
Evaluating the Benefits of Model-Driven
Development

Empirical Evaluation Paper

África Domingo1(B), Jorge Echeverŕıa1(B), Óscar Pastor2(B),
and Carlos Cetina1(B)

1 Universidad San Jorge, SVIT Research Group, Zaragoza, Spain
{adomingo,jecheverria,ccetina}@usj.es

2 Universidad Politecnica de Valencia, PROS Research Center, Valencia, Spain
opastor@dsi.upv.es

Abstract. Researchers have been evaluating the benefits of Model-
Driven Development (MDD) for more than a decade now. Although some
works suggest that MDD decreases development time, other works limit
MDD benefits to academic exercises and to developers without experi-
ence. To clarify the benefits of MDD, we present the results of our exper-
iment, which compares MDD and Code-centric Development (CcD) in
terms of correctness, efficiency, and satisfaction. Our experiment achieves
fidelity to real-world settings because the tasks are taken from real-world
video game development, and the subjects use domain frameworks as
they are used in real-world developments. Our results challenge previ-
ous ideas that limit the benefits of MDD to academic exercises and to
developers without experience. Furthermore, our results also suggest that
understanding the benefits of MDD might require researchers to rethink
their experiments to include the social part of software development.

Keywords: Model-Driven Development · Code-centric development ·
Empirical evaluation · Experiment

1 Introduction

Model-Driven Development (MDD) [19] promotes software models as the cor-
nerstone of software development. In comparison to popular programming lan-
guages, these software models are less bound to the underlying implementation
and are closer to the problem domain. Model transformation is at the heart of
MDD since MDD aims to generate the software code from the models. This
generation ranges from skeleton code to fully functional code systems.

For more than a decade, researchers have been evaluating the benefits
of MDD [1,2,6–8,11–13,16–18]. Some works [6,11,18] conclude that MDD
decreases development time (up to 89% ) relative to Code-centric Development

Partially supported by MINECO under the Project ALPS (RTI2018-096411-B-I00).

c© Springer Nature Switzerland AG 2020
S. Dustdar et al. (Eds.): CAiSE 2020, LNCS 12127, pp. 353–367, 2020.
https://doi.org/10.1007/978-3-030-49435-3_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49435-3_22&domain=pdf
https://doi.org/10.1007/978-3-030-49435-3_22


354 Á. Domingo et al.

(CcD) [11]. Other works [8,17] suggest that gains might only be achieved in
academic exercises. Furthermore, other works [8,12] assert that only develop-
ers without experience benefit from MDD. Therefore, more experimentation is
needed to clarify the benefits of MDD.

In the context of MDD, domain frameworks (bodies of prewritten code) help
model transformations to fill the abstraction gap between models and code (see
Fig. 1 left). These frameworks are not exclusive of MDD. In the context of CcD,
developers also use frameworks to accelerate development (see Fig. 1 right). How-
ever, previous experiments neglect the use of domain frameworks. This trig-
gers the question of whether MDD benefits would hold when frameworks are
considered.

In this work, we present our experiment, which compares MDD and CcD in
terms of correctness, efficiency, and satisfaction. The tasks of our experiment are
extracted from the real-world software development tasks of a commercial video
game (Kromaia1 released on PlayStation 4 and Steam). A total of 44 subjects
(classified in two groups based on development experience) performed the tasks
of the experiment. In our experiment, both MDD and CcD leverage a domain
framework (see Fig. 1).

Our results challenge previous ideas that suggest that MDD gains are only
achieved in academic settings. In our experiment with tasks from real-world
development, MDD improved correctness and efficiency by 41% and 54% respec-
tively. The results also contradict the previous claim that MDD benefits are
limited to developers without experience. In the experiment, developers without
experience (49% and 69%) as well as developers with experience (39% and 54%)
significantly improved their results with MDD.

Furthermore, the results also uncover a paradox. Despite the significant
improvements in correctness and efficiency, the intention of use of MDD did
not achieve maximum values. We think this should influence future experiments
to go beyond the technical facet and explore the cultural aspect of software
development.

Modeling
Task

Modeling 
documentation
(Metamodel & 
Explanation)

Model
(SDML)

Model
to Code

Transfromation

Code
Generated

Framework
(KromaiaFW)

Programming
Task

Programming 
documentation
(Framework’s
Class diagram 
& Explanation)a) b)

Code

Framework
(KromaiaFW)

Fig. 1. a) Artifacts in the MDD task b) Artifacts in the CcD task

The rest of the paper is organized as follows: Sect. 2 reviews the related
work. Section 3 describes our experiment, and Sect. 4 shows the results. Section 5
describes the threats to validity. Finally, Sect. 6 concludes the paper.

1 https://youtu.be/EhsejJBp8Go.

https://youtu.be/EhsejJBp8Go


Evaluating the Benefits of Model-Driven Development 355

2 Related Work

In the Motorola Case Study, Baker et al. [2] present their experiences deploy-
ing a top-down approach to MDD for more than 15 years in a large industrial
context, resulting in a set of high-level strategies to enhance MDD deployment
and success. Anda and Hansen [1] analyze the use of MDD with UML in soft-
ware development companies. They show that developers who applied UML in
modelling and enhancing legacy software experienced more challenges than those
who modelled and developed new software from scratch. They propose a need
for better methodological support in applying UML in legacy development.

Krogmann and Becker [11] present one of the first comparisons between MDD
and CcD software development with respect to effort. Despite its limitations (it
is not as a controlled experiment), their case study compares two software devel-
opment projects, each of which was developed using a different method. They
conclude that the model-driven approach could be carried out in only 11% of
the time that of the code-centric approach. Another comparative case study of
model-driven development with code-centric development by Kapteijns et al. [8]
claims that MDD can be successfully applied to small-scale development projects
under easy conditions. Heijstek and Chaudron [6] focused their case study on
report specific metrics to analyze model size, complexity, quality, and effort.
They analyze an industrial MDD project that was developed for the equivalent
of 28 full-time team members. They showed that an increase in productivity,
a reduction in complexity, and benefits from a consistent implementation are
attributed to the use of MDD techniques. Melleg̊ard and Staron [13] analyze
the main modelling artefacts in the analysis and design phase of projects with
respect to required effort and perceived importance. They conclude that the dis-
tribution of effort between models and other artefacts is similar in code-centric
development to that of model-driven development. The factors for a successful
adoption of MDD in a company were analyzed later by Hutchinson et al. [7]
through interviews of 20 subjects from three different companies. They claim
that a progressive and iterative approach, transparent organizational commit-
ment and motivation, integration with existing organizational processes, and a
clear business focus are required to guarantee success in the adoption of MDD
techniques.

The experiment conducted by Mart́ınez et al. [12] with undergraduate stu-
dents compares three methods: Model-driven, Model-Based, and Code-Centric,
regarding perceived usefulness, ease of use, intention of use, and compatibility.
They conclude that the Model-Driven method is considered to be the most use-
ful one, although it is also considered to be the least compatible with previous
developers’ experiences. Pappoti et al. [18] also present an experiment with a
group of students in which an MDD based approach using code generation from
models is compared with manual coding. When code generation was applied, the
development time was consistently shorter than with manual coding. The par-
ticipants also indicated that they had fewer difficulties when applying code gen-
eration. For Panach et al. [17], the benefits of developing software with MDD
depend on the development context characteristics, such as problem complexity



356 Á. Domingo et al.

and the developers’ background experience with MDD. However, in a later work
[16], where they report the results of six replications of the same experiment, they
confirm that MDD yields better quality independently of problem complexity, and
that the effect is bigger when the problems are more complex.

Table 1. Empirical studies on MDD

Work
Modelling
Language

Domain
Framework

Sample
size

Context
Type of
Study

Variables

[2] UML No Not given Industry Case Study Quality—Productivity

[1] UML No 28 Industry Experiment Difficulty—Use—Utility

[11]
DSL

(GMFML) No 11 Academia Case Study
Quality—Efficiency
Time effort

[6] UML No 4 Industry Case Study
Quality—Effort
Size—Complexity

[8] UML No 1 Industry Case Study
Quality—Productivity
Maintainability

[13] UML No 3 Industry Case Study Effort

[7] UML No 20 Industry Case Study
Factors for a successful
adoption of MDD

[12]
UML
DSL

(OOH4RIA)
No 26 Academia Experiment

Perceived usefulness
Perceived ease of use
Intention to adopt
Compatibility

[18] UML No 29 Academia Experiment
Efficiency—Effort
Participants’ opinion

[17, 16] UML No 26 Academia Experiment
Quality—Effort
Satisfaction—Productivity

This work DSL(SDML) Yes 44 Academiaa Experiment
Correctness—Efficiency
Satisfaction

a The tasks in our experiment are based on a real-world video game, but all participants involved are still

students. Also, an experiment outside a company setting is by nature artificial.

Table 1 summarizes the related work. In contrast to previous works, we
address the use of a domain framework as part of both MDD and CcD. This
dimension has not been explored before. This contributes to achieving fidelity
to real-world development since domain frameworks are fairly popular in both
MDD and CcD contexts.

3 Experiment Design

3.1 Objectives

According to the guidelines for reporting software engineering experiments [22],
we have organized our research objectives using the Goal Question Metric tem-
plate for goal definition, which was originally presented by Basili and Rombach
[3]. Our goal is to:



Evaluating the Benefits of Model-Driven Development 357

Analyze software development methods, for the purpose of comparison,
with respect to correctness of the software developed, efficiency, and user
satisfaction; from the point of view of novice and professional developers, in
the context of developing software for a video game company.

3.2 Variables

In this study, the independent variable is the software development method
(Method). It has two values, MDD and CcD, which are the methods used by
subjects to solve the tasks.

Given that our experiment evaluates the benefits of MDD, and the most
reported benefit of MDD is decreased development time, we consider two depen-
dent variables, Correctness and Efficiency, which are related to the software
that is developed. Correctness was measured using a correction template, which
was applied to the programming artifacts developed by the participants after
the experiment. Correctness was calculated as the percentage of passing assert
statements with respect to the total number of assert statements. To calculate
Efficiency, we measured the time employed by each subject to finish the task.
Efficiency is the ratio of Correctness to time spent (in minutes) to perform a
task.

We measured users satisfaction using a 5-point Likert-scale questionnaire
based on the Technology Acceptance Model (TAM) [14], wich is used for val-
idating Information System Design Methods. We decompose satisfaction into
three dependent variables as follows: Perceived Ease of Use (PEOU), the degree
to which a person believes that learning and using a particular method would
require less effort. Perceived Usefulness (PU), the degree to which a person
believes that using a particular method will increase performance, and Inten-
tion to Use (ITU), the degree to which a person intents to use a method. Each
of these variables corresponds to specific items in the TAM questionnaire. We
averaged the scores obtained for these items to obtain the value for each variable.

3.3 Design

Since the factor under investigation in this experiment is the software develop-
ment method, we compared MDD and CcD. In order to improve experiment
robustness regarding variation among subjects [21], we chose a repeated mea-
surement using the largest possible sample size. To avoid the order effect, we
chose a crossover design and we used two different tasks, T1 and T2. All of the
subjects used the two development methods, each one of which was used in a
different task.

The subjects had been randomly divided into two groups (G1 and G2). In
the first part of the experiment, all of the subjects solved T1 with G1 using CcD
and G2 using MDD. Afterwards, all of the subjects solved T2, G1 using MDD
and G2 using CcD.



358 Á. Domingo et al.

3.4 Participants

The subjects were selected according to convenience sampling [22]. A total of 44
subjects performed the experiment. There were 35 second-year undergraduate
students from a technological program and 9 masters students in a subject about
advanced software modelling currently employed as professional developers. The
undergraduate students were novice developers and the master students were
professional developers.

The subjects filled out a demographic questionnaire that was used for char-
acterizing the sample. Table 2 shows the mean and standard deviation of age,
experience, hours per day developing software (Code Time) and hours per day
working with models (Model Time). On average, all of the masters students had
worked four years developing software. They worked on software development
six hours per day while the undergraduate students, on average, dedicated less
than 1.5 h to developing software each day. We used a Likert scale form 1 to 8 to
measure the subjects’ knowledge about domain-specific languages (DSL know)
and programming languages (PL know). The mean and standard deviation of
their answers are also in Table 2. All of them evaluated higher their programming
language knowledge than their ability with models.

Table 2. Results of the demographic questionnaire

Age± σ Experience± σ Code time± σ Model time± σ DSL Know± σ PL Know± σ

Undergraduate 22.2 ± 0.4 0.6 ± 1.4 1.4 ± 0.8 1.0 ± 0.4 3 ± 1.7 4.2 ± 1.8

Masters 27 ± 2.6 4.3 ± 3.2 6.2 ± 2.0 0.9 ± 0.3 3.4 ± 1.0 6.2 ± 1.2

Total 21.6 ± 3.2 1.4 ± 2.4 2.4 ± 2.3 1 ± 0.4 3.1 ± 1.7 4.6 ± 1.9

The experiment was conducted by two instructors and one video game soft-
ware engineer (the expert), who designed the tasks, prepared the correction
template, and corrected the tasks. The expert provided information about both
the domain-specific language and the domain framework. During the experiment,
one of the instructors gave the instructions and managed the focus groups. The
other instructor clarified doubts about the experiment and took notes during
the focus group.

3.5 Research Questions and Hypotheses

We seek to answer the following three research questions:
RQ1. Does the method used for developing software impact the Correctness

of code? The corresponding null hypotheses is HC0: The software development
method does not have an effect on Correctness.

RQ2. Does the method used for developing software impact the Efficiency
of developers to develop software? The null hypotheses for Efficiency is HE0:
The software development method does not have an effect on Efficiency.



Evaluating the Benefits of Model-Driven Development 359

RQ3. Is the user satisfaction different when developers use different methods
of software development? To answer this question we formulated three hypothe-
ses based on the variables Perceived Ease of Use, Perceived Usefulness, and
Intention to Use:HPEOU , HPU and HITU respectively. The corresponding null
hypotheses are:

HPEOU0: The software development method does not have an effect on Per-
ceived Ease of Use.
HPU0: The software development method does not have an effect on Perceived
Usefulness
HITU0: The software development method does not have an effect on Inten-
tion to Use.

The hypotheses are formulated as two-tailed hypotheses since not all of the
empirical or theoretical studies support the same direction for the effect.

3.6 Experiment Procedure

The diagram in Fig. 2 shows the experiment procedure that can be summarises
as follows:

1. The subjects received information about the experiment. An instructor
explained the parts in the session, and he advised that it was not a test
of their abilities.

2. A video game software engineer explained to the subjects the problem con-
text and how to develop game characters on a video game with the domain
framework to be used later in the experiment. The average time spent on
this tutorial was 30 min.

3. The subjects completed a demographic questionnaire. One of the instruc-
tors distributed and collected the questionnaires, verifying that all of the
fields had been answered and that the subject had signed the voluntary
participation form in the experiment.

4. The subjects received clear instructions on where to find the statements for
each task, how to submit their work, and how to complete the task sheet
and the satisfaction questionnaire at the end of each task.

5. The subjects performed the first task. The subjects were randomly divided
into two groups (G1 and G2) to perform the tasks with the domain frame-
work. The subjects from G1 developed the first task coding with C++, and
the subjects from G2 developed the task using MDD. The instructors used
the distribution in the room to distinguish one group from another and to
give specific guidance to each subject if requested.

6. The subjects completed a satisfaction questionnaire about the method used
to perform the task.

7. The subjects answered an open-ended questionnaire about the method used
to perform the task.

8. An instructor checked that each subject had filled in all of the fields on the
task sheet and on the satisfaction questionnaire.



360 Á. Domingo et al.

9. The subjects performed the second task exchanging methods. In other words,
the subjects from G1 performed the second task using MDD, and the sub-
jects from G2 performed the task using C++. Then, the subjects filled out
the satisfaction questionnaire and the open-ended questionnaire that were
related to the method used.

10. A focus group interview about the tasks was conducted by one instructor
while the other instructor took notes.

11. Finally, the video game software engineer corrected the tasks and an instruc-
tor analyzed the results.

Fig. 2. Experimental procedure

In the tasks, the subjects were requested to develop the code of a part of
the Kromaia video game, specifically a different game boss for each task. On
average, the tasks took about 50 model elements of Shooter Definition Model
Language (MDD), and about 300 lines of code (CcD). Learn more about devel-
oping the game bosses at https://youtu.be/Vp3Zt4qXkoY. The materials used
in this experiment (the training material, the consent to process the data, the
demographic questionnaire, the satisfaction questionnaire, the open-ended ques-
tionnaire, the task sheet and the materials used in the focus group) are available
at http://svit.usj.es/MDD-experiment.

The experiment was conducted on two different days at Universidad San
Jorge (Zaragoza, Spain) by the same instructors and a video game software engi-
neer. On the first day, the experiment was performed by the masters students.
On the second day, the undergraduate students performed the experiment. The
masters and undergraduate students did not know each other. Their schedules
at the university were completely different and the programs they followed are
aimed at different types of student profiles.

4 Results

For the data analysis we have chosen the Linear Mixed Model (LMM) test
[20] also used in others crossover experiments in software engineering [9]. LMM

https://youtu.be/Vp3Zt4qXkoY
http://svit.usj.es/MDD-experiment


Evaluating the Benefits of Model-Driven Development 361

handles correlated data resulting from repeated measurements. The dependent
variables for this test are Correctness, Efficiency, Perceived Ease of Use, Per-
ceived Usefulness, and Intention to Use. In our study, the subjects are random
factors and the Method used to develop software (MDD or CcD) is a fixed factor
(the primary focus of our investigation). The statistical model (Model 1) used
in this case is described as:

DV ∼ Method + (1| subject) (1)

Additionally, the subjects experience is also consider to be a fixed effect. We
consider the variables Experience and the sequence Method and Experience to be
fixed effects to account for their potential effects in determining the main effect
of Method [9]. The statistical model (Model 2) used in this case is described in
the following formula:

DV ∼ Method + Experience + Method ∗ Experience + (1|Subjec) (2)

The statistical model fit for each variable has been evaluated based on good-
ness of fit measures such as Akaike’s information criterion (AIC) and Schwarz’s
Bayesian information criterion (BIC). The model with the smaller AIC or BIC
is considered to be the better fitting model. Additionally, the variance explained
in the dependent variables by the statistical models is evaluated in terms of R2

[9,15].
To quantify the difference between MDD and CcD, we have calculated the

effect size using the means and standard deviations of the dependent variables
of each method to obtain the standardized difference between the two means,
Cohen’s d Value [4]. Values of Cohen d between 0.2 and 0.3 indicate a small
effect, values around 0.5 indicate a medium effect, and values greater than 0.8
indicate a large effect. This value also allows us to measure the percentage of
overlaps between the distributions of the variables for each method.

We have selected box plots and histograms to describe the data and the
results.

4.1 Hypothesis Testing

The results of the Type III test of fixed effects for the fixed factors for each one
of the statistical models used in the data analysis are shown in Table 3.

For all of the variables, Method obtained p-values less than 0.05, regardless of
the statistical model used for its calculation. Therefore, all the null hypotheses
are rejected. Thus, the answers to the research questions RQ1, RQ2 and RQ3
are affirmative. The method used for developing software has a significant impact
on the correctness of code, efficiency, and the satisfaction of developers.

However, the fixed factors Experience and Method*Experience obtained p-
values greater than 0.05, which implies that neither the developers experience nor
the combination of both fixed factors had a significant influence on the changes
in correctness of code, or the efficiency and the satisfaction of the developers.



362 Á. Domingo et al.

Table 3. Results of test of fixed effects for each variable and each model

Model 1 Model 2

Method Method Experience Method*Experience

Correctness (F=643.3, p= .000) (F=137.7, p= .000) (F=2.5, p= .120) (F=1.9, p= .175)

Efficiency (F=1084.4, p= .000) (F=83.8, p= .000) (F=1.9, p= .171) (F= .6, p= .447)

Ease of use (F=451.7, p= .000) (F=14.2, p= .001) (F= .4, p= .508) (F= .12, p= .730)

Usefulness (F=545.7, p= .000) (F=9.97, p= .003) (F=2.0, p= .168) (F=0.0, p= .965)

Intention to Use (F=341.4, p= .000) (F=5.3, p= .026) (F= .2, p= .689) (F=1.1, p= .965)

4.2 Statistical Model Validity and Fit

The use of the Linear Mixed Model test assumed that residuals must be normally
distributed. The normality of the errors had been verified by the Shapiro-Wilk
test and visual inspections of the histogram and normal Q-Q plot. All of the
residuals, except the ones carried out for Efficiency, obtained a p-value greater
than 0.05 with the normality test. We obtained normally distributed residuals
for Efficiency by using square root transformation. For the statistical analysis of
the variable Efficiency with LMM, we used DV = sqrt(Efficiency) in formulas
(1) and (2). For the rest of the variables, DV is equal to their value.

Table 4. Comparison of alternative models for each variable

Variance explained Model fit

R2 AIC BIC

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

Correctness 63.8% 65.7% −59.617 −56.313 −49.847 −46.638

Efficiency 57.9% 58.6% −412.078 −398.820 −402.261 −398.097

Ease of use 4.8% 14.1% 232.593 232.281 241.917 244.004

Usefulness 10.9% 13.7% 218.295 217.452 228.113 227.176

Intention to use 4.8% 6.2% 270.298 268.847 280.115 278.570

The assessment of statistical model fit is summarized in Table 4. The values
of the fit statistics R2, AIC and BIC for each one of the statistical models are
listed for each dependent variable. The fraction of total variance explained by
both statistical models is similar. Model 2 obtained slightly better values of R2,
but the difference is not big. The AIC and BIC criteria were smaller for Model 1
in Correctness and Efficiency, and the difference was small for the other variables
in favour of Model 2. This suggests that the Method factor explains much of the
variance in the dependent variables. The factors incorporated in Model 2 with
respect to Model 1 did not have a significant influence on the changes in the
correctness of code, or the efficiency and satisfaction of the developers, as we
have reported in Sect. 4.1.



Evaluating the Benefits of Model-Driven Development 363

4.3 Effect Size

The effect size of a Cohen d value of 2.63 for Correctness indicates that the
magnitude of the difference is large. The mean of Correctness for MDD is 2.63
standard deviations bigger than the mean of Correctness for CcD. The mean
for MDD is the 99.5 percentile of the mean for CcD. The box plots in Fig. 3(a)
illustrate this result. This means that the distributions only have 9.7% of their
areas on common, as shows Fig. 3(c).

Fig. 3. Box plots and histograms for Correctness and Efficiency : (a) and (b) for Cor-
rectness; (c) and (d) for Efficiency

There is also a large effect size with a Cohen d value of 2.33 for Efficiency.
The magnitude of the difference is also large. The mean for Efficiency for MDD,
is 2.33 standard deviations bigger than the mean for efficiency for CcD. Again
the mean for MDD is the 99.5 percentile of the mean for CcD (Fig. 3(b)) and
the distributions of efficiency are different for 88% of their areas (Fig. 3(d)). The
effect size of the differences based on using MDD or CcD for Perceived Ease of
Use is medium-high, with a Cohen d value of 0.78. The box plots of Fig. 4(a)
and the histograms of Fig. 4(d) illustrate how the differences in Perceived Ease
of Use are not as great as the ones for Correctness or Efficiency. The magnitude
of the difference between methods of development decreases to medium in the
case of Perceived Usefulness with a Cohen d value of 0.69. Both the box plots of



364 Á. Domingo et al.

Fig. 4(b) and the histograms of Fig. 4(e) illustrate a similar distribution to the
one for Perceived Ease of Use. Again there is not a big difference in the diagrams
corresponding to each subject group (professionals or novices)

Intention to Use obtained the lowest Cohen’s d value (0.445), which means
that the effect size of the method in this case is small to medium: the histograms
of Fig. 4(f) shows that the distributions have much in common. The box plots of
Fig. 4(c) shows that, in this case, the difference in the mean scores of intention
of use (in favor of MDD versus CcD), is greater for the group of professionals
than for the group of novices or the total group.

Fig. 4. Box plots and histograms for satisfaction: (a) and (d) for Perceived Ease of
Use; (b) and (e) for Perceived Ease of Use; and (c) and (f) for Intention to Use

These data allow us to give more precise answers to RQ1, RQ2, and RQ3:
for Correctness and Efficiency, the impact of the method used for development
is very large, while, for satisfaction, the magnitude of the difference is medium.

4.4 Interpretation of the Results

Nowadays, domain frameworks are widely used in software development. The
pre-implemented frameworks save developers time by using implementations
that had been developed previously. In previous comparisons between MDD
and CcD, one may argue that the benefits of MDD might come from the lack of
a domain framework for CcD. This was not the case in our experiment.

Benefits must come from the software model itself and the model transfor-
mation (from model to code) that MDD adds to the framework. We still do not



Evaluating the Benefits of Model-Driven Development 365

know if the key lies on the abstraction of models, the automation of transforma-
tions, or a combination of these. However, it turns out that a framework on its
own is not enough to achieve the benefits of MDD.

In our focus group interviews, both the professionals and the novices agreed
that the abstraction of models is a double-edged sword. On the one hand, the
subjects stated that models empower them to focus on the task at hand. On the
other hand, the subjects stated that they lose control of the code generated. The
subjects acknowledge that this loss of control negatively influences their intention
of use. A few subjects stated that this loss of control would be alleviated if the
model transformation were considered as another developer of the team. This
triggers an interesting new direction of research, exploring the social implications
of MDD on development teams.

5 Threats to Validity

To describe the threats of validity of our work, we use the classification of [22].
Conclusion Validity. The low statistical power was minimized because the

confidence interval is 95%. To minimize the fishing and the error rate threat,
the tasks and corrections were designed by a video game software engineer. Fur-
thermore, this engineer corrected the tasks. The Reliability of measures threat
was mitigated because the measurements were obtained from the digital arte-
facts generated by the subjects when they performed the tasks. The reliability
of treatment implementation threat was alleviated because the treatment imple-
mentation was identical in the two sessions. Also, the tasks were designed with
similar difficulty. Finally, the experiment was affected by the random heterogene-
ity of subjects threat. The heterogeneity of subjects allowed us to increase the
number of subjects in the experiment.

Internal Validity. The interactions with selection threat affected the exper-
iment because there were subjects who had different levels of experience in soft-
ware development. To mitigate this threat, the treatment was applied randomly.
Other threat was compensatory rivalry : the subjects may have been motivated
to perform the task with a higher level of quality by using the treatment that
was more familiar to them.

Construct Validity. Mono-method bias occurs due to the use of a single
type of measure [17]. All of the measurements were affected by this threat. To
mitigate this threat for the correctness and efficiency measurements, an instruc-
tor checked that the subjects performed the tasks, and we mechanized these
measurements as much as possible by means of correction templates. We miti-
gated the threat to satisfaction by using a widely applied model (TAM) [5]. The
hypothesis guessing threat appears when the subject thinks about the objective
and the results of the experiment. To mitigate this threat, we did not explain
the research questions or the experiment design to the subjects. The evaluation
apprehension threat appears when the subjects are afraid of being evaluated. To
weaken this threat, at the beginning of the experiment the instructor explained
to the subjects that the experiment was not a test about their abilities. Author



366 Á. Domingo et al.

bias occurs when the people involved in the process of creating the experiment
artifacts subjectively influence the results. In order to mitigate this threat, the
tasks were balanced, i.e., their sizes and difficulty were the same for all treat-
ments. Furthermore, the tasks were extracted from a commercial video game.
Finally, the mono-operation bias threat occurs when the treatments depend on
a single operationalization. The experiment was affected by this threat since we
worked with a single treatment.

External Validity. The interaction of selection and treatment threat is
an effect of having a subject that is not representative of the population that
we want to generalize. However, using students as subjects instead of software
engineers is not a major issue as long as the research questions are not specifi-
cally focused on experts [10]. It would be necessary to replicate the experiment
with different subject roles in order to mitigate this threat. The domain threat
appears because the experiment has been conducted in a specific domain, i.e.,
video games development. We think that the generalizability of findings should
be undertaken with caution. Other experiments in different domains should be
performed to validate our findings.

6 Conclusion

In this work, we present an experiment that compares MDD and CcD in terms
of correctness, efficiency, and satisfaction. Our experiment goes beyond the state
of the art in terms of real-world fidelity and statistical power. A higher fidelity
to real-world software development is achieved by means of the use of domain
frameworks as they are used in real-world developments. Statistical power is
enhanced by increasing the sample size. Our results challenge previous ideas
that limit the benefits of MDD to academic exercises and to developers with-
out experience. Furthermore, our results also suggest a new research direction
that should include the social aspect of software development in order to better
understand the benefits of MDD.

References

1. Anda, B., Hansen, K.: A case study on the application of uml in legacy develop-
ment. In: ISESE 2006 - Proceedings of the 5th ACM-IEEE International Sympo-
sium on Empirical Software Engineering (2006)

2. Baker, P., Loh, S., Weil, F.: Model-driven engineering in a large industrial
context—motorola case study. In: Briand, L., Williams, C. (eds.) MODELS 2005.
LNCS, vol. 3713, pp. 476–491. Springer, Heidelberg (2005). https://doi.org/10.
1007/11557432 36

3. Basili, V.R., Rombach, H.D.: The tame project: towards improvement-oriented
software environments. IEEE Trans. Softw. Eng. 14(6), 758–773 (1988)

4. Cohen, J.: Statistical Power for the Social Sciences. Laurence Erlbaum and Asso-
ciates, Hillsdale (1988)

5. Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of
information technology. MIS Q. 13(3), 319–340 (1989)

https://doi.org/10.1007/11557432_36
https://doi.org/10.1007/11557432_36


Evaluating the Benefits of Model-Driven Development 367

6. Heijstek, W., Chaudron, M.R.V.: Empirical investigations of model size, complex-
ity and effort in a large scale, distributed model driven development process. In:
Conference Proceedings of the EUROMICRO (2009)

7. Hutchinson, J., Rouncefield, M., Whittle, J.: Model-driven engineering practices
in industry. In: Proceedings - International Conference on Software Engineering
(2011)

8. Kapteijns, T., Jansen, S., Brinkkemper, S., Houet, H., Barendse, R.: A comparative
case study of model driven development vs traditional development: the tortoise
or the hare. From Code Centric to Model Centric Software Engineering Practices
Implications and ROI (2009)

9. Karac, E.I., Turhan, B., Juristo, N.: A controlled experiment with novice developers
on the impact of task description granularity on software quality in test-driven
development. IEEE Trans. Softw. Eng. (2019)

10. Kitchenham, B.A., et al.: Preliminary guidelines for empirical research in software
engineering. IEEE Trans. Softw. Eng. 28(8), 721–734 (2002)

11. Krogmann, K., Becker, S.: A case study on model-driven and conventional software
development : the palladio editor. In: Software Engineering (2007)

12. Mart́ınez, Y., Cachero, C., Meliá, S.: MDD vs. traditional software development:
a practitioner’s subjective perspective. In: Information and Software Technology
(2013)

13. Melleg̊ard, N., Staron, M.: Distribution of effort among software development arte-
facts: an initial case study. In: Bider, I., et al. (eds.) BPMDS/EMMSAD -2010.
LNBIP, vol. 50, pp. 234–246. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-13051-9 20

14. Moody, D.L.: The method evaluation model: a theoretical model for validating
information systems design methods. In: ECIS 2003 Proceedings. p. 79 (2003)

15. Nakagawa, S., Schielzeth, H.: A general and simple method for obtaining r2 from
generalized linear mixed-effects models. Meth. Ecol. Evol. 4(2), 133–142 (2013)

16. Navarrete, J.I.P., et al.: Evaluating model-driven development claims with respect
to quality: a family of experiments. IEEE Trans. Softw. Eng. (2018)

17. Panach, J.I., España, S., Dieste, Ó., Pastor, Ó., Juristo, N.: In search of evidence
for model-driven development claims: an experiment on quality, effort, productivity
and satisfaction. Inf. Softw. Technol. 62, 164–186 (2015)

18. Papotti, P.E., do Prado, A.F., de Souza, W.L., Cirilo, C.E., Pires, L.F.: A quanti-
tative analysis of model-driven code generation through software experimentation.
In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp.
321–337. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38709-
8 21

19. Selic, B.: The pragmatics of model-driven development. IEEE Softw. 20(5), 19–25
(2003)

20. West, B.T., Welch, K.B., Galecki, A.T.: Linear Mixed Models: A Practical Guide
Using Statistical Software. Chapman and Hall/CRC, Boca Raton (2014)

21. Wilde, N., Buckellew, M., Page, H., Rajilich, V., Pounds, L.T.: A comparison of
methods for locating features in legacy software. J. Syst. Softw. 65(2), 105–114
(2003)

22. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29044-2

https://doi.org/10.1007/978-3-642-13051-9_20
https://doi.org/10.1007/978-3-642-13051-9_20
https://doi.org/10.1007/978-3-642-38709-8_21
https://doi.org/10.1007/978-3-642-38709-8_21
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2

	Evaluating the Benefits of Model-Driven Development*5pt
	1 Introduction
	2 Related Work
	3 Experiment Design
	3.1 Objectives
	3.2 Variables
	3.3 Design
	3.4 Participants
	3.5 Research Questions and Hypotheses
	3.6 Experiment Procedure

	4 Results
	4.1 Hypothesis Testing
	4.2 Statistical Model Validity and Fit
	4.3 Effect Size
	4.4 Interpretation of the Results

	5 Threats to Validity
	6 Conclusion
	References




