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Abstract. This paper documents the efforts in implementing lyric generation
machine learning models in the Greek language for the genre of Éntekhno music.
To accomplish this, we used three different Long Short-Term Memory Recurrent
Neural Network approaches. The first method utilizes word-level bi-directional
network models, the second method expands on the first by learning the word
embeddings on the initial layer of the network, while the last method is based on
a char-level network model. Our experimental procedure, which utilized a high
sample of human judges, shows that texts of lyrics generated by our models are
of high quality and are not that easily distinguishable from actual lyrics.
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1 Introduction

Natural Language Generation (NLG) is the process of generating text or speech with
the use of structured data. Although precisely defining NLG has been proven difficult, a
definition often used has been given in [20]. “NLG is a subfield of artificial intelligence
and computational linguistics that is concerned with the construction of computer sys-
tems than can produce understandable texts in English or other human languages from
some underlying non-linguistic representation of information”.

NLG as a whole and more specifically the specialized task of creative writing is a
task that humans can be quite effective at, while computational intelligence may find it
rather difficult to generate creative and good quality text [4]. To this end, many attempts
have been made in the literature to try and mimic human creativity, including automatic
generation of poetry [5, 8, 16], metaphors [23], slogans [22] and others.

The domain of song lyrical writing has not been explored asmuch [17]. This problem
can be more apparent due to the fact that song lyrics also have a musical aspect and may
have a different style based on the genre of the song as well as secondary constraints of
the task such as rhyming words and thematic tone definition.
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To evaluate the performance of ourmodels,weusedhuman judges in order to evaluate
the fidelity and credibility of our model when it comes to accurately imitating the lyrics
of a real Éntekhno song. In other words, how likely it would be for the text outputted by
our model to be the lyrics of an actual song.

This paper is structured as follows: In Sect. 2, we introduce various computational
approaches which have been used to successfully generate either poetry or song lyrics.
In Sect. 3, we demonstrate our dataset. In Sect. 4, we present our different approaches
to solve this problem. In Sect. 5, we evaluate our different approaches with the help of
human judges. Finally, in Sect. 6, we offer our conclusions and discuss several future
directions for our work.

2 Related Work

While the study of text generation for creative writing purposes, such as poetry and
song lyrics, is of great interest in academic areas such as linguistics and music, it is also
of great importance for many subfields of computer science. Relevant literature can be
found in research areas such as computational creativity, information extraction, natural
language processing and machine learning.

In the work of Graves [9], Recurrent Neural Networks (RNNs) [21] were used for
text generation and their high effectiveness was showcased. Graves used a variation of
RNNs called Long Short-Term Memory (LSTM) [10] architecture to create a language
model in the character level, which has a higher success at text generation than a regular
RNNmodel. The results are impressive, as the network created was able to learn various
grammatical rules, while also being able to accurately reproduce a considerable amount
of vocabulary of words in the English language.

As already mentioned, automatic text generation for poetry and song lyrics, has also
been explored in the literature. Language models have been used to generate poetic
text, constrained by both a target style and a predefined form. These include Markov
models as in [2] and models based on Support Vector Machines (SVMs) as in [5]. As
far as rap lyrics are concerned, Wu et al. [1] present a system generating rap lyrics that
outputs a single sequence of rap lyrics that are a response to a particular input. A different
approach was given byMalmi et al. [14] by using a DeepNeural Network (DNN) and the
RankSVM [11] algorithm. By utilizing full lines of lyrics from rap songs, they created
16-line verses.

The work which is most similar to ours is that of Potash et al. [19]. Given a sequence
of rap lyrics and a specific rapper, an LSTM RNN model is trained and used to predict
the next word. Their goal is to produce rap lyrics that are similar in style but not identical
to already existing rap lyrics; a task known as ghost writing in the music industry.

3 Dataset

The task of generating song lyrics usingmachine learning algorithms requires the use of a
proper dataset of song lyrics for training these algorithms. The dataset was downloaded
mainly from three sources, stixoi.info, greeklyrics.gr and kithara.to by using a web
scraper utility program. The scraper utility targeted the URL of the song details web

http://stixoi.info
http://greeklyrics.gr
http://kithara.to
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page of each source by injecting an id that was generated from a randomly shuffled
sequence of Long type numbers. The Long datatype was selected, because Long is an
appropriate type for mapping a numeric primary key id in most widely used relational
databases and therefore would have the highest probability of targeting an existing id in
the source’s database. The scrapper was setup to use a random back-off scheme with a
20 s minimum await time, to avoid interfering with the website’s normal traffic as much
as possible.

In caseswhere the scrapper requested aURL that was not amiss, the retrievedHTML
document was queried using XPath to get the textual content of HTML DOM elements
that contained the song title, lyrics, artist and other optional information such as the
songs composer or lyricist. The raw textual data was then sanitized by removing special
characters, duplicate whitespace characters, new line characters and symbols. Finally,
after gathering an appropriately large amount of songs for the scope of our research, the
dataset was exported as a csv.

The size of the raw dataset we have gathered for training the text generating language
model, consisted of about 18000 entries of unprocessed songs of various artists and
genres. Each song in the dataset consists of the song title and lyrics for each song and
optionally in cases where it the data were available, the information of the artist, the
composer, the music producer and lyricist. All entries in the raw dataset are strictly
Greek songs and short poems or limericks that had been used in some traditional folk
songs. The very first preprocessing step was to prune all entries in the dataset that had
mixed language lyrics because the context switch between different languages along
with the small number of samples with language context switches would impede the text
generation model from effective learning and would negatively affect character-based
models.

As different genres of music can have different styles of lyrics and specific phrase-
ology, rhythm and even vocabulary, using the entirety of the dataset would only produce
incoherent results regardless of the quality of the text generationmodel. For the purposes
of our research, we selected songs of various artists from only the Greek Éntekhno genre.
After dropping songs from all other genres the dataset was then pruned to a final size of
1150 songs.

The entries in the dataset were preprocessed to replace all whitespace characters
in the lyrics of song with a space character. Furthermore, all remaining symbols and
non-alphanumeric characters expect for punctuation were removed from all songs in the
dataset. Additionally, alternate types of single and double quote characters were replaced
by the respective standardized English counterpart. Finally, the last preprocessing step
for the dataset was to correct all the disfluencies and typographical errors within the
songs by hand and additionally expand words with apostrophes to their full variant form.
Shortenedword forms contained in the song lyrics as localisms and idiomswere replaced
by handwith the full variant or normalized form. Lastly, some explicit or offensivewords
were replaced in the corpus by alternates that had either a similar meaning or a similar
phonetic rhythm or letter similarity to retain rhyme within the song.
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4 Implementation

As seen in the literature, RNNs are appropriate for the modeling of natural language
sequences as the RNN cells are able to retain contextual information about a sequence of
tokens. As basic RNNunits can present a variety of issues like the exploding or vanishing
gradient problem [18], we settled on using LSTM units as the primary component of
the neural networks. Sequences of word tokens may have long running dependencies
in the context of a sentence that may be directed either from the beginning to the end
or vice versa. The use of bidirectional LSTM units allows for the modeling of these
forward and backward dependencies of a token in a given sequence. Deriving from
the baseline architectural components succinctly described above we followed three
different approaches that all utilize the bidirectional LSTM -RNNmodels and compared
their results. For the first two models, we based our approach in [6, 7], while for the
final model we drew influence from [15]. The code that was developed is available on
our GitHub repository1.

4.1 Word Level Bi-LSTM

The RNN LSTMmodel used in the first approach is based on the idea of training it with
a large sequence of words and then trying to predict the next word by using in a one-hot
vector representation of the sequences. As a first step, we had to read our lyrics in text
form, convert to lowercase, to have fewer words and split the sentences into tokens. We
chose to treat the newline as an individual word. The thought process behind this is that
we are giving the LSTM the capability to decide when to start a new line. On this first
approach, we didn’t use any further pre-processing (i.e. punctuation removal), because
we wanted to see if the network could also learn from these features and apply them
when creating the new lyrics.

Before building the LSTM RNN model, we split our data into 98% for the training
set and 2% for the test set. Several different architectures were explored for our network.
After carefully examining the quality of the resulting lyrics and taking into account
metrics such as accuracy and validation accuracy we ended up on using the following
architecture: The first layer in the network consisted of a bidirectional RNN layer with
256 LSTMunits. The second layer was a dropout layer with dropout= 0.2. Finally, there
is a dense layer with softmax as activation function. The output of this layer is a vector of
size equal to the number of words in the corpus which contains the probabilities for each
available word in the corpus. The next word is then predicted by using the multinomial
distribution to sample on these probabilities.

In order to fit the model, we had to use a data generator. We do this because in
this approach we used one-hot representation of the sentences. One-hot vectorization
results in vectors of 0 s with a single 1 in the column of the used word. Thus, each
sentence is represented by an array of size the length of the sequences times the number
of unique words in our corpus. Our total training set would have size equal to the
number of sentences times the length of the sequences times the number of unique
words. This number ends up being enormous. Using data generators, we feed the model

1 https://github.com/orestislampridis/Greek-Lyrics-Generation.

https://github.com/orestislampridis/Greek-Lyrics-Generation
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with chunks of the training data, one for each step, instead of feeding everything at once.
The generator function gets the list of sentences, the list of next words, and the size of
the batch. For training the model, a shuffled set of the training sequences was used. The
loss function used in this model is the categorical cross entropy function. For validation,
we send another generator with the test data, so it gets evaluated every epoch. Finally,
the optimizer used was adam [12].

4.2 Word Level Bi-LSTM with Trainable Embeddings

The model used in this approach uses a trainable Embedding layer before feeding the
embeddings of a word sequence to a bidirectional LSTM. The raw text of the dataset
is further preprocessed by removing all punctuation from the song lyrics and all tokens
were converted to lowercase. By applying case folding to lowercase, we limit the size
of the vocabulary the embedding layer will have to learn. After processing the raw text
of a song, the lyrics were segmented in the word level and were consequently converted
to sequences of tokens. Sequences with size smaller than the pre-configured sequence
size were padded with a synthetic padding token. Along with the synthetic word used
for padding an additional two synthetic words were introduced to the sequences, one
marking the beginning of a song and one denoting the end of a song. The inputs of the
embedding layer and the model as a whole are non one-hot encoded words, meaning that
instead of vectors representing words the model accepts integers that map to a specific
token in a predefined vocabulary that was extracted from the dataset.

The first layer in the model’s neural network was a trainable embedding layer. The
size of the output vector was set to 1024 dimensions. The next layer is a bidirectional
RNN layer with 256 LSTM units. The output of this layer is a collection of logit values
that are intercepted by a dropout layer. The final layer is a dense or regression layer with
a softmax activation. The output of this layer is a vector with a number of dimensions
equal to the size of the vocabulary. The next token is predicted by using the multinomial
distribution to sample on the probabilities contained in the output vector.

For training the above model a shuffled set of all available sequences was used. In
contrast with the word level approach, the loss function used in this model is the sparse
categorical cross entropy function that is used on sparse categorical data. For validation,
the entirety of available sequences were also used, in essence forcing the model to
overfit on all of the sequences, while simultaneously increasing the dropout rate to 0.2.
This method essentially forces the model to overfit on the dataset but still retain some
generalization when predicting sequences. In later epochs of training, some of the data in
the train set should be held out to increase the generalization of the model’s predictions.
The validation function used was sparse categorical accuracy while the optimizer used
was adamax [12] for the first few epochs and later manually switched to adam. The
use of adamax in the first few epochs is a minor optimization on training because that
specific optimizer is the best suited for training models with embedding layers.

4.3 Character Level Bi-LSTM

In this approach, the data are left in their raw form. The vocabulary now consists of all
the characters in the text data, including punctuation. Since we are working at character
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level there is no point in finding the most common words. Additionally, the data are
not converted to lowercase in the final approach, because we noticed that the results
were worse in this scenario. The only data processes are the mapping of the characters
to integer numbers and the creation of sequences to feed the RNN model. The input
value in each sequence is a 100-character string and the target value is simply the next
character which is encoded by the One Hot Encoding method. This way we can give
RNN a greater power to learn a probability for each possible target value. When a one
hot encoding is used for the output variable, it may offer a finer set of predictions than a
single label. The input is reshaped from a one-dimensional array to a two-dimensional
array to feed the first layer of the RNN.

The model uses a trainable Embedding layer which works in the same fashion as the
one in theWord level Bi-LSTMwithEmbeddings. It then feeds the embedding sequences
of characters to the first layer of theRNN,which a bidirectionalCuDNNLSTMlayerwith
512 nodes. The CuDNNLSTM is the same as a simple LSTM layer, the only difference
is that it uses GPU for training, which makes it much faster. The hidden layer is another
bidirectional CuDNNLSTM, again with 512 nodes. There is a Dropout layer set to 0.2
to avoid overfitting. Finally the output layer is a dense layer and the activation function
is the softmax function as we want a distribution over the outputs. We use the adam
optimize and the categorical cross-entropy loss.

Callbacks are made monitoring the train and validation accuracy. We train the model
for 50 epochs. We use the validation split set to 0.2, which randomly splits up the data
into a training set and test set and evaluates themodel. Themaximumvalidation accuracy
achieved by this model is around 50%, which is an acceptable value for an NLG model.
In the generation process we use both a random seed, sampling the sequences made
before and a specific set seed. The seed is then mapped and reshaped and a prediction is
made using the argmax function.

5 Evaluation

In evaluating the results of our approaches, we decided to use human judges for extrinsic
evaluation of the three proposed neural language models. We were inspired by the work
of Belz and Reiter [3] to set up our experimental procedure. We created a survey that
contained 10 different texts in total. Out of these texts, 9 of themwere fromour 3 different
models (3 texts for each model) and the last text was from an actual song. We did this to
see how humans would rate an actual (i.e. not automatic generated) Éntekhno song. The
participants didn’t know that a text from an actual song would be shown. We expected
this song to have the highest score and if this was the case, we would be certain about the
validity of our survey. Then, we asked 76 volunteers to participate in the survey. A high
percentage of them (96.1%) stated that they were familiar with the genre of Éntekhno.

The texts were presented in a random fashion and after each text, the volunteers were
called to rate the accuracy of the generated lyrics on a scale of [1, 5] when it comes to
imitating the lyrics of a real song. In other words, how likely it would be for the text they
were reading to be the lyrics of an actual Éntekhno song.We call this accuracy the fidelity
of our models. An example of the texts that were shown to the participants is shown in
Table 1. To make the results more understandable to the international community, we
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tried to offer the best possible translation in the English language for the texts in Table 2.
Note, that these translations do not accurately represent the capability of our models
since each language has different ways to express creativity and our models were only
trained using the Greek language. Lastly, average fidelity for each model according to
the survey and after taking into account the three texts for each of our models is reported
in Table 3.

Table 1. Sample texts shown to the participants during our experiment

As we can see in Table 3, the word level model with pre-trained embeddings is the
one with the highest fidelity, while the word level model is a close second. This is mostly
because the embeddings model uses a more complex model than the word level model
one, as it uses an additional embedding layer. The character level approach suffers from
grammatical and syntax errors; therefore, it has been rated lower. Also, we noticed that
the longer the lyrics generated the more difficult it is for each model to generate realistic
lyrics.

Looking at the highest fidelity score in Table 4, it was interesting to see that the
actual song scored a fidelity of 4.092, not that close to the perfect score of 5. Also, its
score was not that far ahead from the second highest scoring text, which was generated
by our word level embeddings model and had a fidelity score of 3.815. The third highest
scoring text was also not that far behind with a score of 3.671.
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Table 2. Sample texts shown to the participants translated in the English language

Text shown

word_level how it happened and we changed course and the dream stays in my soul again.
tide, tide, you came in and my life. drink fire from my eyes, and burn my soul.
like a sudden tide, you came into my life. drink fire from my eyes, and burn my
soul. like a sudden tide, you came into my life

embeddings to seize the misery to see you hug you and you will tell me i’m afraid i will lose
you you’re not here my dream live again and i’m afraid you get lost when i
wake up

char_level For years you have been watching the stands in the world, but tell me what you
hugged tightly from what you saw. Years many hearts and in years to play the
paratheo and in my heart my love poem you said you hurt my eyes and you the
color of your heart a peak where it goes you are me I am you. Take me with a
heart that I love you I love you time to play my light and you trap me

Actual From the same again to fill the head. Bring me to drink so that my weight will
go away because tonight the Reaper will die. A woman has made me stop
drinking. She wanted to hurt me but she will pay dearly. Bring me a drink

Table 3. The average fidelity for each model

word_level embeddings char_level

Fidelity 3.022 3.053 2.338

Table 4. The highest fidelity achieved by each model along with the fidelity of the actual lyrics

word_level embeddings char_level Actual

Fidelity 3.671 3.815 3.026 4.092

6 Conclusions and Future Work

With regards to future work, a larger dataset could be very beneficial. In our approach,
we used a dataset of only 1150 songs, which is a compensatory number, but a larger
dataset may produce better results. To this end, the Greek Music Dataset [13] could also
be explored as it includes songs of the Éntekhno category. Also, even if we tried many
different combinations of layers and tunings in our models, there are a lot more that can
be used and bring a better output. Furthermore, an expansion to the whole process could
be attempted. One idea could be to add a function to compute the style and tempo of
each song and use that information to the generation process, this could produce more
realistic lyrics imitating the style of actual songs. In addition, more complex features
could be added to the RNN, such as the part of speech of each word, the phonetic
representation of each word or the frequency of each word or character. In the character
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level approach, a function could be made to correct the syntax and grammatical errors or
investigate if the words outputted from the network are correct by cross-checking them
with a Greek dictionary of words. Finally, another approach to help with the rhyme of
the song generated could be to create two RNNmodels, one that generates the song from
start to finish and another one that does the opposite and takes as seed the end of the
previous lyric.

Concluding, we are obligated to acknowledge the difficulty of the lyrics generation
task.With all the progress that is made it can only be used for inspiration by a lyricist and
not for immediate commercial use. Poetry and music are arts and have a high degree of
creativity that emanate from each artist’s soul and it is quite difficult to train a machine
learning algorithm to copy them.
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