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Abstract. Massive amounts of data produced by railway systems are
a valuable resource to enable Big Data analytics. Despite its richness,
several challenges arise when dealing with the deployment of a big data
architecture into a railway system. In this paper, we propose a four-layers
big data architecture with the goal of establishing a data management
policy to manage massive amounts of data produced by railway switch
points and perform analytical tasks efficiently. An implementation of the
architecture is given along with the realization of a Long Short-Term
Memory prediction model for detecting failures on the Italian Railway
Line of Milano - Monza - Chiasso.

Keywords: Railway data - Predictive maintenance - Big data
architecture

1 Introduction

In recent years, Big Data analytics has gained relevant interest from both indus-
tries and academia thanks to its possibilities to open up new shapes of data
analysis as well as its essential role in the decision-making processes of enter-
prises. Different studies [8], highlight the importance of big data, among other
sectors, for the railway industries. The insight offered by big data analytics covers
different areas of the railway industry, including and not limited to maintenance,
safety, operation, and customer satisfaction. In fact, according to the growing
demand for railway transportation, the analysis of the huge amount of data
produced by the railway world has a positive impact not only in the services
offered to the customers but also for the railway providers. Knowledge extracted
from raw data enables railway operators to optimize the maintenance costs and
enforce the safety and reliability of the railway infrastructure by the adoption of
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new analytical tools based on descriptive and predictive analysis. Maintenance
of railway lines encompasses different elements placed along the railway track,
including but not limited to signals and points. Our interest is mainly on predic-
tive maintenance tasks that aim to build a variety of models with the scope of
monitoring the health status of the points composing the line. Typical predicting
metrics of Remaining Useful Life (RUL) and Time To Failure (TTF) enable pre-
dictive maintenance by estimating healthy status of objects and replacing them
before failures occur. Despite unquestionable value of big data for the railway
companies, according to [3] big data analytics is not fully adopted by them, yet
due to different aspects mainly related with the lack of understanding on how
big data can be deployed into railway transportation systems and the lack of
efficient collection and analysis of massive amount of data. The goal of our work
is to design a big data architecture for enabling analytical tasks typical required
by the railway industry as well as enabling an effective data management policy
to allows end-users to manage huge amounts of data coming from railway lines
efficiently. As already mentioned, we considered predictive maintenance as the
main task of our architecture; hence to show the effectiveness of the proposed
architecture, we use real data collected from points placed over the Italian rail-
way line (Milano - Monza - Chiasso). The complexity of the considered system
poses different challenges for enabling efficient management of the huge amount
of data. The first challenge concerns the collection of the data given the hetero-
geneity of the data sources. Multiple railway points produce distinct log files,
which must be collected and processed efficiently. The second challenge is to
deal with the data itself. Data collected from the system must be stored as raw
data without any modification to preserve the original data in case of necessity
(e.g., in case of failures, further analyses require to analyze data at a higher level
of granularity). At the same time, collected data must be processed and trans-
formed to be useful for analysis thus, data must be pre-processed and aggregated
before fitting models for analytics. Finally, the data analysis performed by the
end-users requires analytical models to perform predictive or descriptive anal-
ysis; thus, the architecture should enable model creation as well as graphical
visualization of results.

The paper is organized as follows. Section 2 describes similar works that dis-
cuss the design of Big Data architectures for railways systems. Section 3 describes
the kinds of data produced by a railway system. Sections 4 and 5 describe, respec-
tively, the architectural design and its implementation. The Sect. 6 presents a
real case scenario in which failure prediction is performed on real data. Section 7
draws some conclusions.

2 Related Work

To the best of our knowledge, few solutions take into consideration challenges
arisen when deploying a big data architecture for railway systems. Most works
focus on theoretical frameworks where simulations produce results without
experimenting with real data. Moreover, researchers mainly focus on Machine
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Learning algorithms as well as analytical models, giving less importance to the
fundamental tasks related to data management, ingestion processing, and stor-
age. Close to our work in [9], authors propose a cloud-based big data architecture
for real-time analysis of data produced by on-board equipment of high-speed
trains. However, the proposed architecture presents scalability issues since it is
not possible to deploy large-scale computing clusters in high-speed trains; nei-
ther is it possible to deploy a fully cloud-based architecture due to bandwidth
limitation of trains which make infeasible transferring huge amount of data to
the cloud to perform real-time analysis. On the contrary, the scope of our work
is to define a scalable Big Data architecture for enabling analytical tasks using
railway data. For this reason and due to space limit, we have reported only work
related to the railway scenario.

3 Data Produced by a Railway Interlocking System

In our work, we take into consideration the data log files produced by a railway
interlocking system. A railway interlocking is a complex safety-critical system
that ensures the establishment of routes for trains through a railway yard [1]. The
computer-based interlocking system guarantees that no critical-safety condition
(i.e., a train circulate in a track occupied by another train) will arise during
the train circulation. Among other actions issued by the interlocking, before
the route is composed, it checks the state of each point along the line. The
interlocking system produces log files that store information about the command
issued to the point as well as data about its behavior. Commands are issued by
the interlocking through smart boards, which in turn control the physical point
on the line and collect data about their status. Once data are collected, they
are written into the data storage of the interlocking system as log files. These
log files can be both structured and semi-structured data and contain diverse
information about the behavior of the points upon the requests sent by the
interlocking system. Requests may vary according to the logic that must be
executed to set up a route (e.g., a switch point is moved from the normal to the
reverse position or vice versa) and this implies that the information contained in
log files may vary. A complete railway line is controlled by multiple interlocking
systems, which in turn produce different log files according to the points they
control. The analytical task which motivates the design of our architecture is the
prediction of failures. A failure may occur when a mechanical part of points has
a break. This kind of failure propagates negatively on the entire railway traffic;
therefore, its prediction is desirable. Moreover, instead of doing maintenance
when a failure occurs, it is also useful in particular, to estimate the RUL of
point in order to enable predictive maintenance by estimating if a points will
fail or not in a certain time-frame. Predicting failures of railway points requires
to take into consideration the log files produced by the interlocking whenever
a command is issued to a point. These log files are heterogeneous in type and
contain different information resumed as:
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Fig. 1. Graphical visualization of data sample collected from a switch point

. Timestamps respectively indicating the time recorded the logging server upon

submitting the command, and the timestamp recorded by the smartboard
when an action is performed.

Information about the smartboard that controls the point (channel number,
name of the smartboard, sampling frequency).

Information about the operation issued by the interlocking (type of move-
ment, total number of movements, number of current movement in a single
day).

A set of raw data representing values of Voltage and Power supplied to the
point to operate.

Data 3 and 4 are considered to train and evaluate the proposed model to

estimate the health status of the points, thus to estimate its RUL (see Sect.5).
As an example, we report a sample collected from a railway switch point (Fig. 1).
These samples contain three types of information:

1.

4

ReferenceCurve: is a sample curve representing the behavior of the point
upon the command issued by the interlocking. This curve is used to derive
the following ones;

. PreAlarmSample: is a pre-threshold curve, computed by adding to the

ReferenceCurve an intermediate threshold value;
AlarmSample: is the alarm curve computed as the previous one by adding
an alarm threshold value.

System Architecture

The Big Data architecture presented in this section covers all the fundamental
stages of a big data pipeline [4] of:
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Fig. 2. Architecture for railway big data management

1. Data acquisition by implementing ingestion tasks for collecting data from
external sources.

2. Information extraction and retrieval by processing ingested data and storing
them in a raw format.

3. Data integration, aggregation, and representation by data table view as well
as data aggregation functionalities to produce new data for analytics.

4. Modeling and analysis by providing a set of functionalities to build models
to perform predictive analytics.

5. Interpretation of results by graphical visualization of data.

The architecture presented in Fig. 2 includes the following layers:

Storage layer is the layer responsible for implementing the data storage. It
contains the storage platform to provide a distributed and fault-tolerant filesys-
tem. In particular, this layer, should store data in their raw form. Therefore
datasets for analytic models will be originated from the upper layers.

Processing layer provides all tasks for data manipulation/transformation
useful for the analytical layer. In particular, this layer presents a structured view
of the data of the Storage layer, allowing the creation of datasets by transforming
raw data coming from the Storage layer. The structured view of data is imple-
mented through table views of the raw data. The transformation of original data
is performed through aggregation functions provided by this layer.

Service layer contains all components to provide analytics as a service to
the end-users. This layer interacts with the processing layer in order to access
data stored on the platform, manipulate and transform data to fit analytical
models. In addition, it provides: 1) Data visualization functionalities for graph-
ical displaying data 2) Models creation to perform analytical tasks.

Ingestion layer This layer implements all the tasks for the ingestion of data
from external sources. It is based on ingestion tools, which enable the definition
of dataflows. A dataflow consists of a variable number of processes that transform
data by the creation of flow files that are moved from one processor to another
through process relations. A relation is a connection between two processors to
define data flow policies among data flow processes.
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Our architecture is an implementation of the concept of a datalake [2]. To
avoid situations in which data stored in the platform become not usable due to
multiple challenges related to their complexity, size, variety, and lack of meta-
data, we adopt a mechanism of URI' abstraction to simplify data access, thus
establishing a data governance policy. As an example, at the storage layer, the
URI of a resource is simply its absolute path. In order, to avoid the definition
of multiples URISs for each resource (since they can be used by multiple compo-
nents at different architectural layer), we define a URI abstraction mechanism
to simplify the access to resources since they are stored in a distributed manner
(where keeping track of the physical location of a resources could be tricky).
Therefore the Real URI refers to a resource stored on the distributed filesystem
abstracting its physical location. A RealURI is bound to a single VirtualURI,
which is in charge of abstracting the details of paths adopted by a particular
implementation of a distributed filesystems. A PresentationURI is an optional
URI created whenever a component of the Processing layer or Service layer uses
a resource stored on the filesystem. As an example, the URI abstractions defined
for a single resource are reported in Table 1. Each resource is identified by 1)
a smartboard id, 2) a channel number that controls a specific point, 3) a point
number which identifies the object on the line. These metadata are extracted
from the data described in Sect.3. through the tasks provided by the Inges-
tion layer described in the next section. In addition, the VirtualURI refers to
the resource at a platform level, while the PresentationURI represents a HIVE
table view of the data created by the processing layer (see Sect.5). We stress
the fact that while resources can be assigned to an unbounded number of Pre-
sentationURI, depending on the type of components that consume the data, the
VirtualURI is mandatory and it refers to a single RealURL

Table 1. URI abstractions for storage resources

URI type URI View level
RealURI hdfs://data_path/smart_board number/channel/point_number Filesystem
VirtualURI adc://data_path/smart_board number/channel/point_number Platform
PresentationURI | adc:hive://data_path/smart_board number/channel/point_number | Analytics

5 Architecture Implementation

The architecture has been implemented mainly using components of the Hadoop?
stack. Hadoop is a framework that allows for the distributed processing of
large data sets across clusters of computers using simple commodity-hardware.
Hadoop provides different components to implement a complete big data archi-
tecture. In particular, for this work, we considered:

! An Uniform Resource Identifier (URI) is a sequence of characters that uniquely
identify resources on a system.
2 http://hadoop.apache.org/.
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Fig. 4. Class diagram of the dataset builder module

Storage layer, which has been implemented using the Hadoop Filesystem
named HDFS. HDF'S is a fault-tolerant distributed filesystem that runs on clus-
ter providing fault-tolerance and high availability of the data. HDFS stores raw
data as ingested by the Ingestion layer, as represented in Fig.3. In particular,
the Ingestion layer performs extraction of data and metadata and aggregate data
into a specific folder stored on HDFS representing data for a particular point.
Data representing point behavior (see Sect. 3) are stored in their original format
as XML files. Therefore these data must be processed and transformed to create
new datasets. This task is performed by the processing layer.

Processing layer Before data can be employed into analysis must be trans-
formed to fulfill the requirements of analytical models. The processing layer
implements all the tasks required to build datasets from raw data. This layer
has been implemented through the specification of two components. The first
component has the scope of processing raw XML files by extracting relevant fea-
tures and aggregating them into CSV files, thus producing new datasets. Results
are written back to the HDFS in the folder of the original data provenance. This
mechanism allows enriching the data available, producing aggregation of raw
data as well as providing features extraction functionalities to extract/aggregate
features to be used by analytical models.
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Fig. 5. Example of a NiFi dataflow pipeline which implement an ingestion task from
a local filesystem

To fulfill this task, a dataset builder processes raw data and extracts relevant
features (classes are reported in Fig. 4). This module extracts features provided
as input and aggregates them into CSV files using an aggregation function (min,
max, avg). Results are written back to the HDFS utilizing the HDFS context to
get the original data path.

In addition, to enable an analysis of aggregated data, these files are imported
into HIVE tables. HIVE is a data warehousing tool provided by the Hadoop
stack, which includes a SQL-like language (HIVEQL) to query data. To import
data into HIVE tables, we define a general schema to match the structure of data
points. The table schema for representing data points is read from the aggregated
CSV created by the dataset builder. A general table schema representing data
for a generic point is structured as:

smart_board_number_point_number (RecordSampleTime DATE,
MovTime FLOAT, current_mA FLOAT, voltage_V FLOAT)

The designed HIVE tables store aggregated data containing the extracted
features obtained from raw data. Results of aggregation extract four features
respectively representing: 1) a timestamp in which sample was collected, 2) the
estimated time to complete the operation, 3) the average current expressed in
mA issued by the point 4) the average voltage V. Features 2, 3 and 4 are obtained
by the aggregation of single measurements contained in the original data.

Service layer acts as a presentation layer. It implements all the tasks needed
to build models for analytics as well as graphical visualize data. These tasks are
fulfilled by Jupyter notebooks. Notebooks are designed to support the workflow
of scientific computing, from interactive exploration to publishing a detailed
record of computation. The code in a notebook is organized into cells, chunks
which can be individually modified and run. The output from each cell appears
directly below it and is stored as part of the document [5]. In addition, a variety of
languages supported by notebooks allows integrating different open-source tools
for data analysis like Numpy, Pandas, and Matplot [7]. These tools allow to parse
data in a structured format and to perform data manipulation and visualization
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by built-in libraries. In addition, the data structure adopted by Pandas, named,
DataFrame, is widely adopted as input format by a variety of analytical models
offered via machine learning libraries like scikit-learn and SciPy.

Ingestion layer has been realized through Apache NiFi, a dataflow system
based on the concepts of flow-based programming. Dataflows specify a path
that describes how data are extracted from the external sources and stored on
the platform. An example of DataFlow, which combines data coming from an
external filesystem, is provided in Fig. 5. The flow files created by the dataflow
are then written to the HDFS. In the reported example, the files read from
a local filesystem are unpacked and then written into a specific folder on the
HDFS. This folder is created by extracting meaningful information necessary to
identify the smartboard where the data comes from as well as the point which
produced that data.

The proposed architecture has been employed for the collection and process-
ing of data of the railway line Milano-Monza-Chiasso. This line is composed
of 72 points forming the railway track, which are managed by multiple smart
boards that collect data. In particular, data are collected from 7 points which
produces roughly 32 GB/month. Data produced by the system contains infor-
mation about points status and type of commands issued by the interlocking
to move points. The definition of a data management policy allows to collects,
govern, and controls raw data as well as enabling data analysis for end-users.
The proposed platform has been deployed in a test environment using a con-
tainerization technology Fig. 6.

Fvocxznjosr .
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WebService
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Fig. 6. Architecture deployment using containers.

We adopted two separate containers, which respectively implement the data
storage & processing layers plus the ingestion layer in a separate environment.
These containers communicate over a virtual network, which allows exchanging
data in an isolated environment exposing web services to access the platforms
and perform tasks. This deployment enables scalability of the architecture by
moving containers on a cluster. Cloudera pre-built image has been adopted as a
container implementing the Hadoop stack, while a separate container based on
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Apache NiFi has been proposed to perform the ingestion tasks. A docker image
containing the proposed platform is made available for further testing®.

6 Example of Failure Detection Using LSTM

As an example to show the effectiveness of the proposed architecture, we report
the creation of a Long Short- Term Memory (LSTM) model for failure detection
of a specific railway point along the railway line Milano-Monza-Chiasso. LSTM
models are a special kind of Recurrent Neural Networks (RNN) widely employed
by both Academia and Industries for failure prediction [6]. A key aspect of RNN
is their ability to store information or cell state for use later to make new pre-
dictions. Therefore these aspects make them particularly suitable for analysis of
temporal data like analysis of sensor readings for detecting anomalies. For the
considered scenario, we use sensor reading collected from a specific switch point
positioned along the line. Data originated from the point includes measurements
of power supplied to the object, voltage, and time of movement (to move from
a normal to a reversal position or vice-versa) of types described in Sect.3 and
reported in Fig.2. Once data are ingested, we use components composing the
Processing Layer to produce useful datasets for anomalies detection using the
techniques described in the previous sections. Results of the aggregation pro-
cess produce a dataset consisting of 2443 samples, which are used as input for
training the model. The evaluation part is performed using reference data, which
represents threshold values above which failures occur (89 samples). Examples
of features used for training the model are reported in Fig.7, 8, 9.
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Fig. 7. Extracted feature used Fig. 8. Extracted feature Fig.9. Extracted feature
as model input, representing representing time of move- representing emitted volt-
power supplied to a point ment in seconds age

The autoencoder model used to make predictions learns a compressed repre-
sentation of the input data and then learns to reconstruct them again. The idea
is training the model on data not containing anomalies; therefore, the model
will likely to be able to reconstruct healthy samples. We expect that until the
model predicts healthy samples, its reconstruction error (representing the dis-
tance between the input and the reconstructed sample) is low. Whenever the
model processes data outside the norm as the ones represented by the reference

3 docker pull julio92sg/data:cloudera-hadoop-nifi.
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data, which consist of threshold values, we expect an increase in the recon-
struction error as the model was not trained to reconstruct these kinds of data.
Therefore, we use the reconstruction error as an indicator for anomaly detec-
tion. Figure 10 reports anomalies detected by trying to predict reference values.
In particular, we will see an increase of the reconstruction error on those val-
ues which are greater than a threshold of 0.25. This threshold was obtained by
computing the error loss on the training set. Therefore, we identified this value
suitable for the point considered as a case study, but it varies according to the
particular behavior of the object. For example, considering two objects having
the same characteristics (e.g., switch points) placed in different railway network
topologies, may have different behaviors; therefore, they must be analyzed using
different prediction models.
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Fig. 10. Anomalies detection on a railway switch point of railway line Milano-Monza-
Chiasso.

7 Conclusion

This paper proposes a novel architecture for big data management and analysis
of railway data. Despite big data attract railways industries, many challenges
have to be faced to enable effective big data analysis of railway data. This work
proposes a four-layer architecture for enabling data analytics of railway points.
Each layer is loosely coupled with others; therefore, it enables the integration
of diverse data processing components intra-layers and inter-layers. To show the
effectiveness of the proposed architecture, we reported the analysis of a railway
switch points using predictive models for detecting failures. Nevertheless, instead
of being task-oriented, the proposed architecture integrates different data pro-
cessing tools to perform diverse analytical tasks as real-time data analysis. A
data governance policy has been defined to deal with the variety and the com-
plexity of railway data making them easily manageable at different granularity
levels. A containerized deployment has been proposed to scale the architecture
on a cluster, increasing up its scalability, thus enabling parallel data processing.
Our architecture can also be extended according to the nature of the task to
perform. In fact, it allows practitioners to extend architectural components to
fulfil different tasks not limited to failure prediction. Moreover, in this work, we
did not consider any real-time scenario in which data must be analyzed using
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streaming techniques, but the architecture flexibility also allows to deal with
such cases. As future work, the analytical layer will be extended, proposing a
comparison of different classes of predictive algorithms to measure their accuracy
in diverse predictive maintenance tasks of a railway system. Moreover, we aim to
extend the scope of the architecture by monitoring other kinds of infrastructures,
including but not limited to power grids and highways intelligent systems.
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