead to i(Gi) = αi + βi

for i = 1, ..., n. Thus, the computation of i(G) is based on the incremental
calculation of i(Gi), i = 1, . . . , n. If we perform a linear search on the sequential
graph G starting at an extreme, e.g. beginning at v1 and moving to its incident
vertex while the recurrence (1) is applied, then in linear time on the number of
vertices, the formula i(Pn) = i(Gn) = αn + βn = Fn+2 is obtained, and where
Fn is the nth−Fibonacci number.

60 G. De Ita et al.

In order to process the number of independent sets on a path we will use
computing threads or just threads. A computing thread is a sequence of pairs
(αi, βi), i = 1, . . . , n used for computing the number of independent sets on a
path of n vertices.

Case B:
Let G = (V,E) be a tree. Traversing G in depth first build a rooted tree, whose
root node is any vertex v ∈ V , where v was the initial node for beginning the
depth first search. We denote with (αv, βv) the pair associated with the node v
(v ∈ G). We compute i(G) while we are traversing by G in post-order.
Algorithm Count Ind Sets trees(G
Input: G - a tree graph.
Output: The number of independent sets of G
Procedure:
Traversing G in post-order, and when a node v ∈ G is left, assign:

1. (αv, βv) = (1, 1) if v is a leaf node in G.
2. If v is a parent node with a list of child nodes associated, i.e., u1, u2, ..., uk are

the child nodes of v, as we have already visited all child nodes, then each pair
(αuj

, βuj
) j = 1, ..., k has been determined based on recurrence (1). Then, let

αv =
∏k

j=1 αvj
and βv =

∏k
j=1 βvj

. Notice that this step includes the case
when v has just one child node.

3. If v is the root node of G then return(αv + βv).

This procedure returns the number of independent sets of G in time O(n + m)
which is the necessary time for traversing G in post-order.

X1 X2 X4 X6

X5

X3

X8

X7
(1,1)(1,1)

(1,1)
(1,1)

(2,1)

(2,1)

(2,1)

(2,1)

(4,1)

(36,5)

(41,36) (5,4)

(9,5)

(a) Tree

(αi, βi) : (1, 1) → (2, 1) → (3, 2) → (5, 3) → (8, 5) → (13, 8)
(α′

i, β
′
1) : (0, 1) → (1, 0) → (1, 1) → (2, 1) → (3, 2) → (5, 3) ⇒ (0, 3)

1 2 3 4 5 6X XX XX X

(b) Cycles

Fig. 1. Counting independent sets over trees and cycles

Basic Pattern Graphs for the Efficient Computation of Its I(G) 61

Example 1. If G = {(x1, x2), (x2, x3), (x2, x4), (x2, x5), (x4, x6), (x6, x7), (x6,
x8)} is a tree, we consider the post-order search and let x1 be the root node
of the tree. The number of independent sets at each level of the tree is shown in
Fig. 1(a). The procedure Count Ind Sets trees returns for αx1 = 41, βx1 = 36
and the total number of independent sets is: i(G) = 41 + 36 = 77.

Case C:
Other basic case is when G = (V,E), n = m = |V | = |E| is a simple cycle,
i.e. every vertex in V has degree two. In this case, the cycle can be decomposed
as: G = G′ ∪ {cm}, where G′ = (V,E′), E′ = {c1, ..., cm−1}. G′ is a path of n
vertices, and cm = {vm, v1} is called as back edge of the simple cycle G.

Observe that every independent set of G is an independent set of G′, that
is, I(G) ⊆ I(G′) since G has one edge more than G′. Thus, if S ∈ I(G′) and
v1 ∈ S and vm ∈ S then S is not an independent set of G. Then, I(G) can be
built from I(G′) by eliminating those independent sets containing the vertices:
v1 and vm, that is expressed in the following equation:

i(G) = i(G′) − |{S ∈ I(G′) : v1 ∈ S ∧ vm ∈ S}| (2)

For counting independent sets on a simple cycle, we can use two threads,
one of those for computing i(G′) and the other thread for computing |{S ∈
I(G′) : v1 ∈ S ∧ vm ∈ S}|. This last value can be computed fixing on I(G′)
the independent sets where v1 is involved, which is done by computing a thread
(α′

i, β′
i), i = 1,..., m where the pair (α′

1, β
′
1) = (0, 1), considering in this way only

the independent sets of I(G′) where v1 appears. We apply (1) for computing
the new series: (α′

i, β
′
i), i = 2, . . . ,m and also, in order to consider only the

independent sets where vm appears, the final pair (α′
m, β′

m) is taken only as
(0, β′

m).
In the following examples, we denote with → the application of recurrence

(1) on (αi, βi) in order to obtain (αi+1, βi+1). And, if we express the new series
in terms of Fibonacci numbers, we have that (α′

1,β
′
1) = (0, 1) = (F0, F1) →

(α′
2, β

′
2) = (1, 0) = (F1, F0) → (α′

3, β
′
3) = (1, 1) = (F2, F1), . . . , (α′

m, β′
m) =

(Fm−1, Fm−2), and the value for the final pair (α′
m, β′

m) = (0, β′
m) is (0, Fm−2),

then |{S ∈ I(G′) : v1 ∈ S ∧ vm ∈ S}| = 0 + βm = Fm−2.
Then, i(G) = i(G′) − |{S ∈ I(G′) : v1 ∈ S ∧ vm ∈ S}| = αm + βm − β′

m =
Fm+2 − Fm−2. Thus, the following theorem is inferred.

Theorem 1. If G is a simple cycle with n vertices then the number of inde-
pendent sets of G, expressed in terms of the Fibonacci numbers, is: i(G) =
Fn+2 − Fn−2.

Example 2. Let E = {ci}6i=1 = {{x1, x2}, {x2, x3}, {x3, x4}, {x4, x5}, {x5, x6},
{x6, x1}} be the set of edges of a simple cycle G = (V,E). Let G′ = (V,E′) where
E = E′ ∪ {c6}, so G′ is G without edge c6. As G′ is a sequence of 6 vertices
then i(G′) = F6+2 = 21. While the value for |{S ∈ I(G′) : x1 ∈ S ∧ x6 ∈ S}| is
F6−2 = 3. Then, i(G) = 21 − 3 = 18 the computing is shown in Fig. 1(b).

62 G. De Ita et al.

All the above graph topologies (case A, B and C) represent basic graph pat-
terns that can be recognized and processed to compute its number of independent
sets in linear-time. We call Linear NI to the linear procedure that consists of the
above three cases (A, B and C). Linear NI will be applied to process any acyclic
graph or simple cycles that we find as part of a more complex graph. In fact,
in [2] a polynomial-time algorithm has been shown to compute i(G) when G
has linear compositions of the above patterns. We can now ask if there exists
a family of cyclic connected graphs whose number of independent sets can be
computed efficiently, in the next section, we show some families that fulfill this
requirement.

4 Recognition of Embedded Cycles

Let G = (V,E) be a connected graph with n = |V |, m = |E| and such that
Δ(G) ≥ 2.

In order to recognize more graph patterns for the efficient computation of
i(G), we present the case of the computation of i(G) for outerplanar graphs. For
this case, we introduce concepts about the decomposition of a graph by its set
of embedded cycles.

If a depth-first search (abbreviated as dfs) is applied over G, starting the
search, for example, with the vertex vr ∈ V of minimum degree, and selecting
among different potential vertices to visit the vertex with minimum degree first
and with minimum value in its label as a second criterion, we obtain an unique
depth-first graph G′ (into the set of all possible depth-first graphs), which we
will denote as G′ = dfs(G). This dfs also builds an unique spanning tree TG with
vr as the root node. In time O(m+n), the dfs allows us to detect if G has cycles
or not, and the edges forming each cycle. The edges in TG are called tree edges,
whereas the edges in E(G)\E(TG) are called back edges. Let e ∈ E(G)\E(TG)
be a back edge, the union of the path in TG between the endpoints of e with the
edge e itself forms a simple cycle, such cycle is called a basic (or fundamental)
cycle of G with respect to TG. Each back edge e = {x, y} holds the maximum
path contained in the basic cycle that it is part of. We will call to such maximum
path, the internal path of a fundamental cycle. Assuming that x is visited first
than y during the dfs, we say that x is the start-vertex and y is the end-vertex
of the back edge.

According to our particular depth-first search G′ = dfs(G) on G, we denote
C = {C1, C2, ..., Ct} as the set of fundamental cycles found during such depth-
first search. Notice that the combination of the procedure for trees and the pro-
cessing of cycles (Eq. 2) can be applied for computing i(G) if G is a graph where
the depth-first search generates a tree and a set of independent fundamental
cycles.

If two distinct base cycles Ci and Cj from C have common edges then we
say that both cycles are intersected, that is, Ci
Cj form a new cycle, where

 denotes the symmetric difference operation between the set of edges in both
cycles. In fact, Ci
Cj = (E(Ci) ∪ E(Cj)) − (E(Ci) ∩ E(Cj)) forms a composed

Basic Pattern Graphs for the Efficient Computation of Its I(G) 63

cycle. If two cycles are non-intersected we say that they are independent. I.e. two
independent cycles (Ci, Cj) hold (E(Ci)∩E(Cj)) = ∅. Notice that t = m−n+1
is the dimension of the ZZ2-vector space with the symmetric difference on the
edge sets as addition, and C is a base in that ZZ2-vector space.

For an outerplanar graph Go, the cycles in Go can be considered as embedded
cycles, see e.g. Fig. 2. In order to recognize when two cycles Ci and Cj can be
expressed as embedded cycles, we use the or-exclusive operation. Given two
intersected cycles Ci, Cj , we say that Ci is embedded into Cj , if:
a) V (Ci) ⊂ V (Cj): the set of vertices of Ci is a subset of the vertices of Cj .
b) |E(Ci) − E(Cj)| = 1: there is only one edge from Ci which is not edge of Cj .
c) Ci ⊕ Cj = Ck: being Ck a new cycle distinct to Ci and Cj and ⊕ is the
or-exclusive operation between the edges of the cycles.

If the cycles Ci and Cj hold the previous three conditions, we say that Ci is
embedded into Cj . Meanwhile, Cj is a cycle that semi-encloses Ci.

4.1 Processing Outerplanar Graphs

An outerplanar graph Go could be redrawn in a planar way, where any pair of
basic cycles is independent, or one of them is embedded into the other. Thus,
Go is planar, and all its vertices are not enclosed by any edge. Generating a
planar drawing is often viewed as a separate problem, in part because drawing
algorithms tend to create a planar embedding as a first step, and in part because
drawing can be application dependent. In particular, a graph Go is outerplanar
if K4 and K2,3 are forbidden as a minus of Go. Outerplanar graphs can be
recognized in linear-time [9].

The embedding is a transitive characteristic among embedded cycles. If Ci is
embedded into Cj , and Cj is embedded into Ck, then Ci is embedded into Ck. On
the other hand, if Ci and Cj are two independent cycles, e.g. (E(Ci) ∩ E(Cj)) =
∅, but there exists a cycle Ck such that Ci and Cj are embedded into Ck, e.g.
(V (Ci) ⊂ V (Ck)) and (V (Cj) ⊂ V (Ck)), then we say that (Ck, Cj , Ci) is a tuple
of embedded cycles.

A maximal list of embedded cycles D = (C1, C2, . . . , Ck) is a tuple of cycles
such that for i < k, Ci+1 is embedded into Ci, i = 1, . . . , k−1, or there exists Cj

in the tuple with j < i ≤ k such that Ci is embedded into Cj . In a maximal list
of embedded cycles D = (C1, C2, . . . , Ck), the cycles are ordered by setting first
the most external cycle followed by its internal cycle until arriving to Ck, which
is the most internal cycle of the set of embedded cycles. Notice that a maximal
list of embedded cycles D is also a graph that we denote by D.

Given a maximal list D = (C1, C2, . . . , Ck) of embedded cycles, the spanning
tree of D is called the path of D and it is denoted by PD. We consider an orien-
tation on PD; from left to right, or from down to up, according to the drawing
of D. The first vertex v0 of PD is called the initial vertex of D. Meanwhile, the
last vertex vf of PD is called the final vertex of D. We will denote as (αi, βi) to
the pair associated to the vertex vi ∈ V (PD). Given a maximal list of embedded
cycles D, we present in this section how to compute i(D).

64 G. De Ita et al.

1 2 3 4 5 6 7 8 9

C1

C3
C2

C4

(a) Initial Graph

1 2 3 4

Lp (1,1)-->(2,1)-->(3,2)-->(5,3) - (0,1)=(5,2)
Lc (0,1)-->(1,0)-->(1,1)-->(2,1) closed (2,0)

1

1C

(b) Processing the first cycle of the
list

1-4 5 6 7 8 9

4C

2C
3C

Lp (5,2)-->(7,5)
Lc (2.0)-->(2,2)1

(c) Processing threads with
the contracted node 1-4

 Nodo 1-5 N6 N7 N8 N9
Lp: (7,5)-->(12,7)-->(19,12)-(0,5) = (19,7)-->(26,19)-(0,5)=(26,14)-->(40,26)-(0,8)=(40,18)
 (2,2)-->(4, 2)-->(6, 4)-(0,2) = (6, 2)-->(8, 6)-(0,2)=(8, 4)-->(12, 8)Closed(C4)
 (0,5)-->(5,0)-->(5,5)Closed(C2) (5,0)-->(5,5)Closed(C3)
 (0,2)-->(2, 0)-->(2,2)Closed(C2) (2,0)-->(2,2)Closed(C3)

L : 4c
C2C3L ->p:

C2C3L -> : 4c

C

1-5 7 8 9

4
C3

6

C2

(d) Processing threads with the contracted node 1-5

Fig. 2. Computing i(D) with D a maximal list of embedded cycles

Theorem 2. Given a maximal list of embedded cycles D, i(D) is computed in
linear-time on the size of D.

Proof. We present as proof a linear-time algorithm for the computation of i(D).
A main thread, denoted by Lp, is associated to PD. This thread is always active
during all the counting process.

The computation of i(D) is done by traversing in depth-first order the path
PD from its initial node v0 to its final node vf . The cycles in D are visited
from the most external to the internal cycles according to the depth-first search.
Each cycle Ci, i = 1, 2, . . . , k has a corresponding computing thread LCi

. The
computation of i(Ci) follows the case (C) for a simple cycle, described in the
previous section. Recurrence (1) is applied on the current pairs (αi, βi)LC

→
(αi+βi, αi)LC

when a new vertex vi+1 of PD is visited. Each time that an initial
vertex of a cycle Ci is visited, the pair (0, βl) is associated to the thread LCi

,
where βl is the value of the second component of the pair (αl, βl) associated
to Lp, see e.g. Figs. 2(b) and 2(d). When the computation arrives to the end-
vertex v of a cycle Cj with corresponding pairs (αv, βv)Cj

, then the pair (0, βv)
is subtracted to all current computing thread. Afterwards, the computing thread
LCj

is closed and stops from being in the computation of i(D). When a cycle Cj

has been computed, Cj may be contracted in only one vertex vCj
, and the pair

(αCj
, βCj

), which resulted from the processing of the cycle Cj , is associated to
vCj

.

Basic Pattern Graphs for the Efficient Computation of Its I(G) 65

This process continues processing all cycle in D until the depth-first search
arrives to the final vertex vf of D. If (αf , βf) is the pair associated to vf , then
i(D) = αf + βf .

We illustrate in the following example, the computation of i(D) when D is a
maximal list of embedded cycles.

Example 3. In Fig. 2(a), we show the input list of embedded cycles D. In
Fig. 2(b), as the first cycle of the list is computed, then two computing threads are
formed. The path of D is visited in linear way, and at the same time, the recur-
rence (1) is applied on the current pairs of the computing threads, see Fig. 2(c).
Finally, Fig. 2(d) shows the final process of computing on all active threads giving
as a result that i(D) = 40 + 18 = 58.

All outerplanar graph can be decomposed in a set of maximal list embedded
cycles. For this, let us consider as input to Go = (V,E) an outerplanar graph.
We associate a tree T , called the embedding tree of Go. Given an embedding
tree T of a maximal list of embedded cycles, the final vertex vf of the list is
selected as the root node of T , which make to T a rooted embedding tree. The
construction of T satisfies the following properties.

1. The nodes of T are maximal list of embedded cycles.
2. Two nodes va, vb of T are adjacent only if the root vertex of va is an internal

vertex of the maximal embedding of vb.
3. For every vertex v ∈ V (Go), the subgraph Tv ⊂ T induced by the maximal

embedded cycles containing v is a tree.

Each node vt of an embedding tree T is formed by a maximal list of embed-
ded cycles, where the final vertex vf of the list of embedded cycles will be the
root node for the subtree Tvt

⊂ T . We show in Fig. 3 a decomposition of an
outerplanar graph Go in its set of maximal embedded cycles, and the formation
of the embedding tree T of Go.

232214131211107569 8

4

3

2

1

18 15

16 1719

20

21

Fig. 3. A decomposition of an outerplanar graph Go in its set of maximal embedded
cycles

66 G. De Ita et al.

Theorem 3. Let Go be an outerplanar graph and let T be the embedding tree
of Go, then i(Go) is computed in polynomial time on the size of Go.

Proof. We present as proof a polynomial time algorithm for the computation of
i(Go). A pre-order search on the embedding tree T follows the linear-time proce-
dure developed in the case (B) of the previous section for computing the number
of independent sets on tree topologies. Meanwhile, the algorithm presented in
Theorem (3) is applied for computing i(vt) when a node vt ∈ V (T) is visited.
The combination of both procedures builds a method for the computation of
i(T) in polynomial time on the size of the input graph Go.

5 Conclusions

Computing the number of independent sets of a graph G, denoted as i(G), is a
classic #P-complete problem for graphs of degree 3 or higher. We establish that
if the depth-first graph of a given graph G has no intersected cycles, then the
computation of i(G) is a tractable problem. We have presented a novel algorithm
for computing i(G) for any outerplanar graph G.

Our proposal for computing i(G) do not impose restrictions on the degree
of the graph, but rather, it depends on its topological structure. Those previous
cases allows to establish a finer border between the classes FP and #P for the
problem of counting independent sets. Furthermore, our proposal can be adapted
to consider other counting problems.

References

1. Dahllöf, V., Jonsson, P.: An algorithm for counting maximum weighted indepen-
dent sets and its applications. In: Proceedings of Thirteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 292–298. ACM, San Francisco (2002)

2. De Ita, G., López-López, A.: A worst-case time upper bound for counting the number
of independent sets. In: Janssen, J., Pra�lat, P. (eds.) CAAN 2007. LNCS, vol. 4852, pp.
85–98. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77294-1 9

3. Greenhill, C.: The complexity of counting colourings and independent sets in sparse
graphs and hypergraphs. Comput. Complex. 9(1), 52–72 (2000)

4. Johnson, D.S.: The NP-completeness column: an ongoing guide. J. Algorithms 6(3),
434–451 (1985)

5. Okamoto, Y., Uno, T., Uehara, R.: Linear-time counting algorithms for independent
sets in chordal graphs. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 433–444.
Springer, Heidelberg (2005). https://doi.org/10.1007/11604686 38

6. Roth, D.: On the hardness of approximate reasoning. Artif. Intell. 82(1), 273–302
(1996)

7. Russ, B.: Randomized Algorithms: Approximation. Generation, and Counting. Dis-
tinguished Dissertations. Springer, London (2001). https://doi.org/10.1007/978-1-
4471-0695-1

8. Vadhan, P.: The complexity of counting in sparse, regular, and planar graphs. SIAM
J. Comput. 31(2), 398–427 (2001)

9. Wiegers, M.: Recognizing outerplanar graphs in linear time. In: Tinhofer, G.,
Schmidt, G. (eds.) WG 1986. LNCS, vol. 246, pp. 165–176. Springer, Heidelberg
(1987). https://doi.org/10.1007/3-540-17218-1 57

https://doi.org/10.1007/978-3-540-77294-1_9
https://doi.org/10.1007/11604686_38
https://doi.org/10.1007/978-1-4471-0695-1
https://doi.org/10.1007/978-1-4471-0695-1
https://doi.org/10.1007/3-540-17218-1_57

	Basic Pattern Graphs for the Efficient Computation of Its Number of Independent Sets
	1 Introduction
	2 Notation
	3 Basic Graph Patterns for the Efficient Counting of Independent Sets
	4 Recognition of Embedded Cycles
	4.1 Processing Outerplanar Graphs

	5 Conclusions
	References

