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Abstract. Comparing business process variants using event logs is a
common use case in process mining. Existing techniques for process vari-
ant analysis detect statistically-significant differences between variants
at the level of individual entities (such as process activities) and their
relationships (e.g. directly-follows relations between activities). This may
lead to a proliferation of differences due to the low level of granularity
in which such differences are captured. This paper presents a novel app-
roach to detect statistically-significant differences between variants at the
level of entire process traces (i.e. sequences of directly-follows relations).
The cornerstone of this approach is a technique to learn a directly-follows
graph called mutual fingerprint from the event logs of the two variants. A
mutual fingerprint is a lossless encoding of a set of traces and their dura-
tion using discrete wavelet transformation. This structure facilitates the
understanding of statistical differences along the control-flow and per-
formance dimensions. The approach has been evaluated using real-life
event logs against two baselines. The results show that at a trace level,
the baselines cannot always reveal the differences discovered by our app-
roach, or can detect spurious differences.

1 Introduction

The complexity of modern organizations leads to the co-existence of different
variants of the same business process. Process variants may be determined based
on different logical drivers, such as brand, product, type of customer, geographic
location, as well as performance drivers, e.g. cases that complete on-time vs.
cases that are slow.

Identifying and explaining differences between process variants can help not
only in the context of process standardization initiatives, but also to identify root
causes for performance deviations or compliance violations. For example, in the
healthcare domain, two patients with similar diseases might experience different
care pathways, even if they are supposed to be treated alike [1,2]. Moreover,
even if the care pathways are the same in terms of sequences of activities, they
could have different performance, e.g. one patient may be discharged in a much
shorter timeframe than the other [3].
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Fig. 1. Example of mutual fingerprints for an IT service desk process

Comparing business process variants using process execution data (a.k.a.
event logs) recorded by information systems, is a common use case in pro-
cess mining [4]. Existing techniques for process variant analysis [5,6] detect
statistically-significant differences between variants at the level of individual
entities (such as process activities) and their relationships (e.g. directly-follows
relations between activities). However, these techniques often lead to a prolifer-
ation of differences due to the low level of granularity in which such differences
are captured.

This paper presents a statistically sound approach for process variant analy-
sis, that examines both the order in which process activities are executed (a.k.a.
control-flow) and their duration (a.k.a. performance), using the event logs of two
process variants as input. The cornerstone feature of this approach is the ability to
provide statistically significant control-flow differences between process variants,
via the use of a novel graph-based representation of a process, namely mutual fin-
gerprint. The fingerprint of a process variant is a directly-follows graph that only
shows the behavior of that variant that is statistically significantly different from
that of another process variant, hence the term “mutual”. This lossless encoding
of differences can be seen as the latent representation of a process variant that pro-
vides a considerably simplified representation of the underlying behavior, focusing
only on differences. For example, Fig. 1 shows the discovered mutual fingerprints
for two example process variants. One can see that the fingerprint of process vari-
ant 2 has an extra edge, i.e., (Queued, Completed), that does not appear in the
other fingerprint. In a mutual fingerprint graph, different edge types are used to
capture differences in the control-flow and activity duration.

The approach to construct mutual fingerprints consists of three steps: i)
feature generation, ii) feature selection, and iii) filtering. Given the event log
of the two variants, the first step exploits Discrete Wavelet Transformation to
obtain a lossless encoding of the two variants (along the control-flow and activity
duration dimensions) into a set of vectors. The second step adopts a machine
learning strategy combined with statistical tests to determine what subset of
features, i.e. events, discriminates the two process variants at a given significant
level. The third step filters traces of each process variant that do not carry any
discriminatory events.

The approach has been evaluated using process variants from four real-life
event logs, against two baseline techniques. The comparison includes a quanti-
tative assessment of the results and a discussion on execution time.
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The paper is organized as follows. Related work and preliminaries are pre-
sented in Sect. 2, and 3 respectively. The approach is presented in Sect. 4, followed
by the evaluation in Sect. 5. Finally, Sect. 6 concludes the paper and discusses
some avenues for future work.

2 Related Work

We report only the most recent approaches related to our contribution. The
interested reader can find a complete analysis in [7]. The work by van Beest
et al. [8] relies on the product automaton of two event structures to distill all
the behavioral differences between two process variants from the respective event
logs, and render these differences to end users via textual explanations. Cordes
et al. [9] discover two process models and their differences are defined as the min-
imum number of operations that transform on model to the other. This work
was extended in [10] to compare process variants using annotated transition sys-
tems. Similarly, [11] creates a difference model between two input process models
to represent differences. Pini et al. [12] contribute a visualization technique that
compares two discovered process models in terms of performance data. The work
in [13] proposes an extension of this work, by considering a normative process
model alongside with event logs as inputs, and adding more data preparation
facilities. Similarly, [14] develops visualisation techniques to provide targeted
analysis of resource reallocation and activity rescheduling.

Particularly relevant to our approach are the works by Bolt et al. and Nguyen
et al., because they are grounded on statistical significance. Bolt et al. [15] use an
annotated transition system to highlight the differences between process variants.
The highlighted parts only show different dominant behaviors that are statisti-
cally significant with respect to edge frequencies. This work was later extended
in [5], by inducting decision trees for performance data among process variants.
Nguyen et al. [6] encode process variants into Perspective Graphs. The compar-
ison of perspective graphs results in a Differential Graph, which is a graph that
contains common nodes and edges, and also nodes and edges that appear in one
perspective graph only. As shown in the evaluation carried out in this paper,
these two works, while relying on statistical tests, may lead to a proliferation
of differences due to the low level in which such differences are captured (indi-
vidual activities or activity relations). Our approach lifts these limitations by
extracting entire control-flow paths or performance differences that constitute
statistically significant differences between the two process variants.

3 Preliminaries

In this section we introduce preliminary definitions required to describe our app-
roach such as event, trace, event log and process variant. Next, we provide some
basic linear algebra definitions that will be specifically used for our featuring
encoding.
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Definition 1 (Event, Trace, Event Log). An event is a tuple (a, c, t, (d1, v1),
. . . , (dm, vm)) where a is the activity name, c is the case id, t is the timestamp
and (d1, v1), . . . , (dm, vm) (where m ≥ 0) are the event or case attributes and
their values. A trace is a non-empty sequence σ = e1, . . . , en of events such that
∀i, j ∈ [1..n] ei.c = ej .c. An event log L is a set σ1, . . . σn of traces.

Definition 2 (Process variant). An event log L can be partitioned into a
finite set of groups called process variants ς1, ς2, . . . , ςn, such that ∃d such that ∀
ςk and ∀σi, σj ∈ ςk, σi.d = σj .d.

The above definition of a process variant emphasizes that process executions in
the same group must have the same value for a given attribute, and each process
execution belongs only to one process variant1.

Definition 3 (Vector). A vector, x = (x1, x2, . . . , xn)T , is a column array
of elements where the ith element is shown by xi. If each element is in R and
vector contains n elements, then the vector lies in R

n×1, and the dimension of
x, dim(x), is n × 1.

We represent a set of d vectors as x(1),x(2), . . . ,x(d), where x(i) ∈ R
n×1. Also,

they can be represented by a matrix M = (x(1),x(2), . . . ,x(d)) where M ∈ R
n×d.

We denote the ith row of a matrix by Mi,:, and likewise the ith column by M:,i.
The previous definitions can be extended for a set of columns or rows, for example
if R = {3, 5, 9} and C = {1, 4, 6, 12}, then MR,C returns the indicated rows and
columns.

Definition 4 (Vector space). A vector space consists of a set V of vectors,
a field F (R for real numbers), and two operations +,× with the following prop-
erties, ∀u,v ∈ V,u + v ∈ V , and ∀c ∈ F,∀v ∈ V, c × v ∈ V .

Definition 5 (Basis vectors). A set B of vectors in a vector space V is
called a basis, if every element of V can be written as a finite linear combination
of elements of B. The coefficients of this linear combination are referred to as
coordinates on B of the vector.

A set B of basis vectors is called orthonormal, if ∀u,v ∈ B,< uT ,v >= 0,
and ‖u‖2 = 1, ‖v‖2 = 1. A basis matrix is a matrix whose columns are basis
vectors.

For example, the set of e(1) = (0, 0, 0, 1)T , e(2) = (0, 0, 1, 0)T , e(3) = (0, 1,
0, 0)T , and e(4) = (1, 0, 0, 0)T constitutes a vector space in R

4. Also, they
are orthonormal basis vectors in R

4, since every vector in that space can
be represented by finite combination of them, for example, (1, 2,−3, 4)T =
1 × e(4) + 2 × e(3) − 3 × e(2) + 4 × e(1). The set of e(1), e(2), e(3), and e(4)

are linearly independent. The corresponding basis matrix, called canonical basis
matrix, is E = (e(1), e(2), e(3), e(4)).

1 Definition 2 can be easily generalized to more than one attribute, and arbitrary
comparisons.
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4 Proposed Approach

Process variant analysis can help business analysts to find why and how two
business process variants, each represented by a set of process executions, differ
from each other. In this paper we focus on statistically identifying the differences
of two process variants, either in the control flow or in the performance dimen-
sion. For instance, we are interested in identifying which sequences of activities
occur more frequently in one process variant, or which activity has a statistically
significant difference in duration between the two process variants.

Fig. 2. Approach for constructing mutual fingerprints

Given the event logs of two process variants, our approach revolves around
the construction of a representative directly-follows graph from each variant,
called mutual fingerprint. A fingerprint highlights the statistically-significant dif-
ferences between the two variants, along the control-flow and activity duration
dimensions. To construct such mutual fingerprints, we perform the following
three steps, as shown in Fig. 2:

1. Feature generation: This step encodes every single trace of the input event
log of each of the two process variants, into a set of vectors of the same length
for every event. Each vector contains the respective wavelet coefficients for
a specific event. Essentially, a wavelet coefficient is an encoding of the time
series behind each trace. For a trace, these vectors are stacked into a single
vector. This way allows the encoding of a process variant as a matrix, called
design matrix, which is used in the next step.

2. Feature selection: In this step, the wavelet coefficients are used to build
features to train a binary classifier. This procedure can be repeated several
times for cross-validation purposes, and a statistical test is performed on top
of the results of cross-validation, to ensure that the selected features (events
classes in the log) provide enough information to discriminate the two classes
arising from the two process variants.

3. Filtering: This last step filters the log of each process variant by keeping only
those traces that contain discriminatory events discovered from the previous
stage. A mutual fingerprint is then built from the traces left for each process
variant log.
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In the rest of this section, we first formally define the notion of discrete
wavelet transformation and then use this to illustrate the above three steps in
detail.

4.1 Discrete Wavelet Transformation and Time-Series Encoding

In Sect. 3 we defined a vector space, however, it must be noted that for an
arbitrary vector space, there are infinitely number of basis matrices where one
can be obtained from the others by a linear transformation [16]. Among several
basis matrices, Haar basis matrix is one of the most important set of basis matrix
in R

n that plays an important role in analysing sequential data [17]. Formally,
it is defined as follows (for the sake of exposition lets assume that the dimension
is power of two):

Definition 6 (Haar basis matrix). Given a dimension of power two, i.e., 2n,
the Haar basis matrix can be represented by the following recurrent equation [18]:

H(n) =
(
H(n − 1) ⊗

(
1
1

)
, I(n − 1) ⊗

(
1

−1

))
, H(0) = 1 (1)

where H(n) is the matrix of Haar vectors of degree 2n, I(n) is an identity matrix
of size 2n, and ⊗ is the outer-product operator.

Haar basis vectors can be derived for dimensions of arbitrary lengths that
are not necessarily to be power of two, however, the recurrent formula becomes
more complicated [19]. A few examples of Haar basis matrices are as follows:

H(1) =
(

1 1
1 −1

)
, H(2) =

⎛
⎜⎜⎝

1 1 1 0
1 1 −1 0
1 −1 0 1
1 −1 0 −1

⎞
⎟⎟⎠

From now on, we show a Haar basis matrix by H whenever the corresponding
dimension is understood from the context.

Definition 7 (Time-series data [20]). A time series {xt}, is a sequence of
observations on a variable taken at discrete intervals in time. We index the time
periods as 1, 2, ..., k. Given a set of time periods, {xt} is shown as a column
vector x = (x1, . . . , xk)T or a sequence x1x2 . . . xk.

Every time-series data can be decomposed into a set of basis time-series called
Haar Wavelet [21]. A Haar wavelet time-series represents the temporal range of
variation in the form of a simple step function. For a given time-series, {xi}, of
length n, the corresponding Haar wavelet basis time-series are shown by Haar
basis vectors in R

n [19], see Definition 6. For example, consider a time-series
like x = (3, 5, 9, 1)T , then it can be decomposed into the sets of Haar wavelet
time-series shown in Fig. 3.
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In the above example, one sees that each Haar wavelet time-series has a corre-
sponding Haar basis vector. Thus, the input time-series, x, can be represented as
the sum of Haar basis vectors with corresponding coefficients. More compactly,
it can be easily represented by the following matrix operation, called Discrete
Wavelet Transformation (DWT):

x = Hw (2)

where w is a column vector that contains wavelet coefficients. For the above
example, Eq. 2 is as follow:

⎛
⎜⎜⎝

3
5
9
1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 1 1 0
1 1 −1 0
1 −1 0 1
1 −1 0 −1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

4.5
−0.5
−1
4

⎞
⎟⎟⎠

The crucial observation, is that for a given time-series, the set of Wavelet coef-
ficients show available variations in the time-series at different resolutions. The
first coefficient is the global average value of time-series, i.e., w1 = 3+ 5+9+1

4 =
4.5. The second coefficient shows the difference in average between the average
of the first half and the average of the second half, i.e., (5+ 3)/2− (1+ 9)/2

2 = −0.5.
This process can be applied recursively until reaching a single element. Hence,
one can use Wavelet coefficients as a sound way to encode time-series that inherit
variability information.

Fig. 3. Decomposition of a time-series into a set of Haar Wavelet series

4.2 Feature Generation

The technique in this section generates a sets of multidimensional features, x,
for every trace σ. The procedure can be seen as an encoding task that maps
a trace into a multidimensional vector space. This encoding is used to identify
both control-flow and performance differences between two process variants. For
the sake of simplicity we present it for control-flow dimension.
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The technique in this section provides numerous advantages for analysing
sequential data. It is a lossless encoding such that the input time-series can be
recovered by the Haar basis matrix for that vector space, see Eq. (2). Second, by
DWT-encoding the time-series before analysing it, well-known problems of auto-
correlation and cross-correlation are significantly alleviated, since the generated
features are almost uncorrelated [21,22]. Thus, without losing information one
can safely work only with wavelet coefficients rather than over the raw data.

Given an input trace, the proposed technique contains three parts, i.e., bina-
rization, vectorization, and stacking. Binarization is a procedure to generate a set
of time-series from an input trace. Vectorization encodes every time-series into
a vector representation with the help of DWT. Finally, to have a consolidated
representation for the generated vectors, they are stacked into a single vector.

The starting point for generating a set of features in a vector space is to
represent an input trace as several {0, 1} time-series that are called binarization.
Formally:

Definition 8 (Binarization). Given a universal set of activity names E, and
trace σ, function f() maps σ into a set of |E| time-series of length |σ|, i.e.,
∀ei ∈ E , f : (ei, σ) → {0, 1}|σ|.

The above definition provides time-series of zeros for an event that does not
exist in an input trace. This way one can represent all traces in a unique vector
space2. For example, consider a trace like σ = e1e2e1e1, with E = {e1, e2, e3},
then, f(e1, σ) = 1011, f(e2, σ) = 0100, and f(e3, σ) = 0000.

Binarization of a given trace provides a time-series for each event of it. Vector-
ization based on DWT, see Eq. 2, captures simultaneously frequency and location
in time information, and embeds auto-correlation and cross-correlation informa-
tion in the generated features. Formally:

Definition 9 (Vectorization). Given a time-series x = (x1, x2, . . . , xn)T

where xi ∈ {0, 1}, function g(), computes the corresponding wavelet coefficients,
w, for x, i.e., g(x) = w = H−1x.

In the above definition, H−1 is the inverse of Haar basis matrix for Rn. For exam-
ple, for time-series x(1) = (1, 0, 1, 1)T , x(2) = (0, 1, 0, 0)T , and x(3) = (0, 0, 0, 0)T

the corresponding wavelet coefficients w(1), w(2), and w(3) are as follows:
⎛
⎜⎜⎝

0.75
−0.25
0.5
0

⎞
⎟⎟⎠

︸ ︷︷ ︸
w(1)

=

⎛
⎜⎜⎝

0.25 0.25 0.25 0.25
0.25 0.25 −0.25 −0.25
0.5 −0.5 0 0
0 0 0.5 −0.5

⎞
⎟⎟⎠

︸ ︷︷ ︸
H−1

⎛
⎜⎜⎝

1
0
1
1

⎞
⎟⎟⎠

︸ ︷︷ ︸
x(1)

,

⎛
⎜⎜⎝

0.25
−0.25
−0.5

0

⎞
⎟⎟⎠

︸ ︷︷ ︸
w(2)

,

⎛
⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎠

︸ ︷︷ ︸
w(3)

2 In practice we keep only non-zero elements in the implementation.
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According to the above example, for a trace like σ = e1e2e1e1, to have a consoli-
date representation we stack together the coefficient vectors into a single vector,
formally:

Definition 10 (Vector stacking). For an input trace σ, and universal of
activities E, with |E| = k, lets assume that w(1),w(2), . . . ,w(k) show the cor-
responding wavelet coefficients vectors, then the stacked vector is defined as
w(σ) = (w(1)T ,w(2)T , . . . ,w(k)T ).

Regarding to the above definition, a design matrix D for a process variant is
defined to be a matrix whose rows are the stacked vectors of the corresponding
traces. As an example for a process variant containing only two traces, i.e., σ1 =
e1e2e1e1, and σ2 = e1e2e3e1, the respective design matrix after binarization,
vectorization, and stacking is as follow:

D =

( e1 e1 e1 e1 e2 e2 e2 e2 e3 e3 e3 e3

w(σ1) 0.75 −0.25 0.5 0 0.25 −0.25 −0.5 0 0 0 0 0
w(σ2) 0.5 −0.25 0 0 0.25 −0.25 −0.5 0 0.25 −0.25 0 0.5

)

One can see that the first four columns show the wavelet coefficients for event
e1, the second four columns show the wavelet coefficients for event e2, and so
on. It is easy to see that wavelet coefficients for e2 are the same for σ1 and σ2;
however for e1 only three out of four coefficients are equal which shows different
frequency and location of this event between σ1 and σ2.

In practice, to have a unique and common vector space for the encoding of
two process variants, we set the dimension of the vector space to the length
of the longest trace for both variants. If the alphabet of process variants are
different then the union of them is considered as the universal alphabet. Also,
an analyst can generate different kind of features; for example one can create a
design matrix for adjacent events in traces, where the features are like eiej , with
j = i + 1, instead of only single events.

Time Complexity. The time complexity of the proposed approach is cubic on
the length of the longest trace in the worst-case. However, in practice it is much
less than this amount: lets assume that there are two process variants ς1, ς2
with n1, n2 number of traces respectively, E , is the universal activity names, and
d = max|σ|,∀σ ∈ ς1, ς2, is the length of the longest trace between variants. Thus,
computing the Haar basis matrix and its inverse for R

d require O(log2d), and
O(d3)3 operations respectively. It must be mentioned that [23] proposed O(d2)
for computing the inverse of a matrix in an incremental way. To create the design
matrix D(i), for i = 1, 2, the number of required operations is O(ni ∗ (d ∗ E)).
However, this matrix is very sparse since for an input trace σ, only the entries
related to ei ∈ σ are non-zero. Another possibility to alleviate significantly the
overall complexity is by precomputing and storing Haar matrices.

3 Note that the cubic complexity is the required time for computing the inverse
matrix from scratch. To this end, there are much more efficient approaches like
Coppersmith–Winograd algorithm with O(d2.37).
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4.3 Feature Selection

This section presents a novel feature selection method, grounded on machine
learning, that captures the statistically significant features between two design
matrices, i.e., D(i), for i = 1, 2. Generally speaking, the representation of an
entity in an arbitrary vector space contains a set of relevant and irrelevant
features. Though, it is unknown as prior knowledge. Thus, a feature selection
algorithm is the process of selecting a subset of relevant features that are the
most informative ones with respect to the class label.

Though feature selection procedures have numerous advantages for machine
learning algorithms, in this paper, we leverage the idea of feature selection to
highlight the existing differences between two process variants (class 1 and class
2). It must be stressed that every events ei ∈ E is represented by a set of features
(columns) in the designed matrices, see Definition 10, and each row is called an
instance. The feature selection technique in this paper is a wrapper method,
where a classifier is trained on a subset of features. If the trained classifier pro-
vides acceptable performance according to some criteria for unseen instances,
i.e., test instances, then the subset of features is selected and called discrimina-
tory features.

Before proceeding, and for the sake of exposition we stack the design matrices
D(1),D(2), with the corresponding class labels into a matrix called augmented
design matrix as follow:

X =
(
D(1) 1
D(2) 2

)
(3)

Where 1,2 are column vectors showing the class labels. It is clear that X has
d × E + 1 features or columns. From X, and for a subset of features, S ⊆ E , we
split X into training and test datasets and denote them by X(train)

:,S , and X(test)
:,S .

It must be mentioned that, to create training and test datasets we use stratified
sampling method which keeps the proportion of classes similar in either datasets
[24]. Stratified sampling helps to create sub-samples that are representative of
the initial dataset.

Definition 11 (Discriminatory feature). A subset of features, S, with |S| ≤
d × E + 1 is discriminatory if a binary classification function f : R|S| → {1, 2}
that is trained on X(train)

:,S , provides acceptable performance according to some

criteria for unseen instances in X(test)
:,S .

Definition 11 does not pose any restrictions on the shape or the number of
parameters for f(), indeed, according to universal approximation theorem there
exist such a mapping function between any two finite-dimensional vector spaces
given enough data [25].

There are several ways to measure the performance of a classifier on unseen
instances. An appropriate metric for imbalanced classes is F1 score. It measures
the performance of a classifier for one of classes only, e.g., class 1 or positive
class, and does not take into account the true negatives, i.e., correct predictions
for the other class into account, hence some information are missed [26]. Since in
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our setting two classes (i.e., process variants) are equally important, and for each
subset of features the proportion of class labels varies, and probably imbalanced,
we propose weighted F1 score as follow:

F̄1 = γ1F
(1)
1 + γ2F

(2)
1 (4)

Where F
(i)
1 , for i = 1, 2 shows the F1 obtained by the classifier for classes (i.e.,

1, 2) on X(test)
:,S . The coefficients γ1, γ2 shows the proportion of class labels in

the test dataset. It must be noted that the values of γ1 and γ2 varies for different
subset of features. For example, assume that X(test) contains three instances as
shown below:

The test dataset corresponds to the wavelet coefficients for three traces σ1 =
e1e2e1e1, σ2 = e1e2e3e1, and σ3 = e3e1e3e3, where the first two traces belong
to one process variant (class 1), and the last trace comes from another process
variant (class 2). One can see that if we consider S as the columns related to
e1, then the proportion of classes are 2

3 and 1
3 , however for columns related to

e3 both numbers are 1
2 . The reason is, an arbitrary trace σi contains portion

of alphabet E , hence the coefficients γ vary from subset to subset, and must be
adjusted dynamically.

For a subset of features, S, the worst performance of a classifier, f(), happens
when it provides a single label for all test instances. It takes place when there
is not enough information in S for the classifier to discriminate classes (process
variants). In more details, if n1, and n2 show the number of instances for each
class in X(test)

:,S , then the worst performance happens when f() labels all test

instances as class 1 (F (1)
1 = 2n1

n2+2n1
), or as class 2 (F (2)

1 = 2n2
n1+2n2

), therefore we

denote the worst performance of classifier f() by F̄1
(0), that is defined as the

weighted average of worst cases as follows:

F̄1
(0) =

n1

n1 + n2︸ ︷︷ ︸
γ1

× 2n1

n2 + 2n1︸ ︷︷ ︸
F

(1)
1

+
n2

n1 + n2︸ ︷︷ ︸
γ2

× 2n2

n1 + 2n2︸ ︷︷ ︸
F

(2)
1

(5)

One must note that the value of F̄1
(0) like coefficients γ1 and γ2 varies for different

S; thus it is adjusted dynamically.
Regarding Eq. 5, for a subset of features, S, we define acceptable performance

for a classification function f() if its performance measured by F̄1 score, is sta-
tistically greater than the corresponding F̄1

(0) score at some significant level α.
Formally, we formulate a statistical test containing the following hypotheses:

H0 : F̄1 = F̄1
(0)︸ ︷︷ ︸

Null-hypothesis

, H1 : F̄1 > F̄1
(0)︸ ︷︷ ︸

Alternative-hypothesis

(6)
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The null-hypothesis (H0) in Eq. 6 assumes that for a subset of features S, the
classifier f() is unable to discriminate test instances; in other words if S repre-
sents columns relating to a set of events, then, it claims that the control-flows
containing these events are not statistically different between process variants,
whereas the alternative-hypothesis (H1) claims they differ.

To make the statistical test in Eq. 6 work, we invoke stratified k-fold cross-
validation procedure to measure the performance of the classifier k times for S.
In each round of cross-validation, different training and test datasets, X(train)

:,S ,

and X(test)
:,S are obtained via stratified sampling method, and the correspond-

ing F̄1 score is calculated. Based on Central Limit Theorem (CLT), the aver-
age of F̄1 scores (k times) approximates a normal distribution for k > 30 or a
t−distribution for small k numbers [27].

Complexity. In practice, a feature selection algorithm has to do an exhaustive
search to obtain subsets of features that are representative of the input dataset.
In general, given n features there could be 2n candidates for selecting subset
of features; however in our setting, the search space is limited to subsets of
adjacent features available in process variants. Therefore the respective search
space reduces drastically.

4.4 Filtering

This section elucidates the findings of the previous step. In fact, identifying
discriminatory events, though statistically significant, does not provide enough
insights for the analyst to understand the existing differences. To bring this
information into a human-readable form, one can create a directly-follows graph
for each process variant by only considering those traces that carry information
about discriminatory parts. Technically, assume S contains features relating to
event ei, and it was found to be statistically significant between two process
variants, then all traces containing ei are kept. This procedure continues for all
discriminatory elements (an event or a set of them). A mutual fingerprint is
a directly-follows graph created based on these sets of traces for each process
variant separately.

5 Evaluation

We implemented our approach in Python 2.7 and used this prototype tool to
evaluate the approach over different real-life datasets, against two baselines [5,6].
As discussed in Sect. 4.3, the proposed feature selection approach can be coupled
with any classifier. We trained a Support Vector Machine (SVM) with Radial
Basis Function (RBF) kernel and ten times stratified cross validation of the
results. We used SVM with RBF because it has been shown that this machine
learning method deals well with sparse design matrices [21], like those that we
build for the process variants in our datasets (a great portion of entries in these
matrices are zero). The experiments were conducted on a machine with an Intel
Core i7 CPU, 16 GB of RAM and MS Windows 10.



Business Process Variant Analysis Based on Mutual Fingerprints 311

5.1 Setup and Datasets

Table 1 provides descriptive statistics for the four real-life event logs that we
used in our experiments. We obtained these datasets from the “4TU Data Cen-
ter” public repository [28]. The logs cover different processes: road traffic fine
management process at an Italian municipality (RTFM log), flow of patients
affected by sepsis infection (SEPSIS), IT incident and problem management at
Volvo (BPIC13), and permit request at different Dutch municipalities (BPIC15).
For each log, we established two process variants on the basis of the value of an
attribute (e.g. in the case of the RTFM log, this is the amount of the fine, while
in the case of SEPSIS this is the patient’s age), in line with [6]. The attributes
used to determine the variants, and their values, are also reported in Table 1.
As we can see from the table, each log has class imbalance (one variant is much
more frequent than the other). Due to lack of space, in the rest of this section
we focus on the RFTM log only. The interested reader can find the results for
all four logs online.4

Table 1. Datasets and corresponding process variants [28]

Event log

Event log Process Variant Cases (uni.) |σ|min |σ|max |σ|avg |Events| (uni.)
RTFM 1) Fine’s amount ≥ 50 21243 (159) 2 20 4 91499 (11)

2) Fine’s amount < 50 129127 (169) 2 11 4 469971 (11)

SEPSIS 1) Patient’s age ≥ 70 678 (581) 3 185 15 10243 (16)

2) Patient’s age ≤ 35 76 (51) 3 52 9 701 (12)

BPIC13 1) Organization = A2 553 (141) 2 53 8 4221 (3)

2) Organization = C 4417 (611) 1 50 7 29122 (4)

BPIC15 1) Municipality = 1 1199 (1170) 2 62 33.1 36705 (146)

2) Municipality = 2 831 (828) 1 96 38.6 32017 (134)

Figure 4 shows the directly-follows graph (a.k.a. process map) for the two
process variants of the RTFM log: the first one, obtained from the sublog rel-
ative to fines greater than or equal to 50 EUR, the other obtained from the
sublog relative to fines lower than 50 EUR. Process maps are the common out-
put of automated process discovery techniques. To aid the comparison between
process variants, the arcs of process maps can be enhanced with frequency or
duration statistics, such as case frequency or average duration. Yet, even with
such enhancements, when the graphs are dense like those in Fig. 4, identifying
control-flow or duration differences between the two variants becomes impracti-
cable. Accordingly, the main objective of our evaluation is to use our approach
and the two baselines to answer the following research question:

– RQ1: What are the key differences in the control flow of the two process
variants?

4 https://doi.org/10.6084/m9.figshare.10732556.v1.

https://doi.org/10.6084/m9.figshare.10732556.v1
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After we have identified these key differences, we can enrich the results with
an analysis of the differences in activity duration, leading to our second research
question:

– RQ2: What are the key differences in the activity durations of the two process
variants?

Fig. 4. Directly-follows graph of the two process variants of the RFTM log: (a) Fine’s
amount ≥ 50; (b) Fine’s amount < 50

To answer RQ1, we apply our approach by considering which pair of adja-
cent events, called an edge, i.e., eiei+1 is selected as a discriminatory edge. We
consider only edges that are available in process variants. An edge shows the
finest control-flow unit. Next, to answer RQ2, we include an additional analysis
to examine whether the average duration time for an edge varies significantly
between process variants. Essentially RQ2 boils down to running a statistical
test between the corresponding average duration times of the same edge in the
two variants.

5.2 Results

Table 2 shows the edges in the two directly-follows graphs of Fig. 4 that are sta-
tistically significantly different both in frequency and in time (i.e. the temporal
order of execution within a path of the graph), as obtained by our approach.

Table 2 also contains the classifier’s performance, measured by F̄1. For each
edge, this score is statistically greater (averaged from ten times cross-validation)
than the corresponding worst case, F̄1

0, see Eq. 5. Besides, we note that the
coefficients γ1 and γ2 vary for each edge. This shows that the proportion of class
labels vary for each edge. The two baselines [5,6] cannot provide such results. It
is because they only consider the relative frequency of an edge in each process
variant, and apply a statistical test on such frequencies, and neglect the order
in which such edge occurs within a path of the directly-follows graph. Thereby,
they miss to capture the backward and forward information in a trace (or path
in the directly-follows graph) containing that edge.
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Table 2. Significantly-different edges in frequency and order, between the directly-
follows graphs of Fig. 4, obtained with our approach

Edge γ1 γ2 F̄1
0

F̄1 P-value

(‘Add penalty’, ‘Payment’) 0.17 0.83 0.18 0.35 0.009

(‘Payment’, ‘Payment’) 0.19 0.81 0.20 0.38 0.006

(‘Payment’, ‘Send for Credit Collection’) 0.23 0.77 0.22 0.34 0.006

Figure 5 shows the mutual fingerprints resulting from the edges in Table 2.
For comparison purposes, Fig. 6 shows two annotated directly-follows graphs
obtained with the baseline in [5].5

For ease of discussion, let us neglect the type of edge (solid, dashed) in Fig. 5.
The edges in Table 2 are highlighted in red in Fig. 5. In effect, traces that contain
a discriminatory edge, like (Payment, Send for Credit Collection) differ between
process variants. An offender whose fine’s amount is greater than or equal to 50
Euros goes through more steps, i.e. through a different control flow as shown in
Fig. 5(a). In contrast, an offender whose fine’s amount is below 50 Euros, goes
to less steps, as in Fig. 5(b).

Fig. 5. Answer to RQ1: Discovered mutual fingerprints for the RFTM variants in
Table 1; (a) Fingerprint for variant Fine’s amount ≥ 50, (b) Fingerprint for variant
Fine’s amount < 50 (Color figure online)

5 Obtained using the default settings in ProM 6.9.
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In contrast, the baseline in [5] comes up with a single directly-follows graph
for both process variants (Fig. 6). We note that the approach in [6] produces sim-
ilar results, which we did not show due to lack of space. The baselines are unable
to identify control-flow differences completely. Rather, they show (statistically-
significant) differences at the level of individual edges. For example, in [5], the
thickness of each edge shows the frequency of that edge. Even if a statistical
test is applied for each edge to determine whether the corresponding frequency
varies between process variants, this information is not sufficient to identify dif-
ferences in paths. The problem is exacerbated by the fact that a directly-follows
graph generalises process behavior since the combination of the various edges
give rise to more paths than the traces in the event log. Indeed the baselines
[5,6] consider only the edge’s frequency, whereas our approach considers both
frequency and location of an edge simultaneously. For example, the approach
in [5] identifies that the frequency of (Create Fine, Payment) (the orange edge)
is different between process variants. In contrast, in our approach it was found
that this particular edge does not discriminate the two process variants from a
control-flow perspective. In fact, the paths containing this edge, though having
different frequencies, are very similar in the two variants.

Also, “Insert fine notification → Appeal to Judge” is not depicted in Fig. 5(b),
since it does not contribute to any statistically-significant control-flow difference
between the two variants. However, it appears in Fig. 5(a) because it is in any
path that contains at least one of the edges in Table 2. This is a good feature
of our approach, since the edge in question itself does not contribute to any
differences, but its occurrence and location affect other edges for the respective
variant, giving rise to different mutual fingerprints. That said, as a side effect,
sometimes the resulting fingerprints might contain a large number of edges. In
contrast, the baselines [5,6] are unable to capture such correlation because the
frequency of an edge is considered in their analysis.

Fig. 6. Answer to RQ1: Directly-follows graph obtained for the two variants in the
RFTM log according to [5]. The frequency of an edge is shown by its thickness while
the color shows the difference between the edge frequencies in the two variants: (a) all
edges shown; (b) edges with frequency ≤ %5 are cut (Color figure online)
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Table 3. Answer to RQ2: comparing edge durations between the two variants

Edge Δt1 (day) Δt2 (day) P-value

(‘Create Fine’, ‘Send Fine’) 72.48 92.98 0

(‘Create Fine’, ‘Payment’) 11.52 10.38 0.0089

(‘Send Appeal to Prefecture’, ‘Add penalty’) 26.13 20.00 0.0004

(‘Add penalty’, ‘Payment’) 152.38 169.43 0

(‘Add penalty’, ‘Receive Result Appeal from Prefecture’) 58.17 46.39 0.0151

(‘Payment’, ‘Payment’) 77.60 101.97 0

(‘Payment’, ‘Add penalty’) 30.94 33.27 0.0086

(‘Insert Fine Notification’, ‘Payment’) 28.83 26.48 0.0083

(‘Insert Fine Notification’, ‘Insert Date Appeal to
Prefecture’)

34.24 35.50 0.0069

(‘Insert Date Appeal to Prefecture’, ‘Add penalty’) 22.94 24.96 0.0016

(‘Send Appeal to Prefecture’, ‘Receive Result Appeal
from Prefecture’)

49.25 56.19 0.0354

Table 4. Performance of the proposed approach

Dataset Execution time (s) Memory usage (MB) 95% C.I

RTFM 2340 (473–608)

SEPSIS 217 (170–218)

BPIC13 152 (380–410)

BPIC15 3470 (980–1040)

To answer RQ2, we compared the average duration time Δt for each edge of
the two process variants (capturing the activity duration), and then applied t-
tests with unequal variances. The results are shown in Table 3. We superimposed
those edges with statistically significant differences in duration, over the corre-
sponding fingerprints by using dashed edges, as shown in Fig. 5. Both baseline
[5,6] provide the same results for the duration time.

Execution Time. Table 4 shows the execution time of our approach for each
dataset. Time performance is affected by the size and complexity of the event
log. For example, in the table we can observe longer times for the RFTM log
(39 min), where the number of cases is high, and for BPIC15 (58 min), where the
number of unique events is relatively high. Yet, the approach performs within
reasonable bounds on a standard laptop configuration. Comparatively, the two
baseline techniques are much faster, namely in the order of a few minutes.

Table 4 also shows RAM occupancy. This is monitored every 10 s, and next,
the 95% confidence interval is computed. One can see that the amount of memory
for BPIC15 is larger than the other datasets. This can be attributed to many
unique events available in each process variant, which give rise to an augmented
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matrix with a high number of columns. Yet, memory use is quite reasonable
(ranging from 473MB min for RFTM to 1.04 GB max for BPIC15).

6 Conclusion

In this paper, we presented a novel approach to identify statistically-significant
differences in the control-flow and activity durations of two business process
variants, each captured as an event log. The cornerstone technique of this app-
roach is the construction of a novel encoding of discriminatory features from
an event log, called mutual fingerprint, based on a discrete wavelet transfor-
mation of time series extracted from the traces of the event log. The approach
was evaluated using four real-life logs against two baselines for process variant
analysis. The results show that at trace level, our approach reveals significant
statistical discrepancies between the two variants, whereas the baselines used in
our evaluation are unable to detect these differences. Furthermore, the presented
approach performs within reasonable execution times, despite the more involving
computations.

We foresee the applicability of the devised encoding technique based on dis-
crete wavelet transformation to a range of process mining problems. These range
from predictive process monitoring through to trace clustering, outlier detection,
and process drift identification and characterization.
Reproducibility. The source code required to reproduce the reported experi-
ments can be found at https://github.com/farbodtaymouri/RuleDeviance.
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