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Abstract. Brain-inspired Hyperdimensional (HD) computing is an emerging
technique for cognitive tasks in the field of low-power design. As an energy-
efficient and fast learning computational paradigm, HD computing has shown
great success in many real-world applications. However, an HD model incremen-
tally trained on multiple tasks suffers from the negative impacts of catastrophic
forgetting. The model forgets the knowledge learned from previous tasks and
only focuses on the current one. To the best of our knowledge, no study has been
conducted to investigate the feasibility of applying multi-task learning to HD
computing. In this paper, we propose Task-Projected Hyperdimensional Comput-
ing (TP-HDC) to make the HD model simultaneously support multiple tasks by
exploiting the redundant dimensionality in the hyperspace. To mitigate the inter-
ferences between different tasks, we project each task into a separate subspace for
learning. Compared with the baseline method, our approach efficiently utilizes the
unused capacity in the hyperspace and shows a 12.8% improvement in averaged
accuracy with negligible memory overhead.

Keywords: Hyperdimensional Computing · Multi-task learning · Redundant
dimensionality

1 Introduction

In the era of IoT, edge computing with energy-efficient machine learning models keeps
data processing close to end-users. This brings out numerous advantages, including
lower latency, user security, and cost savings [1]. Meanwhile, multi-task learning (MTL)
is grabbing attention recently since a single model can accommodate multiple cognitive
tasks is more desirable for the future of IoT [2].

Brain-inspired Hyperdimensional (HD) computing emulates the operations of brains
and handles cognitive tasks in a hyperdimensional space with well-defined vector space
operations [3]. As an energy-efficient and fast-learning computational paradigm, HD
computing has shown successful progress in many real-world applications such as ges-
ture recognition [4], language recognition [5], and general bio-signal processing [6, 7].
Moreover, HD computing can operate at an ultra low-power conditionwith lower latency
through massively parallel bitwise operation [8]. These advantages make HD comput-
ing suitable for efficient signal processing, e.g., 2× lower energy at iso-accuracy when
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compared to a highly-optimized SVM on an ARM Cortex M4 [9]. However, an HD
model incrementally trained on multiple tasks forgets the knowledge learned from pre-
vious tasks and only focuses on the current one. The phenomenon is called catastrophic
forgetting [10]. To the best of our knowledge, no study has been conducted to overcome
this problem and investigate the feasibility of applying MTL to HD computing.

This paper aims to establish a reliable MTL framework based on HD computing to
minimize the negative impact of catastrophic forgetting. Over-parameterization in DNN
implies that only a small subspace spanned by the optimal parameters is occupied by a
given task [11]. Based on this phenomenon, [12] exploits the redundant subspace inDNN
to superimpose multiple models into one. We are inspired by this concept and propose to
exploit the unused capacity in the hyperspace to project each task into a separate subspace
for learning. Our approach efficiently mitigates the interferences between different tasks
and keeps the knowledge learned from numerous tasks stored in one HD model with
minimal accuracy degradation.

The rest of the paper is organized as follows. Section 2 provides a review of HD
computing. Section 3 describes the proposed Task-projected Hyperdimensional Com-
puting (TP-HDC) for multi-task learning. Section 4 shows our experiment setting and
simulation results. Finally, we conclude this paper in Sect. 5.

2 Review of Hyperdimensional Computing

HDcomputing is basedonhigh-dimensional anddensebinaryvectors, calledHDvectors.
The components of HD vectors are binary with equally probable (−1)s and 1s. The
processing flow chart of a general HD computing is shown in Fig. 1 and can be divided
into the following four stages:

Nonlinear Mapping to Hyperspace: The main goal of mapping is to project a fea-
ture vector x to HD vectors with dimensionality (d), where x ∈ Rm with m com-
ponents. Feature identifier (ID) is regarded as a basic field, and the actual value of
the feature is the filler of the field. HD computing starts by constructing Item Mem-
ory (IM ) and Continuous item Memory (CiM ) . IM = {ID1, ID2, . . . , IDm}, where
IDk ∈ (−1, 1)d , k ∈ {1, 2, . . .m} corresponds to the ID of the kth feature component.
When d is large enough, any two different HD vectors in IM are nearly orthogonal,
implying that Cos

(
IDi, IDj

) ∼= 0,Ham
(
IDi, IDj

) ∼= 0.5, ifi �= j [13]. Cos(·) and Ham(·)
are cosine similarity metric and normalized Hamming distance between the two vectors,
respectively.

Continuous item memory (CiM) serves as the look-up table for the actual value of a
feature. The procedure of establishing CiM first finds the maximum value and minimum
value of each feature denoted as Vmax and Vmin. The range between Vmax and Vmin is
quantized to � levels, and then an HD vector L1 ∈ (−1, 1)d is assigned to Vmax, and L� ∈
(−1, 1)d is assigned to Vmin. The HD model determines L1 and L� at random, making
them approximately orthogonal. CiM = {L1,L2, . . . ,L�}, where Lk ∈ (−1, 1)d , k ∈
{1, 2, . . . �}, and every vector in CiM corresponds to a range of actual value. The spatial
relation of levels is preserved through adjusting the Hamming distance between Li and
Lj according to the difference of value to which the two HD vectors correspond. In other
words, each value of the specific feature component will be associated with a vector
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proportionate to L1 and L�. Mapping of each feature value to hyperspace comprises
quantizing and looking up the corresponding vectors {S1, S2, . . . , Sm} in CiM . After
mapping each feature component of data to HD vectors, a set of two-vector pairs I =
{(ID1, S1), (ID2, S2), . . . , (IDm, Sm)} can readily be used in the next stagewith the vector
space operations.

Encoding: The HD model conducts the binding operation, bitwise XOR operation (⊕)

between two HD vectors, for each two-vector pair in I . After that, the resulting m HD
vectors in the set I is accumulated by the bundling operation, bitwise addition (+)

between HD vectors. Followed by binarization with sign function denoted as [·], data
can be encoded as (1) and represented by the resulting binary HD vector T ∈ (−1, 1)d .

T =
m∑

i=1

IDi ⊕ Si = [ID1 ⊕ S1 + ID2 ⊕ S2 + . . . + IDm ⊕ Sm], (1)

Training: All training samples go through the previous two stages and the resulting
vector T is sent to the associative memory (AM) for training. Training samples of the
same class denoted as Ti for the ith class are bundled together to form a class HD vector,
as shown in (2). ni means the number of training samples of the ith class. For a k-class
classification task, AM comprises k class HD vectors, denoted as {C1,C2, . . . ,Ck}.

Ci =
∑

j

T j
i =

[
T 1
i + T 2

i + . . . + Tni
i

]
, (2)

Classification: In the inference phase, an unseen testing datawould go through the same
processing flow ofmapping and encoding in the training phase and be encoded as a query
vector Q ∈ (−1, 1)d . To perform classification, the HD model checks the similarity
between Q and all class HD vectors stored in AM by the Hamming distance metric.
Finally, the HD model outputs the class with the minimum distance as the prediction.

CiM
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Quantize
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Testing set Feature 1
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Fig. 1. The processing flow chart of general HD computing.
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3 Proposed Task-Projected Hyperdimensional Computing

In this section, we propose Task-projected Hyperdimensional Computing (TP-HDC) to
realize multi-task learning in an HD model. We are inspired by [12], which exploits the
over-parameterization in DNN to superimpose multiple models into one. This implies
that only a small subspace spanned by the optimal parameters is occupied by a given
task. We observe that HD computing shows a similar phenomenon, where only a small
subspace spanned by class HD vectors in AM is relevant to a given task. Based on this
observation, MTL can be feasible if the massive hyperspace is partitioned appropriately
for each task.

3.1 AM Table for Multi-task Learning

Before diving into the illustrationof theproposed scheme,wefirst introduce thedefinition
of AM table supporting multiple tasks and its notation. Following the training flow
described in Sect. 2, each task in task sequence {T1,T2, . . . ,Ts} generates its own AM.
A total of s AM are present and form a 2-dimensional AM table, as shown in Fig. 2(a).
Each column of the table comprises k class HD vectors. We notate the jth class vector
of the ith task as Cj

i . If an original HD model needs to support multiple tasks, the
memory requirement of storing theAM table grows linearlywith the number of tasks. For
resource-constrained edge devices, the memory overhead could hinder HD computing
from MTL. As a result, it is more desirable to store a compressed AM with a size that is
independent of the number of tasks, as shown in Fig. 2(b).

Baseline Method: Considering the jth class in Fig. 2(a), the baseline method bundles
the class HD vectors of the same class from all involved tasks. As shown in (3), s HD

vectors in the jth class
{
Cj
1,C

j
2, . . . ,C

j
s

}
are bundled together and form the vector Mj,

which is shared across all tasks. Compressed AM comprises {M1,M2, . . . ,Mk}, where
Mj represents the jth class HD vector used by all tasks. That is, the baseline method
naïvely finds the most representative vector in the hyperspace regardless of the spatial
relation between tasks.

Mj =
[
Cj
1 + Cj

2 + . . . + Cj
s

]
, for j ∈ {1, 2, . . . k}, (3)

For the baseline method, the memory overhead is s times less than that of AM
table. However, we discover that the baseline method causes HD vectors of different

(a) (b)

Task 1 Task 2 Task s

Class 1

Class 2

Class k

Compressed AM

Class 1

Class 2

Class k

Fig. 2. (a) AM table for original HD computing to support multiple tasks. (b) Compressed AM.
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tasks to occupy overlapping subspace. This induces interference between tasks and
significant accuracy degradation. In the next section, we concretize the proposed TP-
HDC to efficiently realize MTL in an HD model with a lower accuracy drop.

3.2 Orthogonalization with Task-Oriented Keys

The TP-HDC consists of the following three parts, including generation of task-oriented
keys, composition with task-oriented projection, and decomposition:

Generation of Task-Oriented Keys: We propose to leverage the peculiar property in
the Hamming space, the normalized Hamming distance from any given point in the
hyperspace to a randomly drawn point highly concentrates at 0.5 [3]. Namely, two ran-
dom HD vectors are approximately orthogonal (unrelated) due to hyper-dimensionality.
Based on this fact, each task is assigned a task-oriented key generated at random, denoted
as {P1,P2, . . . ,Ps}. These keys can be used for projection to achieve a division of the
hyperspace in the following step of TP-HDC.

Composition with Task-Oriented Projection: To utilize the unused capacity of the
HD model more efficiently, orthogonalization of class HD vectors of the same class,

e.g.,
{
Cj
1,C

j
2, . . . ,C

j
s

}
for the jth class is required. With task-oriented keys generated in

the previous step, we bind the keys and the class HD vectors for each task. The effect

of binding projects originally close HD vectors
{
Cj
1,C

j
2, . . . ,C

j
s

}
to different zones of

the hyperspace since pseudo-randomly generated keys are approximately orthogonal.
The new class HD vector (Mj) is formed by bundling the generated s HD vectors, as
shown in (4). By projecting the class HD vectors of different tasks into near-orthogonal
hyperspaces, TP-HDC can mitigate the information loss caused by directly bundling
class HD vectors, as implemented by the baseline method.

Mj =
s∑

i=1

Cj
i ⊕ Pi =

[
Cj
1 ⊕ P1 + Cj

2 ⊕ P2 + . . . + Cj
s ⊕ Ps

]
, for j ∈ {1, 2, . . . k},

(4)

Decomposition: Retrieval of class HD vector of the jth class in mth task Cj
m, is ensured

by binding Mj with Pm, as shown in (5). The resulting vector consists of Cj
m and noise

∈ because the vectors are stored in superposition. Despite the presence of ∈, TP-HDC
can still be reliable because HD computing is robust against noise [3].

Ĉj = Mj ⊕ Pm =
[
Cj
1 ⊕ P1 + Cj

2 ⊕ P2 + . . . + Cj
s ⊕ Ps

]
⊕ Pm

=
[
Cj
1 ⊕ P1 ⊕ Pm + . . . + Cj

m ⊕ Pm ⊕ Pm + . . . + Cj
s ⊕ Ps ⊕ Pm

]

=
[
Cj
m+ ∈

]
, for j ∈ {1, 2, . . . k} (5)
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3.3 Training and Inference in TP-HDC

The framework of TP-HDC is depicted in Fig. 3, and the procedure of training and
inference is summarized in Algorithm 1:

Training: Given a task sequence, T = {T1,T2, . . . ,Ts} each with k classes, s different
AMs are updated using the general HD computing training flow described in Sect. 2.
C ∈ R

k×s×d is a three-dimensional matrix. The first two axes of C represent the number
of classes and tasks, respectively, and the last axis of C represents the dimensionality
of HD vectors. We first generate task-oriented projection keys and denoted them as P
= {P1,P2, . . . ,Ps}. P helps achieve a division of space and project class HD vectors of
different tasks to separate subspaces with Eq. (4). The compressed AM is M ∈ R

k×d ,
whose size is independent of the number of tasks.

Inference: Given a task, the HDmodel produces the query HD vectorQ in the inference
phase by processing a testing sample with the same mapping and encoding modules
used in the training phase. After retrieving all class HD vectors of the specific task

Ĉ =
{
Ĉ1, Ĉ2, . . . , Ĉk

}
with Eq. (5), the classification result is the class in which the

corresponding class HD vector has the smallest Hamming distance with Q, see Eq. (6).

Prediction = argmin
j

Ham
(
Ĉj,Q

)
, (6)

AM

Task s Path

AM

Task 2 Path

AM

Task 1 Path

Decomposed AM

Similarity 
Check

TP-HDC

Compressed AM

InferenceTraining

Mapping & Encoding

Testing setTraining set

[+]

Fig. 3. The framework of the proposed task-projected HD computing (TP-HDC).
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4 Experimental Settings and Simulation Results

4.1 Comparisons

We compare the proposed TP-HDC with two different approaches tackling the multi-
task learning problem in HD computing, including the baseline method and the ideal
method.

Baseline Method: As mentioned in Sect. 3.1, the baseline method naïvely finds the
most representative vector among all tasks with bundling operation, causing severe
interference between different tasks. Therefore, the baseline method can be regarded as
the model telling us what happens if we do nothing to explicitly retain information from
the previous tasks.

Ideal Method: The ideal benchmark considers the case where computing resources are
unconstrained so that all tasks can have their own AM. Therefore, the performance of
the ideal method can be viewed as the upper bound of our evaluation since the class HD
vectors are stored without any information loss.
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4.2 Dataset and Experimental Setup

We evaluate the effectiveness of our proposed TP-HDC on Split MNIST, a standard
benchmark for multi-task learning [14]. Following the experiment setting of [14] with
minor modifications, we split ten digits into disjoint sets. Each set corresponds to a
specific task in T = {T1,T2, . . . ,Ts}, where Ti aims at discriminating between ki digits{
D1
i ,D

2
i , . . . ,D

ki
i

}
. We fix the dimensionality of HD computing at d = 5000, where the

performances of all HD computing models saturate. Mapping and encoding modules
are shared across all tasks, meeting the expectations of MTL. Moreover, we vectorize
the gray images of digits in MNIST to form 784-dimensional feature vectors and pre-
process pixel values using min-max normalization. All experiments are conducted on
100 independent runs to get the final averaged simulation results.

4.3 Performance Analysis

First, we evaluate our proposed TP-HDC with a three-task MTL configuration. Each of
the tasks, namely task A, task B, and task C contains three digits different from those of
the other two tasks. HDmodels are sequentially trained on task A, task B, and task C.We
observe that 100 training samples are enough for the convergence of all HD models in
each task. Therefore, we train each task for 100 steps, and a training sample is randomly
drawn to update AM in each step.

Figure 4 illustrates the learning curve of the different methods on split MNIST. Com-
pared with the ideal method, the baseline method suffers from catastrophic forgetting,
resulting in around 20% accuracy drop on task A and task B. Furthermore, task A has
occupied the subspace that task B and task C need to learn for classification, causing
information loss for task B and task C and bringing about a 15% accuracy drop. On the
other hand, the accuracy of the proposed TP-HDC only drops by 3.6%, 3.9%, 2.9% on
task A, task B, and task C, respectively.

To validate the generalization ability of our model, we also evaluate TP-HDC on the
five-task case. The experimental setup is almost the same as the three-task case except
that each task contained two digits. For the baseline method, Fig. 5 shows that the five
tasks tend to interfere with each other severely like that in the three-task case, leading to a
16.5% accuracy drop. In comparison, TP-HDC provides around 12.8% improvement in
averaged accuracy compared with the baseline method and performs closely to the ideal
benchmark consistently, with a slight 3.7% accuracy drop on average. By efficiently
separating the subspaces, TP-HDC mitigates the effect of interference between tasks
and improves the performance of sequential training on multiple tasks.

Table 1 shows the performance of TP-HDC on split MNIST in different cases. The
high standard deviation of the accuracy of the baseline method implies instability. By
contrast, the results demonstrate both effectiveness (<4% accuracy drop compared with
the ideal benchmark) and stability (lower variance compared with the baseline method)
of TP-HDC.
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Fig. 4. The learning curves of different methods trained on split MNIST. Tasks A, B, and C are
assigned with disjoint sets of MNIST digits. The vertical dashed lines imply the transitions of the
training procedure of different tasks. The top plot shows the accuracy of task A. The middle plot
and bottom plot indicate the accuracy of tasks B and C, respectively.

Fig. 5. Classification accuracy of the five-task case of split MNIST. TP-HDC provides around
12.8% improvement in averaged accuracy compared with the baseline method.



250 C.-Y. Chang et al.

Table 1. Performance of different methods on split MNIST of different numbers of tasks.

# of tasks Accuracy ± Std. (%)

2 3 4 5

Baseline 88.1 ± 8.5 83.6 ± 12.2 79.9 ± 13.7 79.2 ± 13.1

Proposed TP-HDC 94.0 ± 4.6 94.1 ± 4.6 92.1 ± 6.0 91.9 ± 5.9

Ideal case 95.7 ± 2.7 95.9 ± 3.1 95.7 ± 3.0 95.6 ± 3.2

4.4 Memory Footprint Analysis

The memory requirement for the ideal method to store AM is O(s × k), where s and
k are the number of tasks and classes, respectively. Since TP-HDC just needs to store
the projection keys of each task for decomposing class HD vectors in the inference
phase, the memory footprint for TP-HDC only requires O(t + c). Moreover, instead
of storing all the projection keys in the memory, linear feedback shift register (LFSR)
can be utilized to generate pseudo-random patterns as a hardware-friendly approach
for implementation. This makes TP-HDC more efficient for multi-task learning with
negligible memory overhead.

5 Conclusions

To the best of our knowledge, in this paper, we first investigate the feasibility of applying
multi-task learning to HD computing. To avoid catastrophic forgetting, we propose TP-
HDC to exploit redundant dimensionality in the hyperspace. By separating subspaces
for each task with task-oriented keys, the information loss caused by the interference
between tasks is effectively reduced. Based on our experimental results, TP-HDC out-
performs the baseline method on split MNIST by 12.8% accuracy on average and can
be implemented with negligible memory overhead.
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