®

Check for
updates

An Introduction of FD-Complete
Constraints

Sven Loffler®™) | Ke Liu, and Petra Hofstedt

Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
Sven.Loeffler@b-tu.de, Hofstedt@b-tu.de

Abstract. The performance of solving a constraint problem can often be
improved by converting a subproblem into a single constraint (for exam-
ple into a regular membership constraint or a table constraint). In the
past, it stood out, that specialist constraint solvers (like simplex solver
or SAT solver) outperform general constraint solvers, for the problems
they can handle. The disadvantage of such specialist constraint solvers is
that they can handle only a small subset of problems with special limita-
tions to the domains of the variables and/or to the allowed constraints.
In this paper we introduce the concept of fd-complete constraints and fd-
complete constraint satisfaction problems, which allow combining both
previous approaches. More accurately, we convert general constraint prob-
lems into problems which use only one, respectively one kind of constraint.
The goal is it to interpret and solve the converted constraint problems
with specialist solvers, which can solve the transformed constraint prob-
lems faster than the original solver the original constraint problems.

Keywords: Constraint programming + CSP - Refinement -
Optimizations + Regular membership constraint - Regular CSPs - Table
constraint + FD-completeness

1 Introduction

Constraint programming (CP) is a powerful method to model and solve NP-
complete problems in a declarative way. Typical research problems in CP are
among others rostering, graph coloring, optimization, resource management,
planning, scheduling and satisfiability (SAT) problems [12].

Because the search space of constraint satisfaction problems (CSPs) and
constraint satisfaction optimization problems (CSOPs or COPs) is immensely
big and the solution process often needs an extremely high amount of time we
are always interested in improving the solution process. There are various ways
to describe a CSP in practice and consequently, the problem can be modeled by
different combinations of constraints, which results in the differences in resolution
speed and behavior.

In particular, there is the possibility to represent a CSP with only one con-
straint or with constraints, which are of the same kind. Inspired by the concept
of np-complete problems, we introduce the definition of fd-complete constraints.
© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020

I. Maglogiannis et al. (Eds.): ATAI 2020, IFIP AICT 584, pp. 27-38, 2020.
https://doi.org/10.1007/978-3-030-49186-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49186-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-49186-4_3

28 S. Loffler et al.

A finite domain complete constraint (fd-complete constraint) is a finite
domain constraint which can represent every other fd constraint. Thus an fd-
complete constraint can be used to replace each other constraint in a CSP.

Possible representatives of fd-complete constraints are the table constraint
or the reqular membership constraint. Previous researches show how constraints
can be transformed into table [2] and regular membership [8-11] constraints.
These publications also showed, that already the transformations into a regular
membership or table constraint can improve the solving speed of a CSP.

In this paper, we want to go a step further. We not only transform parts of
a CSP into an fd-complete constraint, we transform the whole CSP into one,
which contains only a set (of the same kind) of fd-complete constraints. Thus
we have the possibility to use a solver, solver settings or search strategies which
are optimized for the used constraints.

The rest of this paper is structured as follows. In Sect.2, we explain the
necessary definitions of constraint programming. In Sect. 3, we introduce our
new concept of fd-complete constraint satisfaction problem. Section 4 shows the
transformation of a regular CSP into a binary variable scalar CSP. In Sect. 5, a
rostering example is given to underline the benefit of finite domain CSPs. Finally,
Sect. 6 draws a conclusion and proposes research directions in the future.

Remark 1: We use the notation of a regular constraint as a synonym for regular
membership respectively reqular language membership constraint.

2 Preliminaries

In this section we introduce some basic definitions and concepts of constraint
programming (CP) and show the relevant constraints, which are used in the rest
of the paper. We consider CSPs, which are defined in the following way.

A constraint satisfaction problem (CSP) is defined as a 3-tuple P = (X, D, ()
where X = {x1,22,...,2,} is a set of variables, D = {D;, Ds,..., D,,} is a set
of finite domains where D; is the domain of z; and C = {c1,¢a,...,¢n} is a set
of constraints covering between one and all variables of X [16].

A constraint ¢; = (X;, R;) is a relation R;, which is defined over a set of
variables X; C X [4].

The scope of a constraint ¢; = (X, R;) indicates the set of variables, which
is covered by the constraint ¢;: scope(c;) = X; [4].

The relation R of a constraint ¢ = (X, R) is more clearly a subset of the
Cartesian product of the domain values D; X ... X D,, of the corresponding vari-
ables X = {z1,...,z,}. Examples for constraints are amongst other things ¢; =
(.5}, (@ > y)).c2 = {R,U. I}, (R = UJI)) or e3 = ({A, B,C}. (AN B = O)).
For the reason that we only consider finite domains, it is always possible to enu-
merate all allowed tuples of a constraint, which we will use for the transformation
into other constraints like regular or table constraints.

Based on the definition above, an fd-complete constraint can substitute all
constraints C of a given CSP P = (X, D, C). For the reason that a CSP can only

FD-Complete Constraints 29

have a limited number of solutions c,,;, because we have a limited number of
variables n and a limited number of values inside of the domains of the variables,
it is possible to enumerate all of the solutions of a CSP.

It follows a list of definitions of the relevant constraints for this paper. Let a
CSP P = (X, D,C) and a subset X’ of variables X of the CSP P be given.

The scalar constraint guarantees for an ordered subset of variables X’ =
{z1,...,2,} C X, a vector of integers v = (v, ..., v,), a relation R and another
variable z,, € X that the scalar product of the variables X’ with the vector v is
in relation R to x,.

n
scalar(X', v, R, 2,.) = (Z x; % v;) R
i=1

Like we already figured out, the table and the reqular constraints are repre-
sentatives of fd-complete constraints. It follows a short description of these both
constraints.

The table constraint is one of the most frequently used constraints in practice.
For an ordered subset of variables X’ = {x1,...,2,} C X, a positive (negative)
table constraint defines that any solution of the CSP P must (not) be explicitly
assigned to a tuple ¢ of a given tuple list 7', which consists the allowed (disal-
lowed) combinations of values for X’. For a given list of tuples T, we can state
the positive table constraint as:

table(X',T) = {(z1,...,2n) | 21 € D1,..., 2, € D} C T

The regular constraint and its propagation [5,13,14] is based on deterministic
finite automatons (DFAs) [7]. Thus, we briefly review the notion of a determin-
istic finite automaton (DFA) before we define the regular constraint.

A deterministic finite automaton (DFA) is a quintuple M = (Q, X, 4, qo,
F), where @ is a finite set of states, X is the finite input alphabet, § is a
transformation function Q x X' — @, qo € @ is the initial state, and F C @
is the set of final or accepting states. A word w € X* is accepted by M, if
the corresponding DFA M with the input w stops in a final state f € F. All
accepting words of the DFA M can be summarized to the accepting language
L(M) of the DFA M [7].

The regular constraint is another of the most common constraints in practice.
Let M = (Q,X,0,q0, F) be a DFA, let X = {z1,...,z,} be an ordered set of
variables with domains D = {D1,Ds,...,D,}, Vi € {1,...,n} : D; C X. The
regular constraint is defined as [6]:

regular(X, M) =
{(wlv" '7wn) | Vi e {17"'7n}3w’i € Dia (wle wn) € L(M)}
So the concatenation of the values v; of the variables z;Vi € {1,...,n} must

be accepted by the automaton M. The input DFA M of a regular constraint is
internally transformed into a directed acyclic graph (DAG) M’ [14].

30 S. Loffler et al.

We define a directed acyclic graph (DAG) as a DFA M = (Q, X, 0, Ginitiai,
F), where the states ¢ in @ are partitioned into levels @ = {Qo, ..., Qn| Qi
={q¢i1, G2, ...} | Vi € {1,...,n}}, the initial state go ¢ is the only element of Qo,
the final states are members of the last level of states (F' = @,,), and transitions
are only allowed from a state g;; in level @); to a state g; in level @y, where
t > .

For our use, we only allow transitions from a state g; ; in level @; to a state
Qi+1,% in level Q;41. We use the notation g; ; U Git1,ks if the state g; ; of level
Q; have a transition with value v to the state g;+1 5 of level Q;41. A solution of
a regular constraint is a path from the initial state go o to the final state g, o
with values v1 € D1,...,0, € Dy, (0,0 V1 G151 V2 - Un Gnyo)-

Based on the definition of the regular constraint, we use the notion of a
regular constraint satisfaction problem, and analogously the notation of a table
CSP:

A regular constraint satisfaction problem (regular CSP) is defined as a 3-
tuple P = (X, D, C), where X = {x1,22,...,2,} is a set of variables, D = { Dy,
Dy, ..., D,} is a set of finite domains where D; is the domain of z; and C =
{c1,¢2,...,¢m} is a set of regular constraints over variables of X.

A table constraint satisfaction problem (table CSP) is defined as a 3-tuple
P = (X,D,C), where X = {z1,22,...,2,} is a set of variables, D = {Djy,
Ds, ..., D,} is a set of finite domains where D; is the domain of z; and C =
{c1,¢2,...,cm} is a set of table constraints over variables of X.

3 FD-Complete CSPs

After we defined fd-complete constraints and showed two examples (the table
and the regular constraint), we will extend this concept a little bit more. The
possibility to substitute a constraint or a subset of constraints of a CSP with an
fd-complete constraint can lead to a speed up in the solution process [2,8-11].
The problem is that it is mostly not useful to transform a whole CSP into another
one with only one fd-complete constraint, which substitutes all constraints of
the original CSP. In most cases, the transformation process will be more time
consuming than solving the original problem.

Mostly, we can reduce this slow-down significantly and reach a speed-up, if
we substitute only some of the constraints ¢; € C of a given CSP P = (X, D, C)
with semantically equivalent fd-complete constraints clfd € Cf and combine
them together (to constraints cgf*fd € C'). Finding the best subset of con-
straints, which should be transformed and combined, depends on several things
like the needed time for transformation or the size of the data structures of the
transformed or the combined constraints.

Often, a CSP P’ = (X, D, C"), which contains some of the original constraints

¢; € C and some of the combined constraints c;?*fd, which are semantically equiv-

alent to a subset of the fd-complete constraints C9, has the fastest solution
process.

FD-Complete Constraints 31

In contrast to this, we will explain why it can be useful to create a CSP
P = (X,D,C) with only singleton ¢{ and combined fd-complete constraints
c?*fd, even though the propagation of the original constraint c; is possibly faster
than the propagation of the corresponding fd-complete constraint cﬁd.

The advantage is, that we may be able to (create and) use specialist constraint
solvers for CSPs which have only constraints of a special type (a popular example
is the simplex algorithm, which allows only linear optimization under linear side
conditions). Furthermore, we can create and use more efficient search strategies
and solver settings if the used constraints have the same shape.

Also interesting for future researches is, that a CSP P with only one kind of
constraint may be able to be transformed easier into other models for example
a SAT model and make it possibly simpler to transfer a constraint problem of a
given language into another one. The last idea is for example used to translate
MiniZinc [18] models into other models (like Gecode [17], Google OR-Tools [1]
or Choco [15] models). Thus, many constraints, which were entered in MiniZinc,
will be translated into the table constraint.

Based on the potential benefit of CSPs, which contain only fd-complete con-
straints, we created the definition of an fd-complete CSP.

A finite domain complete constraint satisfaction problem (fd-complete CSP)
is a CSP P = (X, D, C) which contains only fd-complete constraints of the same
kind.

Examples for an fd-complete CSP are the regular CSP [9] or the table CSP.
We call fd-complete CSPs with n different kinds of constraints fd-complete CSPs
of degree n. We differentiate between two kinds of fd-complete CSPs. On the
one hand we have directly convertible fd-complete CSPs like table or regular
CSPs. Every general CSP P = (X, D,(C) can be transformed into a directly
convertible fd-complete CSP Pde-fd = (X D C*™) by transformation of each
single constraint ¢ € C to the corresponding fd-complete constraint ¢ € C*. In
particular, it is not necessary to transform the variables X or domains D of the
original CSP P.

On the other hand, there are indirectly convertible fd-complete CSPs
picfd — (X' D’ C'), where the variables and their domains must be trans-
formed additionally to the constraints. We present a representative example of
this group in the next section.

4 The Binary Scalar CSP as a Representative of
FD-Complete CSPs

In this Section, we will introduce a description of how a general CSP P can
be transformed into a CSP PP¥*°, which contains only binary variables and
scalar constraints. Using only binary variables allows us the use of the very
good researched SAT solvers, for solving PPV*¢. Furthermore, for the reason that
the CSP PP*¢ only contains scalar constraints, we expect that a possibly more
accurate and more specialized solver can be created to solve it.

32 S. Loffler et al.

Traditionally, an input CSP P for a SAT solver contains binary variables
and logic constraints like and, or, implication, negation etc. It is also possible
to transform a regular constraint into a set of logic constraints, but we will see,
that the transformation into a set of scalar constraints is more compact. Thus,
we expect that a specialized solver for scalar constraints over binary variables
works faster than a usual SAT solver.

The transformation from a general CSP P to a binary variable scalar CSP
Pb¥s¢ can happen in two steps.

Step one: transforming the CSP P = (X, D,C) into a regular CSP P*¢¢ =
(X, D, C"8), which contains the same variables X, the same domains D, but
only regular constraints C™® instead of the original constraints C'. For example,
it is possible to transform each original constraint ¢ € C into a regular constraint
c*°8 € C*8. The algorithms and transformations presented in [8-11] can be used
for this step.

Step two: transform the regular CSP P& = (X, D, C"®8) into a binary vari-
able scalar CSP PPs¢ = (XP DP Cs¢). We consider a regular CSP P& =
(X,D,C"8) with n variables X = {x1,...,2,}, the associated finite domains
D = {Ds,...,D,} and m regular constraints C™¢ = {c|*%, ..., !¢} and trans-
form it into a binary variable scalar CSP PPVs¢ = (XP DP () with k variables
XP = {z%,...,2%}, which have all the domain {0,1} = D} = ... = DP, and I
scalar constraints C*¢ = {¢{°, ..., ¢{°}.

There are two kinds of variables in XP. The first kind contains for each
domain value of each variable of the regular CSP P*°8, respectively the original
CSP P, a binary variable ziji e {l,...,n},j € {1,...,|D;|}. If such a variable
xl?, ;€ xP of PPV is set to 1, it represents that the corresponding variable x; € X
in the regular CSP P**¢ is set to the value d;, where d; is the j-th value of D,
otherwise, if a variable a:]f"j € XP of PP¥s¢ is set to 0, it represents that the
corresponding variable z; € X in the regular CSP P& cannot be set to the
value d;. Thus transform the original search space into a binary variable search
space.

The second kind of variables represents the states of the underlying DAGs
of the regular constraints C™8. Each regular constraint ¢ ® € C™® has a DAG
My}, which represents the regular expression of the regular constraint. For each
state ¢}'; of each DAG My, a binary variable 7' ; represents if the state ¢}'; is
on a solution path (z?a is set to one) or not (:z:?j is set to 0).

After defining the variables and the domains (all {0,1}) we need to define our
constraints, which must be semantically equivalent to the constraints C™#& and
realize that each binary variable set {x?’l, e J:?‘ Dil}’ which represents one orig-
inal variable x; € X, contains only one variable which is instantiated to 1. This
guarantees that we can directly conclude a solution of the original CSP P from a
solution of PPV*¢. Doing this, we have for each binary variable set {x?l, e x2|D7‘, ‘}

a scalar constraint, which set the number of 1s in {x?’l’”"x})‘Dil} to one
(see Eq. 1).

Vie{l,..,n}: scalar({xﬁl, ...,x?lei‘}, {1,...,1},=,1) (1)

FD-Complete Constraints 33

Analogously, we have constraints for each set of variables z! i.j» which rep-
resents each one level ¢ of the DAG Mj,. The path of each solution of a DAG
contains only one state qw» of each level ¢. Thus, we can define the following
scalar constraints (see Eq. 2).

Vi € {0,....,n},h € {1,...,|C™8|}: scalar({m L1 =1) (2)

To represent a DAG Mj,, we need to describe the paths of the solutions of
the DAG. The initial state ¢f, and the final state ¢y, , are mandatory parts of
a solution path. Thus, the variables 37(})1,0 and xg’o must be set to 1. A state
qzh’j3 of a DAG M, is part of a solution path, if one of its predecessor states
qlh_Lj1 and one of the values d;_1 j, € D;—1 of the edge between this both states
is part of the solution path. This can be represented by the logical formula
Qi1 Ndi—1,j, — qlhj See Fig. 1 for some example path relations.

Applied to our variable system it concludes the formula z —

i—1,51 A xl 1,52
b i.j,- Furthermore, this logical formula can be represented as scalar constraint
,

(see Eq. 3).
Vi S {L -~-an}ah € {17 sy |Crcg|}aj17j27j37

where ¢! ; 1 di—sz qugis an edge in My, : (3)

scalar({zh_ 110 Tie 1’J2’ ”3} {1,1,-2},<,1)
AP | — 2P with the statement

The equivalence of the statement x| 1 o i,ja
in Eq.3 can be easily proved with the truth table shown in Table 1. The result
of the logical formula is always true if the scalar product is smaller or equal to
one, otherwise it is false.

States QQ;—1 Ti—1 States @

di—1,3
Path relations

Gi—11 ANdi—13 — Qi
Qi—11 Ndi—1,1 — Qi2
Gi-11 Ndi—1,2 — Gi2
Gi—12 N Ndi—1,1 — Gi2
qi—1,3Ndi—1,3 — Qi2
Gi—1,3 N Ndi—1,1 — Gi,3

di—1,1,di—1,2

Fig. 1. Example path relations for an excerpt of a DAG.

34 S. Loffler et al.

Table 1. The truth table to show the equivalence of x?,lm A x?,lw — x5, and
h b h
scalar({@i_1 j,, T7—1,4ys Tigs 1> 11,1, =2}, <, 1),
h b h h b h
Tii1,gy NTis1jy = Tigy Lawiygy H1x2ia, — 2%z, <1

0<1|1+x141x1-2%x1<1
2<1|1*%141x1-2%x0<1
—1<1/1x1+1x0-2%x1<1
1<1/1%x1+1x0—-2%x0<1
—1<1/1%x0+1%x1—-2%x1<1
1<1/1%x0+1%x1—-2%x0<1
—2<1/1x0+1x0—-2%x1<1
0<1/1x0+1x0—-2%x0<1

True A True — True True

True AN True — False | False
True A False — True | True

True A False — False | True
False AN True — True | True
False AN True — False | True
False A\ False — True | True
False \ False — False | True

KR U G IS R I O I

Thus, we have everything we need to represent the regular CSP Pr®® =
(X, D,C"®) as a binary variable scalar CSP PPV*¢ = (X, Db C*°), with

X' ={a}; |Vie{l,...,n},j€{1,...,|Di|}}
U{xﬁj | Vh e {1,...,|C™8|},i € {0,...,n},j € {1,...,|QM}}
D® ={D; ={0,1} | Vi € {1,...,|X"|}}
C* = {scalar({x?,l, ”.’:EE)JDil}’ {1,..,1},=,1) | Vie {1,...,n}}
U {scalar({x?’*}, {1,..,1},=,1) | Vi € {0,...,n}, h € {1,...,|C™®|}}
U {scalar({x?_lyjl,xE_LjQ,x?J-S}, {1,1,-2},<, 1)} |
Vi€ {17 "'7n}7h € {1’) |Creg|}7j17j27j3aw}zere
qzhfl’jl di—1,, qlhﬂ»3 isanedgein My, }
-

Remark 2: The constraints in Eq.1 and 2 are the reason, why we use scalar
constraints instead of logic constraints, because such count constraints are just
not compactly representable as logic constraints, but very simple as scalar con-
straints.

Remark 3: In the implementation we did some optimizations like merging dif-
ferent scalar constraints, which represent path relations between the same states
(¢i-1,1+Gi,js), but with & different values (d;_1,j,,,...,di—1,j,,) to one single
scalar constraint.

5 Experimental Results

For demonstrating the benefit of fd-complete constraints and fd-complete CSPs,
we use a rostering problem close to the presented one in Section 4.1 in [9]. Briefly
summarized, consider the rostering problem four shifts (0=day off, 1=early,

FD-Complete Constraints 35

2 =late, 3=night shift), m employees and w weeks. Let n be the number of
days (n = w* 7). The goal is it to find a valid shift assignment for all employees,
such that the following four restrictions are satisfied:

R;: At each Saturday is the same shift as at the following Sunday.

Rs: A forward rotating system is used, so the following shift combinations are
not allowed for two days in a row: (late, early), (night, early), (night, late).

R3: There is a minimum number of two and a maximum number of four (for
night shifts 3) consecutive days, with the same shift.

Ry4: Between | 7] and [%] + 1 employees are needed for each shift and day.

The given restrictions cover some but not all German laws for shift planning,
but it is possible to extend the problem for individual use cases. The difference
to [9] is that we changed in restriction R4 the upper bound from [{] to | 4] +1
to guarantee that every problem has at least one solution.

As typical for many rostering problems, we just consider the plan of one
person P; and assume that the plan for further staff is received by rotating
P;s plan by one week, two weeks, etc. For example given a shift plan solp, =
(v1,v2,...,vy,) for person Pj, the plan for a person P» would be (vs, vy, ..., vp, v1,

.,07), for a person P3 would be (v15,v16, ..., Un, V1, ..., U14), and so on.

The following naive CSP P, ;e describes the given rostering problem. The
constraints in C7 satisfy the restriction R;, the constraints in Cy satisfy the
restriction Rs, the constraints in Cs, Cy and Cjs satisfy the restriction Rz and
the constraints in Cs and C7 satisfy the restriction Ry (Fig.2).

X ={z1,...,xn}

D={Dy=..=D,=4{0,1,2,3}}

C=0C= {$i+6 = Ti+7 ‘ Vi € {1, ..A,IU}}
UCy = {(137;,1’7;.»,_1) o4 {(2, 1), (3,1), (3, 2)} | Vi € {1, ,n}}
UCs={(zi==zin1)V (zi==xi1)} | Vi €{2,..,n - 1}}
U Cy = {allEqual(xs, Tit1, Tit2, Tits) — (i # Tita) | Vi€ {1,...,n —4}}
U Cs = {allBqual(zs, Tit1, Tit2,3) — (2 # zig3) | Vi€ {1,...,n — 3}}
UCs ={> ziya > %] | Vde{1,..,T}}
UG ={Yil zita < [¥] +1|Vde{1,..,T}}

Fig. 2. The naive CSP P, qive, which describes the given rostering problem.

For our benchmark suite we computed different instances of the rostering
problem with number of weeks respectively number of employees is equal to
(4,5,6,7 and 8) in different versions:

1. Naive: The CSP is directly solved as it is modeled in P, g;pe-
2. Regular: Each constraint was substituted by a regular version of it as
described in [11].

36 S. Loffler et al.

3. RegularIntersected: Fach constraint was substituted by a regular version of it
as described in [11] and the regular versions of the constraints C; to C5 are
combined to one regular constraint.

4. BVSC: The CSP P,4ive was transformed into a binary variable scalar con-
straint CSP PP*¢ as described above.

5. BVSCO: The binary variable scalar constraint CSP PPV**® was created and
optimized by hand.

All the experiments are set up on a DELL laptop with an Intel i7-4610M
CPU, 3.00 GHz, with 16 GB 1600 MHz DDR3 and running under Windows
7 Professional with Service Pack 1. The algorithms are implemented in Java
under JDK version 1.8.0.191 and Choco Solver version 4.0.4 [15]. We used the
DowOverW Deg search strategy which is explained in [3] and used as default
search strategy in the Choco Solver [15].

Table 2. A comparison of the solution process of the given rostering problem with
different sizes and different modelling versions. (*Time limit was reached.)

Problem | #Solutions | Naive | BVSC | BVSCO | Regular | RegularIntersected
4 weeks 44 100% 100% 100% 100% 100%
0.726s |5.815s |0.155s [2.139s [0.371s
5weeks | 217339 100% | 100% 100% 100% 100%
96.622s | 345.377s | 8.87s 59.599s | 5.697 s

6 weeks | 9443633 17% 2% 100% 34% 100%
600s™ 600 s™ 396.619s | 600s* 196.055s
7weeks | 8463303 9% 0.1% 84% 28% 100%
600s™ 600s™ 600s™ 600s™ 214.486's
8 weeks 42979 11% 0.002% | 93% 76% 100%
600s™ 600s™ 600s™ 600 s™ 25.649 s

Table 2 shows a comparison of the different modelling versions. For four and
five weeks, all approaches found all solutions (100%). The RegularIntersected
and the BVSCO approach are the fastest with distance to the other approaches.
Only the RegularIntersected approach found all solutions for the 6, 7 and 8 week
problem. It is shown how many solutions every approach found in at maximum
600 s, which was the time out. It is visible that the RegularIntersected approach
is always the fastest and the BVSC approach is always the worst. But we also
can see, that the by hand optimized BVSCO is also always very good, much
better than the original approach. In these experiments we did not use reduction
methods, which are known from equality and inequality solving. We think that
in the future we can find an automatic way from the original CSP to one which
is very close to the BVSCO, and so one that is much better than the original,
naive problem. It is clearly evident, those fd-CSPs like regular CSPs or binary

FD-Complete Constraints 37

variable CSPs with scalar constraints can lead to significant improvement of the
solution process of constraint problems.

Remark 4: The transformation time to create the responsible fd-CSPs from the
original CSP was always included in the calculation time in Table 2.

Remark 5: The results presented in Table2 show already the power of fd-
complete constraints (the Regularintersected and the BVSCO approach are par-
tial more than 24 times faster as the original naive approach). Further more
we may can improve the solution process much more if we use a specific solver
for regular CSPs or binary variable CSPs with scalar constraints instead of the
general fd-solver Choco.

6 Conclusion and Future Work

We have presented a new class of constraints, which allows describing every
other CSP with a single constraint (fd-complete constraint). We extended this
approach to fd-complete CSPs, which are also able to represent each other CSP.
Furthermore, we introduced an example fd-complete CSP, the binary scalar CSP,
and explained why we think, that this fd-complete CSP can improve the solution
speed of general CSPs. In Sect. 5 was shown that the use of fd-CSPs like regular
CSPs or binary variable CSPs with scalar constraints can improve the solution
process of CSPs in a significant way.

Future work includes the creation of specialist constraint solvers, specialist
search strategies and specialist constraint solver settings. We expect that there
are a big number of fd-complete constraints and fd-complete CSPs and, therefore,
also a high number of specialist constraint solvers and search strategies, which
need to be discovered. Moreover, we need an algorithm to decide into which
fd-CSP we should transform given problems.

References

1. Google LLC: Google OR-Tools (2019). https://developers.google.com/optimi-
zation/. Accessed 22 Nov 2019

2. Akgiin, 0., Gent, 1.P., Jefferson, C., Miguel, I., Nightingale, P., Salamon, A.Z.:
Automatic discovery and exploitation of promising subproblems for tabulation. In:
Hooker, J.N. (ed.) CP 2018. LNCS, vol. 11008, pp. 3-12. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-98334-9_1

3. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search
by weighting constraints. In: de Mdntaras, R.L., Saitta, L. (eds.) Proceedings of
the 16th European Conference on Artificial Intelligence (ECAI 2004), including
Prestigious Applicants of Intelligent Systems (PAIS 2004), Valencia, Spain, 22-27
August 2004, pp. 146-150. IOS Press (2004)

4. Dechter, R.: Constraint Processing. Elsevier Morgan Kaufmann, Burlington (2003)

5. Hellsten, L., Pesant, G., van Beek, P.: A domain consistency algorithm for the
stretch constraint. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 290-304.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30201-8_23

https://developers.google.com/optimi-zation/
https://developers.google.com/optimi-zation/
https://doi.org/10.1007/978-3-319-98334-9_1
https://doi.org/10.1007/978-3-540-30201-8_23

38

10.

11.

12.

13.

14.

15.

16.

17.

18.

S. Loffler et al.

van Hoeve, W.J., Katriel, I.: Global constraints. In: [16], 1st edn. (2006). (chapter 6)
Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Boston (1979)

Loffler, S., Liu, K., Hofstedt, P.: The power of regular constraints in CSPS. In:
47. Jahrestagung der Gesellschaft fiir Informatik (Informatik 2017), Chemnitz,
Germany, 25-29 September 2017, pp. 603-614 (2017). https://doi.org/10.18420/
in2017_57

Loffler, S., Liu, K., Hofstedt, P.: The regularization of CSPs for rostering, planning
and resource management problems. In: Iliadis, L., Maglogiannis, I., Plagianakos,
V. (eds.) ATAI 2018. TAICT, vol. 519, pp. 209-218. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-92007-8_18

Loffler, S., Liu, K., Hofstedt, P.: A meta constraint satisfaction optimization prob-
lem for the optimization of regular constraint satisfaction problems. In: Rocha,
A.P., Steels, L., van den Herik, H.J. (eds.) Proceedings of the 11th International
Conference on Agents and Artificial Intelligence (ICAART 2019), Prague, Czech
Republic, 19-21 February 2019, vol. 2, pp. 435-442. SciTePress (2019). https://
doi.org/10.5220/0007260204350442

Loffler, S., Liu, K., Hofstedt, P.: The regularization of small sub-constraint satis-
faction problems. CoRR abs/1908.05907 (2019). http://arxiv.org/abs/1908.05907
Marriott, K.: Programming with Constraints - An Introduction. MIT Press, Cam-
bridge (1998)

Pesant, G.: A filtering algorithm for the stretch constraint. In: Walsh, T. (ed.) CP
2001. LNCS, vol. 2239, pp. 183-195. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-45578-7_13

Pesant, G.: A regular language membership constraint for finite sequences of vari-
ables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482-495. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30201-8_36

Prud’homme, C., Fages, J.G., Lorca, X.: Choco documentation. TASC, INRIA
Rennes, LINA CNRS UMR 6241, COSLING S.A.S. (2019). http://www.choco-
solver.org/. Accessed 07 Nov 2019

Rossi, F., Beek, P.V., Walsh, T.: Handbook of Constraint Programming, 1st edn.
Elsevier, Amsterdam (2006)

Schulte, C., Lagerkvist, M., Tack, G.: Gecode 6.2.0 (2019). https://www.gecode.
org/. Accessed 22 Nov 2019 (2019)

Tack, G., Stuckey, P.J.: Minizinc 2.3.2. Monash University (2019). https://www.
minizinc.org/. Accessed 22 Nov 2019 (2019)

https://doi.org/10.18420/in2017_57
https://doi.org/10.18420/in2017_57
https://doi.org/10.1007/978-3-319-92007-8_18
https://doi.org/10.1007/978-3-319-92007-8_18
https://doi.org/10.5220/0007260204350442
https://doi.org/10.5220/0007260204350442
http://arxiv.org/abs/1908.05907
https://doi.org/10.1007/3-540-45578-7_13
https://doi.org/10.1007/3-540-45578-7_13
https://doi.org/10.1007/978-3-540-30201-8_36
http://www.choco-solver.org/
http://www.choco-solver.org/
https://www.gecode.org/
https://www.gecode.org/
https://www.minizinc.org/
https://www.minizinc.org/

	An Introduction of FD-Complete Constraints
	1 Introduction
	2 Preliminaries
	3 FD-Complete CSPs
	4 The Binary Scalar CSP as a Representative of FD-Complete CSPs
	5 Experimental Results
	6 Conclusion and Future Work
	References

