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Abstract. finElink is a recommendation system that provides guid-
ance to French innovative companies with regard to their financing
strategy through public funding mechanisms. Analysis of financial data
from former funding recipients partially feeds the recommendation sys-
tem. Financial company data from a representative French population
are reduced and projected onto a two-dimensional space with Uniform
Manifold Approximation and Projection, a manifold learning algorithm.
Former French funding recipients’ data are projected onto the two-
dimensional space. Their distribution is non-uniform, with data con-
centrating in one region of the projection space. This region is identi-
fied using Density-based Spatial Clustering of Applications with Noise.
Applicant companies which are projected within this region are labeled
potential funding recipients and will be suggested the most competitive
funding mechanisms.

Keywords: Dimension reduction · Manifold learning · Clustering

1 Introduction

Given the diversity and quantity of unstructured information available on exist-
ing French funding mechanisms, innovative companies need guidance with regard
to their financing strategy. finElink [4] is a recommendation system that meets
this need. Developed by FRS Consulting, a French consulting firm specialized in
public innovation funding, it was initially based on business knowledge of FRS
Consulting associates. Analysis of financial data from former French funding
recipients, using machine learning, helped identify applicant companies with a
high potential and further enhance finElink’s recommendation.

However, relevance of applicant companies cannot be solely assessed on for-
mer funding recipient data, as these data suffer from significant data sparsity,
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bias and missing data constraints. Funding recipients data were obtained through
cross-checking information from funding mechanism websites and the French
national company registry where companies’ financial statements are available.
Financial information was frequently missing, specifically for newly created com-
panies which are the targeted recipients of numerous funding mechanisms. Data
collected had a significant number of missing features. Moreover, most funding
mechanisms did not communicate on their recipients, especially for small fund-
ing mechanisms. As such, available funding recipient data were strongly biased
towards well-known funding mechanisms. Supervised learning on data with these
limitations would have easily led to overfitting. These limitations were avoided
using unsupervised learning and another larger dataset of French companies
obtained using a proprietary software. This other dataset was representative of
all French companies and suffered from fewer missing data.

These representative company data were reduced and projected into a
two-dimensional space with Uniform Manifold Approximation and Projection
(UMAP), a manifold learning algorithm. Former funding recipient data were
then projected into the new space. Funding recipient projections showed an
uneven distribution pattern with funding recipients concentrating in one projec-
tion space area. This area was identified using a density-based clustering method:
Density-based Spatial Clustering on Applications with Noise (DBSCAN) [3].

This study presents our approach to use this target population of funding
recipients in order to isolate a sub-population of potential funding recipients
within a large representative population. This approach is neighborhood-based
and combines a manifold learning algorithm with a density-based clustering
method. Section 2 will present the data used and the data processing steps.
Section 3 will focus on data reduction results. The conclusion will be addressed
in Sect. 4.

1.1 Previous Work

Dimension reduction intends to represent high-dimensional data in a low-
dimensional space while preserving data structure. Linear dimension reduction
algorithms, namely Principal Component Analysis (PCA), strive to preserve
global input data structure but describe poorly the true geometry of nonlinear
data [7]. In this study, former funding recipient and representative populations
had similar spatial distributions in the low-dimensional space, hence PCA was
unable to isolate the target population from the representative population. Non-
linear dimension reduction algorithms, also referred to as manifold learning algo-
rithms, can describe a wider range of variable interactions [14]. They are usually
divided into two categories based on whether they focus on local or global data
structure preservation. Global nonlinear dimension reduction algorithms such as
Kernel PCA [10] or Isometric feature Mapping (ISOMAP) [17] strive to preserve
input data geometry at all scales: neighborhood and remoteness are preserved
between the input and output spaces. Local nonlinear dimension reduction algo-
rithms such as Locally Linear Embedding (LLE) [11] or t-Stochastic Neigh-
bor Embedding (t-SNE) [8] focus primarily on local geometry preservation in
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small neighborhoods of the manifold [14]. Recently developed, UMAP [9] falls
into this last category. The local approach has two advantages over the global
approach: first, lower computational complexity as computations involve sparse
matrix manipulation, second, an enhanced ability to represent a wider range of
manifolds, specifically when geometry is Euclidean at a local scale but is non-
Euclidean at a global scale. t-SNE has proven to balance well local and global
data structures on real life data giving t-SNE a competitive edge. This was not
the case for LLE and its other nonlinear counterparts [8]. But t-SNE suffers from
several drawbacks [13,18], which do not affect UMAP, such as:

• inability to scale computationally when working with widely used python
libraries;

• non-convexity of its cost function, leading to potential initialization-based
results;

• non-preservation of density and distances between the input and output
spaces (neighborhood is nonetheless preserved).

Due to computational scaling constraints and the inability to use distances in
the output space, UMAP was preferred to t-SNE. UMAP has already been suc-
cessfully used in various medical contexts such as survival prognosis estimation
of Amyotrophic Lateral Sclerosis (ALS) patients [6], gene co-expression analysis
[5] and infection risk prediction of newly diagnosed B-cell chronic lymphocytic
leukemia (B-CLL) patients [1].

Applying UMAP in the context of public innovation funding is original with
regard to both testing this recent manifold learning algorithm and experimenting
on novel data in a field where public data is sparse.

2 Methods

2.1 Data

The first dataset was our target population of French funding recipients which
included 3,350 samples. The second dataset was our representative population
of French companies which contained 152,899 instances, randomly sampled from
the Amadeus database [2]. As such, companies sampled from that database were
selected with less bias than funding recipient data. Features selected for this
study were limited to turnover, net income, equity and headcount over a three-
year period. Data were not processed as time-series. Feature selection was based
upon finElink’s use case: information asked to users needed to be easily available
to improve user-friendliness. Age, business sector and location information was
excluded as these features were not continuous. Age was discretized in years.
Business sector and location were categorized with respectively NACE codes
and region names. When categorical or discretized features are included in a
UMAP projection, the algorithm primarily learns how to represent these different
categories or bins without providing additional information on the data. As such,
these UMAP projections were unable to isolate the target population from the
representative population when these features were included.
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2.2 Missing Data Analysis

Missing data were imputed using MissForest [15], a multiple imputation method
based on a random forest model. Multiple imputation methods preserve input
data distribution better than single imputation methods. MissForest has a good
tolerance for high missing data rates and can handle Non Missing At Random
(NMAR) schemes [16]. Multiple Imputation by Chained Equations (MICE) [12]
is another multiple imputation method based on regression. Both MICE and
MissForest deal with mixed data types (categorical and/or continuous). However,
MissForest is non-parametric and, as such, can handle non-linearity and variable
interactions in data, which MICE cannot. Initial missing data rates were 58% and
34% for respectively the target and representative populations. Given the high
missing data rates, data imputation on the overall available population would
have been inappropriate. Data with up to 7 missing features, on a total of 15 (age,
business sector and location were included for missing data imputation) were
selected. As such, initial feature distributions were not significantly altered after
data imputation. Data were normalized prior to missing data imputation. After
processing, the two datasets included 1,413 and 114,628 samples for respectively
the target and representative populations.

2.3 Dimension Reduction

Data reduction was carried out using UMAP. The representative population
was projected into a two-dimensional space. UMAP is neighborhood-based and
works in two steps. First, a compressed embedding of the input space is built
through topological analysis of the data structure using simplexes1. Second, a
low-dimensional (in our case two-dimensional) data embedding is found through
a cross-entropy2 optimization process. UMAP preserves data neighborhoods, dis-
tances and density. The initial modeling step depends on whether the algorithm
should focus on preserving the local or global input data structure. Data struc-
ture is estimated according to the size of the neighborhood investigated. The
second compression step is mainly defined using two parameters which are the
output dimension size and the minimum distance permitted between two points
in the output space, i.e. how compact the output projection can be. In our study,
UMAP parameters were set as follows:

• output dimensionality was set to 2, as adding an additional dimension did
not provide more insight;

1 In geometry, a simplex is defined as a set of points, where none is a barycentre of
the remaining points. The convex hull of these points corresponds to the face of the
simplex. In simpler terms, a n-simplex can be thought of as the generalization of a
triangle in the nth dimension.

2 In machine learning, cross entropy is frequently used as a cost function to compare
two probability distributions (p,q): p is optimized to approximate q the fixed target
distribution.
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• neighborhood size was set as high as possible given computational time
(6,500) in order to obtain a global overview of data structures, funding recip-
ients were not isolated when the focus was made on local data structure;

• no minimum distance in the output space was set to allow overlapping.

2.4 Clustering

The UMAP projection space was divided into a grid and density differences
within that grid were examined using the ratio of funding recipient samples
within each cell over the total cell samples. Centroid-based clustering methods
are not relevant given the data distribution as they are unable to deal with noise.
Density-based clustering methods, such as DBSCAN, manage noise through den-
sity analysis which meets our problem’s constraints. In DBSCAN, cluster iden-
tification is carried out by assessing the neighborhood density of each sample,
i.e. evaluating the number of neighbors within an ε radius of that sample. Pro-
vided the number of neighbors is above the user-defined threshold, that sample
is said to be a cluster core point. If the sample does not have enough neighbors
within an ε radius while having at least one core point as a neighbor, then that
point is assigned to the core point’s cluster. Otherwise, that point is labeled as
noise. Projections from the target population were fed into DBSCAN to isolate
the projection space area with a high density of target population samples. The
remaining samples were labeled as noise. DBSCAN tuning led to the following
setup:

• the ε distance was set to the first percentile of the target population distance
distribution;

• the minimum number of points within a ε radius required to form a cluster
was set to 20.

3 Results

3.1 Input Feature Distribution Analysis

As UMAP is a non-linear dimension reduction method, projection features can-
not be analyzed to provide any interpretability. Output dimension analysis, as
commonly performed for PCA, cannot be carried out. Nonetheless, analysis of
input feature distribution in the UMAP projection space is an alternative as
it gives a broad overview of variable importance with regard to the projection.
Plot analysis can help identify strong correlations between projections and input
features. This was the case for turnover and headcount variables for year N-1,
presented in respectively Fig. 1a and Fig. 1c. These variables appeared to have an
impact on the overall data projection pattern. Net income and equity variables
did not show a high degree of correlation with the projection, as shown respec-
tively in Fig. 1b and Fig. 1d, as feature distribution appeared to be random in
some projection space areas. Results were plotted for year N-1, but the patterns
were similar for the two other years (N-2 and N-3). Turnover and headcount
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Fig. 1. Input feature distribution for samples from the representative population of
French companies: turnover(a), net income (b), headcount (c) and equity (d) for the
year N-1. Axes are dimensionless and come from UMAP dimension reduction (a, b,
c, d).

appeared to be the variables that mattered the most distance-wise in the out-
put space. Net income and equity, which showed a weaker or limited impact on
the overall UMAP projection distribution, might have had a more local impact
distance-wise in the output space.

3.2 Funding Recipient Distribution Analysis

Funding recipient samples were then projected onto the low-dimensional space.
Distribution patterns for funding recipients were different from those observed
for the representative population as shown in Fig. 2a. Funding recipients were
prone to concentrate primarily in the left region of the projection in the shape of
a curve. The curve went from the projection’s upper left side to the lower center
region, in the shape of a “backbone”. Projection space division into a grid, pre-
sented in Fig. 1b, helped understand the projection space density distribution.
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Fig. 2. Funding recipients were projected onto the two-dimensional plane with a non-
uniform distribution pattern (a). The projection space was divided in a grid to analyze
density of funding recipients within each cell(b). DBSCAN identified the main cluster
of funding recipients. Companies close to the funding recipient cluster belonged to the
potential funding recipient cluster (c). Axes are dimensionless and come from UMAP
dimension reduction (a, b, c).

Density analysis confirmed the shape identification. Funding recipient samples
were mainly located within the “backbone” shape as 74% of funding recipients
belonged to it (i.e. 1,041 out of the 1,413 funding recipient samples). Funding
recipient concentration within a specific projection space area confirmed that
our similarity-based approach on financial features for potential funding recipi-
ent identification was relevant. DBSCAN was then applied on the target popu-
lation and its main cluster was identified. The remaining funding recipients were
labeled as noise. Company samples from the representative population that were
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within an ε radius of cluster core points were labeled potential funding recipients
as shown in Fig. 2c. Membership to the main cluster was fed into the recommen-
dation system and potential funding recipients were suggested more competitive
funding mechanisms.

4 Conclusion

Our study demonstrated that our approach successfully isolated a subset of
companies which shared similarities with the target population of former fund-
ing recipients. Combining a novel non-linear dimension reduction method with a
density-based clustering algorithm proved to be most instructive. Similarity was
assessed using a limited set of financial features: turnover, net income, headcount
and equity over a period of three fiscal years. Our approach can be summarized
in three stages. First, representative company data were projected onto a low-
dimensional space using the manifold learning algorithm UMAP. Second, former
funding recipient data were projected onto that same low-dimensional space.
Third, the cluster with the highest density of former funding recipients was
identified using the density-based clustering algorithm DBSCAN. Companies
close to that cluster, either from the representative company dataset or newly
added from a finElink user, were separated from the rest. They were deemed to
be more successful than their counterparts. Finelink suggestions were person-
alized to companies’ financial information as companies with higher chances of
success were proposed the most competitive funding mechanisms while the oth-
ers were offered smaller funding mechanisms. Further recommendation system
tuning includes analyzing funding recipients from mechanisms with similar char-
acteristics in order to identify distribution patterns specific to these sub-groups.
Additionally, this approach can be extended to other contexts for minority pop-
ulation identification within a larger population sample when facing strong data
constraints. Notwithstanding significant data sparsity, bias and missing data con-
straints, we have demonstrated that combining non-linear dimension reduction
with density-based clustering, important correlations can be unraveled.
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