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Abstract. Cancer, which involves the dysregulation of genes via multiple mech-
anisms, is unlikely to be fully explained by a single data type. By combining
different “omes”, researchers can increase the discovery of novel bio-molecular
associations with disease-related phenotypes. Investigation of functional relations
among genes associated with the same disease condition may further help to
develop more accurate disease-relevant prediction models. In this work, we present
an integrative framework called Data & Analytic Integrator (DAI), to explore
the relationship between different omics via different mathematical formulations
and algorithms. In particular, we investigate the combinatorial use of molecular
knowledge identified from omics integration methods netDx, iDRW and SSL,
by fusing the derived aggregated similarity matrices and by exploiting these in a
semi-supervised learner. The analysis workflows were applied to real-life data for
ovarian cancer and underlined the benefits of joint data and analytic integration.

Keywords: Multi-omics integration - Semi-supervised learning - Network
medicine

1 Introduction

Worldwide, ovarian cancer has the worst prognosis and highest mortality rate [1]. Cou-
pling biomarker discovery to survival traits can increase our understanding about relevant
tumor mechanisms and may provide insights into early detection strategies and/or pre-
ventive actions. The abundance of data due to advancements in high throughput sequenc-
ing technologies and carefully established data repositories are essential in this context.
Cancer biology is complex and requires systems views to unravel the complexity. One of
the Big Data cancer repositories are made available via The Cancer Genome Atlas Pro-
gram (TCGA - https://www.cancer.gov/about-nci/organization/ccg/research/structural-
genomics/tcga). It comprises multiple omics collections such as transcriptome, methy-
lation and copy number variant (CNV) data. A transcriptome refers to the full range of
messenger RNA that is produced in a particular cell or tissue type. A methylome, giving
rise to methylation data, comprises the set of all nucleic acid methylation modifications
in the genome of an organism or in a particular cell. CN'Vs are a specific type of DNA
variation referring to copies of sections of the genome, the number of which varying
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between individuals. Even though non-omics data should not be ignored, in general,
adopting multi-omics integrative strategies in cancers, like ovarian cancer, are believed
to be the road to travel by, irrespective of whether subtyping or (survival) prediction is
the aim (e.g., [2, 3]). With the vast amount of data to be mined, it is not surprising that
machine learning tools have become indispensable in the data integration field, including
multi-view methods for joint clustering of multiple data types [4], auto-encoder archi-
tectures based on omics and clinical data to study a variety of cancer-relevant traits [5],
and deep-learners for robust cancer survival prediction [3].

While performing multi-omics integration, several challenges exist, such as validat-
ing the added value of multi-omics data integrative methods over single-omics analyses,
assessing at which stage to perform the integration (e.g., early — data integration before
analytic modelling, late — integration of modelling results), and how to deal with con-
cordant and discordant relationships between multi-omics datasets in cancers. Here, we
explore the performance of a novel combined omics data and analytics integrator (DAI)
and compare it to state-of-the-art multi-omics data integrative approaches. We define
performance in terms of optimized prediction or classification of ovarian cancer patients
into short-term (less than 3 years) or long-term survival (at least 3 years). The catego-
rization based on the threshold of 3 years of survival was inspired by [6]. We consider 3
omics data types: genomic (CNVs), epigenomic (methylation) and transcriptomic (gene
expression). Notably, epigenomics refers to “epi”’-genetic (“epi” from Greek: on top of)
modifications that affect gene expression regulation but does not change the genomic
sequence itself.

The paper is organized as follows. In Sect. 2, data overview and preparation steps are
outlined. Analytical workflows are detailed in Sect. 3. Results are presented in Sect. 4.
A discussion and closing remarks are given in Sect. 5.

2 Data Overview and Preparation

CNYV, methylation and gene expression data for ovarian cancer were retrieved from
the TCGA data portal via TCGA2STAT [7] software. In particular, we first discarded
patients who did not have the 3 omics data types available. We then used the OMICSBind
function TCGA2STAT to merge the available data and subsequently performed sample
filtration following [8]. OMICSBind returns a combined data matrix for samples that are
common to two types of molecular input data. Thereafter, we discarded patients having
“vital status” as “dead” and “days to death” as “non-positive” or “NA”, and we discarded
patients having “vital status” as “alive” and “days to last follow-up” as “non-positive” or
“NA” [8]. Next, we created two groups: ST (<3 years of survival) and LT (>3 years of
survival). Based on the above filtration criteria, LT/ST status was available for all patients
included in this study (i.e. no missing labels). For each data type, we eliminated genes
with a missing rate across all samples >20%. Remaining missing omics data entries
were imputed with the KNNImpute function in R. In particular, each missing feature
for a sample was replaced by a weighted average of the corresponding features from
k nearest neighbors of that sample, weighted by the distance of the neighbors [9]. The
resulting dataset for integrative analyses comprised 100 ST and 130 LT survivors, with
information available on 22618 CNVs, 12644 methylation and 12043 gene expression
features.
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3 Analytical Workflows

As the aim is to optimize classification/prediction of LT/ST survival status and to exploit
the integrated information of 3 omics datasets, we used the following promising inte-
grative approaches as starting point: iDRW [10], netDx [11], and SSL [6], with default
options, unless specified otherwise. Each of these methods adopt different paths towards
generating omics features, that is the basis to assess similarities between patients. Apart
from applying the original work-flows, patient-similarity matrices obtained from each
approach were fused (when applicable) to create a single matrix per method, which was
submitted to a graph-based learning method as in [6], so as to classify patients into LT/ST
survival groups (Fig. 1). More details are given in the following paragraphs.
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Fig. 1. DAI workflow to create data and analytics integrated patient similarity networks using
adaptions of the machine learning approaches iDRW, netDx and SSL (see text). We employed
molecular information on expression (E), methylation (M) and CNV (C) data and created new
features on the basis of which to assess patient similarity. For iDRW an integrated omics network
was used to derive pathway activity scores as new features. In netDx, features were pathway-
genes and omics-specific patient similarity networks were derived for each pathway (4 are shown).
Linked to SSL, original gene measurements (data-driven) and specific knowledge-based gene sets
(knowledge-driven) features that carry information about disease relevance and protein networks
were used. Developed patient similarity networks were combined into a method-specific single
network. Principles of similarity network fusion were used to generate an analytics integrated
patient similarity network, which served as input to a semi-supervised learning method to predict
LT/ST survival state.

3.1 Integrative Directed Random Walk-Based Workflow (IDRW) [10]

In this approach gene-gene networks are built for each omics dataset, supported by KEGG
pathway information (https://www.genome.jp/kegg/), from which an integrated directed
network is derived. Then a random walk is performed on this integrated network. Signifi-
cant genes in the integrated gene-gene networks and their weights from the DRW method
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contribute to integrated pathway-activity scores [10]. For our purposes we used a cus-
tomized version from the authors to handle >2 omics. Out of 327, only the six significant
pathways (T-test of pathway-activity across LT/ST survivor classes) were kept. Next, in
line with the original iDRW workflow, a regression model in R was applied that classified
the samples into ST and LT classes. As in the current study the focus lies on integration
and not on variations of prediction model paradigms, we replaced the logistic regression
model by a graph-based semi-supervised learner that can be applied with missing classes
and with multiple input data types (i.e., iDRW + SSL). We thus converted the patient sim-
ilarity matrix W;prw to a Laplacian L;prw and obtained final class predictions by solving
(I + pLiprw) ™! y, withy encoded as (—1, 1) corresponding to (ST survival, LT survival)
and p a trade-off parameter, following the single-graph based semi-supervised learner of
[6]. Note that in the presence of a missing survival status for a patient, it would suffice to
encode the corresponding response y as 0.

3.2 Supervised Patient Classification Algorithm via Patient Similarity Networks
(netDx) [11]

The approach constructs patient-patient similarity networks for each gene set of interest
per data types. As before, we used CNV, methylation and gene expression data. This is
followed by a network selection (i.e. feature selection) step based on the netDx scoring
procedure. Here, netDx score for each feature (i.e. pathway) indicates the number of
times that feature was assigned a positive score in a query during resampling process.
Scoring process was repeated for each class (ST and LT). At end, the best network is one
for which edges only exist between individuals of the same class (e.g. LT survivor) and
not the other (e.g. ST survivor). An overall patient similarity network is subsequently
created by integrating feature-selected networks (patient similarity matrix Wj,e;py). The
original netDx strategy to predict survival status was compared to an adaption (netDX
+ SSL) using the semi-supervised learner as before with predicted classes obtained by
solving (I + ULnerny) ™! ¥ (Lnerpy: the graph Laplacian linked to Wy,epy).

3.3 Graph-Based Semi-supervised Learning (SSL) [6]

Also here, the approach is based on creating patient similarity matrices for each omics
data type separately. However, the features used to assess patient-to-patient similarity
is different from the previous approaches. In particular, pre-defined gene sets as “ge-
nomic knowledge” were downloaded from the Molecular Signatures Database (MSigDB
7.0).32[12]: chemical and genetic perturbations and canonical pathways (C2), motif (C3)
and cancer gene sets (C4), gene ontology (C5), and immunological signatures (C7),
involving 5501, 831, 858, 9996 and 4872 gene sets, respectively. We also collected a
list of 2067 “seed genes” from the OCGene database, appended with genes from Papp
et al. [13], leading to a unique seed gene list of 2072 genes. These were submitted to
ToppGenet [14] to prioritize neighboring genes of the seeds based on functional simi-
larity to the seeds or topological features in a protein-protein interaction network. The
top 1% prioritized genes (1600 genes) were used to refine the MSigDB-derived “ge-
nomic knowledge” gene sets (number of genes in C2: 3132, C3: 568, C4: 449, C5: 5593,
C7: 2711). Gene measurements per patient were subsequently averaged within each
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genomic knowledge gene set and were used to create “knowledge-driven” patient simi-
larity matrices We2_exps Wea_cnvs Wea_meth Wes_exps Wes_envs We3_meth Wea_exps Wed_envs
Wed_meth> Wes_exp> Wes_envs Wes_meths We_exps We_cnv> and Weo_erh- This is in contrast
to using all original gene measurements, which would lead to “data-driven” similarity
matrices Wpp r, Wpp_cnv, Wpp_mers, for unfiltered measurements of gene expres-
sion, CNV and methylation, respectively. For each gene set of interest, the weights o
for these matrices were estimated so as to optimize LT/ST survival class prediction as in

-1

_ K K

the minimization problem 7/y” <I + > oszk> ¥, Y ar < p (K: number of graphs
k=1 k

= 3; Ly: Laplacian corresponding to graph k; y: class response vector). The final class

K=3
predictions were obtained by (1 + > otkLk> y.
k=1

3.4 Data and Analytics Integrator (DAI)

We started by adapting netDx as follows. We obtained a single similarity matrix by
fusing ST and LT specific similarity matrices. In particular, multiple pathway profiles
for ST patients were integrated while adopting Similarity Network Fusion (SNF) ana-
Iytics [15], leading to Wye:px—st, and similar for LT patients, leading to an aggregated
patient similarity matrix W,.;py—r7. The fused matrix was denoted by W,,.;p, s, where
the underscore “S” now refers to the pooled LT and ST survivors. This matrix was sub-
sequently converted to a Laplacian Ly.;px_s for use in the semi-supervised learner of [6],
as explained before.

Then SSL was adapted to generate a single patient similarity matrix by first retriev-
ing the software’s weights «; for each data type i (expression, methylation, and CNV).
Second, we normalized the retained weights (i.e. new weights sum to 1) to form an inte-
grated patient similarity matrix Wssy_adapred = > a;M;, with Mi denoting the patient

similarity matrix derived from omics data type i. lLastly, we built a shell around adap-
tations of iDRW, netDx and SSL integrating all three matrices Wippw, Wyenx s and
WSsSL_adapred - In particular, we SNF-fused the three matrices and converted the resulting
data and analytics aggregated patient similarity matrix Wp4; to a Laplacian Lp4;. Class
predictions were obtained by solving (I + /LLDA])—I y, with y encoded as (—1, 1, 0) cor-
responding to (ST survivor, LT survivor, unknown survival state), and with w a trade-off
parameter between predictions close to the given label and predictions not too different
from those for graph-adjacent nodes. DAI (Fig. 1) also allows the option to apply the
multi-graph based SSL model of [6] on Liprw , Luerpx and Lgsy, directly, instead of first
fusing patient similarity matrices and second applying a single-graph semi-supervised
learner. Key (dis-)similarities between DAI and iRDW, netDx and SSL in their original
forms are summarized in Table 1.
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Table 1. Highlighted (dis-)similarities between DAI and original implementations of iDRW,
netDx and SSL.

Highlight SSL netDx iDRW DAI

Input data Data-driven or Data driven Data driven | Knowledge-driven

(Omics based) knowledge-driven

Weighted data Yes No No Yes

accommodated

Feature selection | No additional Identity Identify No additional
feature selection | omics-specific genes feature selection

features leading to | contributing
pathway-specific | to pathway

profiles activity score
Output includes | Yes Yes No Yes
patient similarity
matrix
Prediction model | Yes No No Yes

via multi/single
graph-based
semi-supervised
learning

4 Results

4.1 Single Omics Analyses

We first analyzed each omics data type separately, in a data-driven and knowledge-
drive fashion, as explained in Sect. 3 (SSL). For the ovarian samples, Wc2_cnv, We3_cnvs
Wea_cnvs Wes_eny and Weg_eny, typically gave rise to the highest AUC values (Fig. 2).
Overall, knowledge-based SSL outperformed data-driven SSL. Single graph-based SSL
based on patient similarity for C2, C3, C4, C5, and C7 typically increased AUC estimates
compared to data-driven approaches.

4.2 Multi Omics Integration

Next, based on 3-omics integration with iDRW, we identified numerous significant genes.
Using the original workflow of iDRW, a total number of 1145, 2544, and 1846 genes
from CNV, methylation, and expression omics, respectively, were found to be uniquely
significant (unadjusted p value < 0.05). We mapped all these genes on their respective
chromosomes (Fig. 3A: circular plot). Only 32 were common (ABCA2, ACSL3, AKAPI,
ALPI, AP3B2, APTX, ARPC2, CD79B, CLTC, COLECI12, COX11, CSHLI, CYB561,
DDX42, EXOSC9, FAmS3E, HOXBY, INTS9, LEPROTLI, mPHOSPH10, NFE2LI,
NR2F2, OSBPL7, PmL, RPP25, SNF8, SNRPG, TIA1, TIP1, TUBDI, UBACI, ZNF652).
Characteristic for these common genes was that they appeared to be highly co-expressed
(Fig. 3B). iDRW’s multi-omics view highlighted 6 statistically significant pathways,
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Fig. 3. iDRW identified significant genes. A. Circos plot: Chromosomal distribution of signifi-
cant genes unique to either CNV, methylation, and expression omics. The outer circle represents
the chromosomal bands. First inner circles represent the distribution of omics specific (inward
direction: CNV, methylation, and expression) genes. The red circle (i.e. fourth layer) encapsulates
significant genes common across three omics after integration; B. Gene-expression network of 32
significant genes, common to all considered ovarian omics data types. (Color figure online)

implying that their corresponding pathway scores were significantly different between
LT/ST survivors. The AUC of the original iDRW using a logistic regression model was
estimated to be 0.32, which is lower than AUC = 0.51 with our adapted version using
Wiprw and predictions based on single graph semi-supervised learning.

Application of netDx to ovarian patient samples showed a higher number of KEGG
pathways crossing the netDx threshold criterion for LT/ST survival prediction (Fig. 4).
These pathways profiles were converted into patient specific similarity matrices to derive
group specific Wyepx st and Wyepx 17 weight matrices (see also Sect. 3).

Furthermore, the original netDx implementation gave AUC = 0.50 (Fig. 5). The
adapted version with SNF fused similarity matrix W,¢p, s submitted to single-graph
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Fig. 5. Prediction performance of multiple data integrative analysis workflows and DAL
Prediction performance is measured by AUC. Legend: iDRW + SSL uses single-graph SSL to
the integrated pathway-activity based patient similarity matrix; netDx + SSL applies multi-graph
SSL to a similarity network fused matrix; SSL_Single_Omics (original) exploits a single-omics
based knowledge-driven (pathways) patient similarity matrix and single-graph SSL, giving rise
to an omics-specific AUC; AUCs are averaged across multi-omics;; SSL_Multi_Omics (original)
employs knowledge-driven (pathways) patient similarity matrices across multiple omics combined
with multi-graph SSL; DAI combines fusion of Wiprw , Wyerpx_s and Wssy, adaprea With single
graph-based SSL. DAT* differs from DAI in that Wiprw, Wnerpx_s and Wssr, adaprea are not
fused but combined with multip-graph based SSL.

SSL [6] improved the performance (AUC = 0.60). Multi-omics profiles were integrated
across biological knowledge to increase prediction with SSL over a single omics app-
roach. By integration of Weo_exp, Wea_env, and Wep e, we achieved an AUC of 0.52.
The predication accuracies were quite similar for other sources of biological knowledge.
In particular, integration of We3_exp, We3_cnvs We3_mem, led to AUC = 0.51; integration
of Wea_exps Wea_cnvs Wea_meths Wes_exps Wes_envs Wes_methsWeT_exps WeT_cnvs a0 Wer_menn
resulted in AUC prediction accuracies of 0.51, 0.55, and 0.53, respectively.

The current test version of DAI can be seen as a simple wrapper approach around
multiple data integrative analytics to increase class prediction. Rather than submitting
WiprRw » WhetDx_s, WSSL_adaprea t0 a multiple graph-based semi-supervised learner, we
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primarily focused on obtaining a fused similarity network and single graph-based learn-
ing. With this setting, DAI’s estimated AUC of 0.51 clearly outperformed the original
iDRW, yet showed comparable performance to the original implementations of netDx
and SSL. Among the original implementations of iDRW, netDx and SSL multi-omics
prediction strategies, IDRW was the worst performer (AUC = 0.32). Interestingly, our
adapted version of netDx (i.e. adapting the prediction model itself) outperformed all
other considered strategies, including iDRW + SSL and DAI that performed similarly
to the original SSL multi-omics integrative method (Fig. 5). To investigate whether there
was an added value of multiple over single graph-based learning, combined with netDX
and learning over 19 graphs, a smaller AUC was obtained compared to netDx + SSL
(not shown), but DATI’s performance (involving 3 graphs) increased to give the highest
AUC (0.62) among all considered approaches (Fig. 5 — DAI*).

5 Discussion and Final Remarks

We introduced a Data and Analytic Integrator (DAI) that attempts to improve disease
class prediction accuracy by integrating multi-omics data and analytics in various ways.
The current workflow integrates 3 types of omics data, being CNV, methylation and
gene expression data, and 3 analytic frameworks, represented by iDRW, netDx and SSL.
Each of the analytics approaches derives information from multi-omics in a unique way
and thus maximize their potential of providing complementary information towards
class predication. In DAI, extracted information from each approach is translated into
a single patient similarity matrix. The matrices for each of the analytic approaches are
then combined. The current implementation of DAI uses Similarity Network Fusion to
create an aggregated matrix but also allows using the individual matrices directly into
a graph-based semi-supervised learner to predict class membership. The latter seems to
be advantageous in terms of AUC performance, especially when the number of graphs
for learning is relatively small. More work is needed though to investigate the impact of
aggregating highly heterogeneous analytics.

As disease-associated genes are helpful in generating hypotheses about disease
mechanisms, we investigated the utility of filtered gene sets, by making explicit use
of earlier reported disease-gene associations. Little added value was achieved by doing
so, compared to using unfiltered gene sets, except for giving rise to reduced computa-
tion times. One explanation may lie in the fact that association models and prediction
models have different aims and evaluation criteria. Pathways highlighted by DAI (in par-
ticular RANBP2 pathways; SMARCA4 pathway; NOL7 pathways; diabetes pathways)
were found to be implicated in ovarian, breast, cervical, and neuroblastoma cancer types
[16-18].

In summary, our pilot results have shown that the exploitation of knowledge-based
gene sets can substantially increase prediction performance. Furthermore, letting the
data speak for themselves, in that the contribution of multiple omics data types in pre-
diction models is estimated from the data, seems to boost prediction performance, but
cannot receive all the credits. For instance, simply changing a logistic regression pre-
diction model for a predictor based on a single aggregated patient similarity matrix
was sufficient to create a top performer. Also, including a poor performer in similarity
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network fusion of three patient similarity matrices, based on multi-omics view from
3 analytic approaches, did not work decremental. Hence, future work will include the
further exploitation of knowledge-driven data in DAI in combination with more elabo-
rate non-linear aggregation of method-specific patient similarity matrices that estimate
the relative contribution of each such matrix with the objective to maximize prediction
accuracy.
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