
Modeling and Analyzing Architectural
Diversity of Open Platforms

Bahar Jazayeri1(B), Simon Schwichtenberg1, Jochen Küster2,
Olaf Zimmermann3, and Gregor Engels1

1 Paderborn University, Paderborn, Germany
{bahar.jazayeri,simon.schwichtenberg,gregor.engels}@upb.de
2 Bielefeld University of Applied Sciences, Bielefeld, Germany

jochen.kuester@fh-bielefeld.de
3 University of Applied Sciences of Eastern Switzerland, St. Gallen, Switzerland

ozimmerm@hsr.ch

Abstract. Nowadays, successful software companies attain enhanced
business objectives by opening their platforms to thousands of third-
party providers. When developing an open platform many architectural
design decisions have to be made, which are driven from the compa-
nies’ business objectives. The set of decisions results in an overwhelm-
ing design space of architectural variabilities. Until now, there are no
architectural guidelines and tools that explicitly capture design variabil-
ities of open platforms and their relation to business objectives. As a
result, systematic knowledge is missing; platform providers have to fall
back to ad-hoc decision-making; this bears consequences such as risks
of failure and extra costs. In this paper, we present a pattern-driven
approach called SecoArc to model diverse design decisions of open plat-
forms and to analyze and compare alternative architectures with respect
to business objectives. SecoArc consists of a design process, a modeling
language, and an automated architectural analysis technique. It is imple-
mented and ready-to-use in a tool. We evaluate the approach by means
of a real-world case study. Results show that the approach improves the
decision-making. Future platform providers can reduce risks by making
informed decisions at design time.

1 Introduction

In recent years, prominent software companies succeed in growing by transform-
ing their software products to platforms with open Application Programming
Interfaces (APIs), so that third-party providers can develop software on top of
them. Usually, online marketplaces are used to distribute the third-party devel-
opments of such open platforms. Success of open platforms highly depends on
suitable design and governance of the ecosystem surrounding them, i.e., the
arrangement of human actors and their interaction with the platforms [1]. Such
an ecosystem is called software ecosystem and is the result of a variable and com-
plex range of architectural design decisions whereas the decisions span across
c© Springer Nature Switzerland AG 2020
S. Dustdar et al. (Eds.): CAiSE 2020, LNCS 12127, pp. 36–53, 2020.
https://doi.org/10.1007/978-3-030-49435-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49435-3_3&domain=pdf
https://doi.org/10.1007/978-3-030-49435-3_3

Modeling and Analyzing Architectural Diversity of Open Platforms 37

business, application, and infrastructure architectures [2]. Inevitably, different
business decisions may result in completely different application and infrastruc-
ture architectures [3]. For instance, in ecosystems around mobile platforms (e.g.,
Apple iOS), the platform providers decide about technical standards like pro-
gramming languages, which give them control over thousands of third-party
providers. In contrary, open source software platforms (e.g., Mozilla Firefox)
support innovation whereas developers are free to choose the development envi-
ronment as well as to publish on the marketplaces. Another group is highly
commercialized industrial platforms (e.g., belonging to Citrix and SAP) that
are rigorously tested and verified and have networks of strategic partners around
them.

Although a diverse range of open platforms has already been created in prac-
tice, there is still a lack of systematic architectural guidance to design the ecosys-
tems surrounding them [4]. There is a multitude of Architecture Description
Languages (ADLs) that focus on specific operational domains [5], while only
supporting needs of those domains, e.g., for mobile applications [6]. In addi-
tion, general-purpose languages like UML and Enterprise Architecture Model-
ing (EAM) like ArchiMate do not allow architects to directly capture diverse
design decisions of open platforms and more importantly to analyze suitabil-
ity of ecosystem architecture with respect to business objectives and quality
attributes [7]. The generality and abundance of notations in these languages
lead in practice to laborious and time-consuming work [8]. More importantly,
some crucial characteristics like platform openness are not addressed by these
languages [9]. Therefore, the companies that also wish to open their own plat-
forms have to only rely on ad-hoc decision-making and face the consequences
such as extra costs of developing useless features, irreversible business risks of
unwillingly exposing platform’s intellectual property, or technical debt due to
sub-optimal decisions [10]. A language that provides the suitable abstraction
and captures the architectural diversity of open platforms can facilitate system-
atic creation of these systems in the future.

In this paper, we present a pattern-driven approach based on a study of 111
open platforms, called SecoArc, to model ecosystem architectures and analyze
their suitability with respect to business objectives. The contribution of this
paper is threefold. SecoArc provides: A) a systematic design process for step-
wise development of ecosystem architecture. B) a modeling language to explic-
itly express design decisions of open platforms. The language is grounded on a
rich domain model that embeds the architectural diversity of 111 platforms and
a systematic literature review as our preliminary work [11–13]. C) a fully auto-
mated architectural analysis technique based on three patterns for suitability
assessment and in-depth comparison of alternative architectures. SecoArc [14]
has been implemented as a ready-to-use tool.

We evaluate the approach by means of a real-world case study called On-
The-Fly Computing Proof-of-Concept (PoC). The PoC platform is going to be
open. However, there are several architectural variabilities and the possibility
of achieving different architectures. The team would like to ensure the suitabil-

38 B. Jazayeri et al.

ity of future ecosystem architecture with respect to crucial business objectives.
Two alternative architectures are designed, analyzed, and compared. Using a
semi-structured interview [15] aligned with ISO/IEC 25010 [16], functional
suitability of SecoArc is evaluated. Results show that i) SecoArc contributes
to familiarizing the architect with the domain knowledge of open platforms.
ii) the automatic architectural analysis technique improves decision-making by
disclosing enhanced and degraded business objectives and quality attributes.
iii) availability of the tool and guide material directly impacts the uptake. In
the future, platform providers can reduce risks by making informed decision-
making and accordingly take actions at design time. In the following, Sect. 2
introduces three architectural patterns and the case study, PoC. In Sect. 3, we
extract architectural variabilities of the PoC. Section 4 describes SecoArc and its
elements. There, the applicability of SecoArc is demonstrated by means of the
case study. Section 5 elaborates on the evaluation. After discussing related work
in Sect. 6, Sect. 7 concludes and discusses future research directions.

2 Background

In this section, first, we present three architectural patterns that are the basis
of architectural analysis in SecoArc. Afterwards, we introduce the case study.

2.1 Architectural Patterns of Software Ecosystems

In practice, patterns are used as powerful design instruments to communicate
well-established knowledge [17]. In our previous work [11], we identify three archi-
tectural patterns that are derived from an examination of 111 open platforms
from diverse application domains. Each pattern is characterized by an organiza-
tional context and a set of design decisions, and it helps to achieve certain quality
attributes and business objectives as depicted in Fig. 1. The quality attributes
are the attributes of business ecosystems from the quality model introduced by
Ben Hadj Salem Mhamdia [18]. In the following, we present the architectural
patterns.

Open Source Software (OSS)-Based Ecosystem: Innovation. This pat-
tern aids to attract providers of open source software services. The providers are
non-commercially motivated, and the platform is not safety-critical. The high
degree of openness, e.g., open and free platforms, enhances creativity by opening
the ecosystem for innovative services. Here, a platform is considered open when
the third-party providers can directly contribute to the platform’s code whereas
a platform being free concerns the dimension of cost. Examples of ecosystems
are Mozilla, Eclipse, and Apache Cordova.

Partner-Based Ecosystem: Strategic Growth. The pattern helps to grow
complex and industrial software ecosystem while enhancing profitability. Plat-
form provider strategically opens the platform by establishing partnerships with

Modeling and Analyzing Architectural Diversity of Open Platforms 39

professional providers. The intellectual property is protected by applying moneti-
zation and openness policies, e.g., by defining entrance requirements and closing
the source code. Exemplary ecosystems are Citrix, Symantec, and SAP.

Resale Software Ecosystem: Business Scalability. The pattern helps to
gain business scalability and get control over a large market of third-party ser-
vices. Platform provider is a large company. Providing testing frameworks and
discovery features, e.g., rating and ranking, establish a sustainable development
and marketing environment. Additionally, providing execution resources for ser-
vices and Integrated Development Environment (IDE) enhance interoperability.
Apple, Adobe, and Salesforce are the exemplary ecosystems.

Partner-based Ecosystem:
Strategic Growth

Resale Software Ecosystem:
Business Sacalability

Entrance FeeOpen Entrance Platform Fee
Monetized

APIs
Monetized

Documentation

Open Publish

Free
Licensing Commercial

Licensing

Rating Ranking

Testing
Framework

Multi-development
Lines

Issue
Tracking

Integrated Development
Environment (IDE)

Service
Execution

Bring Your
Own License

(BYOL)
Choice of

Programming
Language

Creativity
Capability of an ecosystem to
accommodate services with

diverse characteristics

Capability of an
ecosystem to generate

Sustainability
Successfully confronting
external threats during
ecosystem's evolution

Interoperability
From an enterprise perspective,
minimizing preparatory efforts to

partner with other enterprises

OSS-based Ecosystem:
Innovation

Reviewing

Legend

Architectural Pattern: High-level Business Objective

supports Quality Attribute

Closed-source
Service

Open Platform Free Platform

characterized by:

 Architectural Design Decisions
Organizational Context

Low Commerciality,Low Criticality High Commerciality, High Criticality Large Company, Large Market of Services

Fig. 1. Three architectural patterns for software ecosystems [11]

2.2 Case Study

On-the-fly Computing (OTF)1 is a paradigm for the provision of tailor-made
IT services that stems from a research project. Service providers publish basic
services on a marketplace. Upon user’s request, customized IT services are con-
figured on-the-fly from a set of basic services. The Proof-of-Concept (PoC)2 is a
realization of the OTF paradigm with 60k+ lines of code. The basic services come
from the Machine Learning (ML) libraries Weka3, in Java, and Scikit-learn4, in
Python. With the help of PoC, users automatically create tailor-made ML ser-
vices for typical classification problems without having any prior knowledge of
ML. E.g., from labeled pictures of cats and dogs, the PoC learns a classification
model that predicts if an unlabeled picture shows a dog or cat.

In dialogue with a chatbot, the user submits her (non-)functional requirements
and the training data. The chatbot broadcasts the requirements to configurators.
1 sfb901.uni-paderborn.de, Last Access: March 20, 2020.
2 sfb901.uni-paderborn.de/poc, Last Access: March 20, 2020.
3 cs.waikato.ac.nz/ml/weka, Last Access: March 20, 2020.
4 scikit-learn.org, Last Access: March 20, 2020.

https://sfb901.uni-paderborn.de/
https://sfb901.uni-paderborn.de/poc/
https://www.cs.waikato.ac.nz/ml/weka/
https://scikit-learn.org/

40 B. Jazayeri et al.

Configurators are computer programs to find and compose basic services. They
try out different combinations of basic services. Once suitable combinations are
found, the services with different non-functional properties are offered to the
user. Upon the user’s acceptance, her personal service is deployed for execution
in a compute center.

3 Architectural Variabilities of the PoC

Goal of the PoC team is to open the platform to external service providers, so
that their third-party ML services will be composed on the basis of the PoC plat-
form. The team consists of managers responsible to take strategic decisions, e.g.,
defining business visions, ten domain experts for conceptualizing single compo-
nents like the chatbot, a chief architect responsible for designing and integrating
the system components, and ten programmers developing the components. The
domain experts have an interdisciplinary background in business and economics,
software engineering, and networking and infrastructure areas. Correspondingly,
they hold different requirements.

The team is confronted with several variation points that can result in differ-
ent architectures. In general, the variation points are the design decisions that
can be changed at the design time, without violating core functional require-
ments. To extract the variation points, we conduct a workshop with the PoC
team and two external service providers. During the workshop, the participants
express important quality attributes in form of elaborated and prioritized scenar-
ios. From these scenarios, the variation points and their variants are identified
in three categories of business, application, and infrastructure. Table 1 shows
the variabilities. The variants are not mutually exclusive, i.e., several variants of
the same variation point can be applied at the same time. More details on the
workshop can be found in [14].

While different ecosystem architectures can be built upon the variabilities,
different architectures support different business objectives. The PoC team wants
to decide on the most suitable architecture among two alternative choices:

Architecture #1: Open Ecosystem The platform remains an independent
open-source project, so that the ecosystem grows by the direct contributions of
service providers. All source codes should be free-to-use.
Architecture #2: Semi-Open Controlled Ecosystem If the number of
service providers drastically increases, the ecosystem openness might cause
degradation in the quality of services. In this case, the PoC team wants to
prevent unleashed growth of the ecosystem by establishing a controlled software
development and marketing environment.

Moreover, the following business vision should always be fulfilled:

Business Vision: The ecosystem should support innovation, while being
sustainable in terms of confronting external threats that could have a long-
term impact on the platform’s success. Furthermore, the platform ownership
should be managed by using the GNU General Public License (GPL).

Modeling and Analyzing Architectural Diversity of Open Platforms 41

Table 1. Architectural variabilities of the PoC ecosystem

4 Modeling and Analyzing Architectural Diversity by
Using SecoArc

SecoArc (Architecting Software Ecosystems) facilitates designing ecosystems
around software platforms by means of three main elements, i.e., a design pro-
cess, a modeling language including a domain model and modeling
workbench, and an architectural analysis technique. These elements are
already implemented by using Eclipse Modeling Framework5 and Eclipse Sir-
ius Framework6 in a tool [14]. Figure 2 shows the SecoArc design process using
Business Process Model and Notation (BPMN). The goal of the design pro-
cess is to assist architects in a step-wise realization of suitable ecosystem archi-
tecture. It comprises the following activities: specify organizational context of
platform provider, model business, application, and infrastructure design deci-
sions of ecosystem architecture using the SecoArc modeling language, and assess
fulfillment of business objectives and quality attributes using the SecoArc archi-
tectural analysis technique. If the architecture does not fulfill the objectives and
attributes, further ecosystems can be modeled and then compared. After extract-
ing the variabilities of PoC (cf. Table 1), the chief architect models, analyzes,
and compares Architectures #1 and #2 using SecoArc. The architect famil-
iarizes himself with the SecoArc using the user guide provided by the SecoArc
specification [14].

5 eclipse.org/emf, Last Access: March 20, 2020.
6 eclipse.org/sirius, Last Access: March 20, 2020.

https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/sirius/

42 B. Jazayeri et al.

Business Objectives &
Quality Attributes

using the SecoArc Architectural
Analysis Technique

Specify
Organizational

Context of Platform
Provider

Model
Business

Design Decisions
of Ecosystem

Model
Application

Design Decisions
of Ecosystem

Model
Infrastructure

Design Decisions
of Ecosystem

1 2.1 2.2 2.3
3

Model Ecosystem Architecture
using the SecoArc Modeling Language

2

Are Business
Objectives &

Quality
Attributes

yes

no, model another ecosystem architecture

start

start end

end

Fig. 2. SecoArc design process (Notation: BPMN)

4.1 Specify Organizational Context of Platform Provider

Designing an ecosystem begins with specifying the context of an organization.
This is because a great part of architectural design decisions is derived from the
organizational context. In addition, these contextual factors are considered dur-
ing the SecoArc architectural analysis. Significance of four contextual factors are
frequently supported by the literature on software ecosystems, e.g., [3]: company
size, market size, domain criticality, and commerciality. Company size refers to
the number of employees in an organization. Market size is the number of ser-
vices on a marketplace. Domain criticality determines whether software failure is
dangerous to human lives. Commerciality is the degree of protecting intellectual
property.

4.1.1 Organizational Context of the PoC
Since the contextual factors refer to the organizational context of PoC, they
remain the same for both Architectures #1 and #2. The platform is open, free-
to-use, and not safety-critical. With <100 employees and <100 third-party ser-
vices, the PoC is considered a small size organization with a medium size market.
The relations between the range of values and the company and market size are
specified in [11].

4.2 Model Ecosystem Architecture

Architects can use the modeling language to design an ecosystem architecture
starting with the business decisions, and then the application and infrastruc-
ture decisions. The language aims at 1) facilitating explicit expression of design
decisions of software ecosystems, 2) capturing architectural diversity, and 3)
providing a modular integration of business, application, and infrastructure.

Modeling and Analyzing Architectural Diversity of Open Platforms 43

The modeling language is grounded on a rich domain model for software
ecosystems. The domain model is a metamodel (a.k.a abstract syntax and its
semantics) that covers key design decisions of software ecosystems. It is based
on the examination of literature [13] and existing ecosystems [11,12]. In addi-
tion, a modeling workbench provides the visual notations (a.k.a. concrete syntax
and its semantics) to design architecture. Both the domain model and modeling
workbench span across business, application, and infrastructure architectures.
Due to space limitations, the paper does not intend to describe complete lists of
the language constructs. Complete lists are provided by the SecoArc specifica-
tion [14].

4.2.1 Model Business Design Decisions of Ecosystem
Figure 3 presents the domain model of SecoArc. At the top, the
BusinessArchitecture is shown. SoftwareEcosystem consists of HumanActor,
BasicSoftwareElement, and BusinessAction. A HumanActor can be a User,
EcosystemProvider, ServiceProvider, and Partner. A BasicSoftwareElement

can be a SoftwarePlatform, Marketplace, and Service. The choice of
BasicSoftwareElement is a fundamental decision that is taken early in the design
phase with other business decisions. Using BusinessActions, business decisions
can be defined, modified, or reused across the actors.

The domain model captures three significant groups of business decisions
in software ecosystems, i.e., Fee, OpennessPolicy, and QualityCheck. Fee can
be PlatformFee to use the platform, EntranceFee to enter the ecosystem, or
ServiceFee to use a Service. A ServiceFee is defined by a ServiceProvider or
Partner. Furthermore, using OpennessPolicy, the architect specifies which actors,
and to which extend, can access or own a SoftwarePlatform or Service. Here,
PlatformOpenness determines whether one can only contribute to the platform
development or he/she has equity ownership of the platform. One way to regu-
late PlatformOpenness is where the third-party developers of the Mozilla Firefox
web browser develop new functionality for the browser without having its owner-
ship. Another OpennessPolicy is ServiceOpenness to grant a license to publish or
to share intellectual property of services. For instance, in the Apple ecosystem,
the developers receive license to publish on the Apple App Store whereas, in the
Cloud Foundry ecosystem, third-party services belong to their providers and can
be traded outside of the ecosystem [11]. Finally, using QualityCheck, it is defined
whether a Service needs to pass StaticCodeAnalysis before being published or
whether any of HumanActors should fulfill certain entrance requirements that are
specified as an EntranceCertificate.

4.2.1.1 Business Design Decisions of Architecture #1
To keep the ecosystem fully open, entering the ecosystem is free for the users
and service providers (Table 1: v2.1). The third-party services are free (v3.1)
and released under the GPL license (v5.1). To enable third-party providers’
contribution to a full extent, the team will provide open code repositories (v4.1).
The only entrance barrier for the service providers is to pass a static code analysis
(v1.2).

44 B. Jazayeri et al.

4.2.1.2 Business Design Decisions of Architecture #2
To tackle an uncontrolled growth, several business decisions are to be taken
into account. Figure 4 shows the business decisions designed using the SecoArc
notations. Human actors, like Providers of ML Services, interact with the
BasicSoftwareElements on the basis of BusinessActions. The symbols on the
actions, e.g., and , represent the business decisions that impact those actors.

InfrastructureArchitecture

BusinessArchitecture

ApplicationArchitecture

SoftwareEcosystem
name : String

HumanActor

name : String

Platform
Provider

User

BasicSoftware
Element ::

ApplicationFeature

Business
Action

label : String

BusinessDecision

name : String

OpennessPolicy

accessTime : List
license : String

QualityCheck

mandatory :
Boolean

Fee

amount : Float
subscription : List

StaticCode
Analysis

PlatformOpenness ServiceOpenness

openService : Boolean
serviceIP: Boolean

platformContribution: Boolean
platformControl : Boolean

Platform
Fee

Service
Fee

Entrance
Fee

basicSoftware
Elements

actions
0..*0..*

0..*humanActors

actions

appliedOn0..*

1..* 1..*

serviceFees
0..*

Feature
name : String
actor :: HumanActor

FeedbackLoop
Facilitator

Rating

StarRating
BinaryRating

Ranking

rankingList
: Ranking
Algorithm

Reviewing
review :
EString

IDE

language ::
egaugnaLgnimmargorP

compiler:: Compiler

Testing

testcase:
Testcase

Communication
Protocol

name : String
synchronous : Boolean
encryption ::
EncryptionProtocol

feature

appliedOn

0..*

1..* Custom
Application

Feature
name :
String

Marketplace

Application
Feature

FeatureRelation
label : String

relation 0..*
feature

Asset

ServiceExecution

networkTopology ::
Topology
resourceAllocation ::
ResourceAllocation

computing
Units

ComputingUnit
name : String
dataFormat

0..*
0..*assets

Mobile
Device

PC

Server

DeploymentTechnology
:: InfrastructureFeature

name :: String
topology :: NetworkTopology
asset :: Asset

1..*
ResourceAllocator

static : Boolean
dynamic : Boolean
environment ::
operationalEnvironment

1

Organizational
Context

companySize : Int
marketSize : Int
domainCriticality :
Boolean
Commerciality :
Boolean

0..*

0..1

Partner

APIManagement
protocol ::
CommunicationProtocol
businessDecisions ::
BusinessDecision

objectCode ::
ObjectCode
framework ::
Testing

Service

Software
Platform

1..*

1..*

0..*

CustomInfrastructure
Hardware ::

InfrastructureFeature

CustomInfrastructure
Software ::

InfrastructureFeature

InfrastructureFeature
:: Feature

deployment
Technologies

Operational
Environment

name : String

communicationProtocols

1..*

Extension
DevelopmentKit

Service
Provider requirements : String

Fig. 3. Domain model for software ecosystems (Notation: UML Class Diagram)

Modeling and Analyzing Architectural Diversity of Open Platforms 45

PoC Platform
UsersPoC Team

Providers of
ML Services

PoC
Marketplace

Partners

User

Partner

ServiceFee

Basic
Service 1

Basic
Service 3

Basic
Service 2

SecoArc Notations

open_up use

extend
extend

use

publish publish
develop develop

develop

Platform
Provider

Service
Provider

Service
Openness

Entrance

Static Code
Analysis

S

S S
S

Business
Action

BasicSoftware
Element

E Entrance
Fee

E

Fig. 4. Architecture #2 : Business decisions modeled using SecoArc (For readability
purposes, adopted from the original screenshot [14])

Firstly, to create a controlled marketing environment, the team considers
providing an own marketplace (v6.2). This way, the providers are forced to
continuously improve their services in order to beat the increased market com-
petition. In addition, membership controls in terms of 1e annual EntranceFee

for the providers are to be set (v2.2) (shown by in Fig. 4). Note that the
notations in Fig. 4 do not show attributes of the business decisions. However, the
SecoArc modeling workbench has a properties view that allows to define them.
According to the business vision in Sect. 3, the PoC platform remains free and
under the GPL license. Thus, PlatformContribution is true (v4.1).

Secondly, to ensure providing high quality services, the team considers part-
nering with other companies. In this case, Partners need to “possess certain
amount of annual revenue”, which is specified using an EntranceCertificate in
Fig. 4. Moreover, the partners are allowed to monetize their services and the
belonging documentation by defining price models (v3.2), closing the source
code, or use their own licenses (BYOL) (v5.2). Thereby, two types of services
are created for Partners, i.e., Basic Service 2 and 3, whereas Basic Service 2

has ServiceFee and ServiceOpenness policies defined. The rest of business deci-
sions remain the same as Architecture #1.

4.2.2 Model Application and Infrastructure Design Decisions of
Ecosystem

The application architecture supports business decisions by its application mer-
its whereas the infrastructure architecture provides the application architec-
ture with computing and deployment resources. Such resources are the soft-
ware and hardware for the purpose of service execution. The domain model in
Fig. 3 shows the Application- and InfrastructureArchitecture that respectively
include Application- and InfrastructureFeature. In general, a Feature can be
accessed by HumanActor, be a part of another Feature, or be in relation with
another Feature in the same or another architecture.

1) Modeling of Built-in Features: Part of the domain model captures built-in
features, i.e., the features specific to software ecosystems and open platforms.
The built-in features originate from our study on variabilities of ecosystem
architectures [12,13]. As depicted in Fig. 3, the application-specific features are

46 B. Jazayeri et al.

captured by means of ExtensionDevelopmentKit and FeedbackLoopFacilitator.
ExtensionDevelopmentKit represents the software features that enable develop-
ment on top of open platforms. This mainly includes IDE, APIManagement, and
Testing. Android Studio is an example of IDEs used to develop Apps for Google
Android. Android SDK is the APIManagement that facilitates accessing the plat-
form APIs. Android Emulator is a Testing feature that is used to simulate vari-
ety of hardware for testing purposes. Moreover, FeedbackLoopFacilitator makes
user feedback operational in the ecosystem using Rating, Reviewing, and Ranking.
The feedback returned to the ecosystem through Rating and Reviewing is used
to generate ranking lists and to improve services by service providers.

Furthermore, infrastructure-specific built-in features are grouped as
DeploymentTechnology, ServiceExecution, and Asset (cf. Fig. 3). As the names
suggest, they represent computing resources to deploy Services on a
DeploymentTechnology, to execute them using ComputingUnits, and to deliver the
execution results to an Asset. A ComputingUnit has an OperationalEnvironment

and supports at least one CommunicationProtocol. For instance, Amazon.com
is the provider of cloud computing services called Amazon Web Services
(AWS). Figure 5 shows that AmazonEC2 is the service to execute the AWS1. It
uses virtualMachine1 to execute the AWS1 on an AmazonLinux. HTTPS is the
CommunicationProtocol. The service execution is performed on AWSSever1 and
AWSSever2. The result of execution is sent to userPC [12].

communication
Protocols

computing
Units

AWSServer1:
DeploymentTechnology

AWSServer2:
DeploymentTechnology

AmazonEC2:
ServiceExecution

deployment
Technologies

AWS1:
Service

AmazonLinux:
OperationalEnvironment

HTTPS:
CommunicationProtocol

operational
Environment

vitualMachine1:
ComputingUnit

serviceExecution

userPC:
Asset

assets

assets

deployment
Technologies

Fig. 5. The UML object diagram of an exemplary AWS service execution

2) Modeling of Custom Features: Custom features are used to design
the concepts that are not part of the domain model. Such features
can be a CustomApplicationFeature in the ApplicationArchitecture or
a CustomInfrastructureSoftware and CustomInfrastructureHardware in the
InfrastructureArchitecture.

4.2.2.1 Application and Infrastructure Decisions of Architecture #1
Figure 6 shows the application and infrastructure features in relation to a part
of the business architecture designed using the SecoArc notations. Currently,
a microservice architecture is used, where the PoC CustomApplicationFeatures,
i.e., the Chatbot and Configurator, are deployed on Compute Center 1 and Compute

Center 2. To enable third-party contributions to a full extent, the team uses Git

Modeling and Analyzing Architectural Diversity of Open Platforms 47

as an open code repository (v4.1) (v6.1). The default way to publish is to commit

new services into the repository. Because the services are encapsulated inside the
DockerContainers, Providers of ML Services are allowed to develop both Basic

Service in Java and Basic Service in Python (v7.1) (v7.2). During the service
provision, the execution of basic services is handled by several docker containers.
Figure 6 portraits DockerContainer 1 that consists of two ComputingUnits, called
Executor 1, Executor 2. The executors register with the Gateway in advance
(v8.1). The Gateway is a ResourceAllocator that allocates each basic service to
multiple executors (v9.1).

User Assistant
[CustomApplication

Feature]

Chatbot
[CustomApplication

Feature]

[CustomApplicationFeature]

Service
Composition

[CustomApplication
Feature]

Docker Container 1 [ServiceExecution]

Executor 1
[ComputingUnit]

Executor 2
[ComputingUnit]

Functional Matching
[CustomApplicationFeature]

Non-functional Matching
[CustomApplicationFeature]

broadcast

Providers of
ML Services

PoC Platform
[Git Repository]

Basic Service
in Java

commit
develop

Basic Service
in Python

develop

search

register

match

match

served_by

Basic Software
Element

Service
Provider

Business
Action

Feature
Relation

Custom
Application

Feature

SecoArc Notations

Static Code
Analysis

Compute Center 1
[DeploymentTechnology]

deploydeploy

Deployment
Technology

Compute Center 2
[DeploymentTechnology]

Service
Execution

Computing
Unit

Resource
Allocator

yawetaG
[ResourceAllocator]

register

Fig. 6.Architectures #1 : Application, infrastructure, and part of business architectures
(Adopted from the original screenshot [14])

4.2.2.2 Application and Infrastructure Decisions of Architecture #2
Upon deciding on an own marketplace by the PoC team, related software fea-
tures of the marketplaces, e.g., rating, ranking, and reviewing, are included. To
create a controlled development environment, the team considers providing the
service providers with an IDE and testing environment. By a drastic increase
in the number of service providers, some decisions in Architecture #1 cause
scalability issues: By static resource allocation (v8.1), the executors are perma-
nently waiting for jobs, thus, wasting resources if they remain idle. Furthermore,
by the distributed execution (v9.1), if many executors become incorporated in
execution of a service, the network payload will be tremendous. Therefore, the
team decides that, for every basic service, a Docker container is generated that
contains all the necessary environments as well as incorporated basic services
(v9.2). A respective container is distributed in a compute center on demand
and will be freed up after the execution (v8.2).

4.3 Assess Fulfillment of Business Objectives and Quality
Attributes Using the SecoArc Architectural Analysis Technique

Ecosystem architecture can be further analyzed by using a pattern-matching
technique in the modeling workbench. As previously mentioned, the architectural

48 B. Jazayeri et al.

Table 2. Comparison of Architectures #1 and #2 (The complete report of analysis
can be found in the text.)

OSS-based Ecosystem:
Innovation

Partner-based Ecosystem:
Strategic Growth

Resale Software Ecosystem:
Business Scalability

Creativity Sustainability Interoperability

Architecture #1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Architecture #2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Architectural Design Decision Realized (✓) / Not-realized ()

O
p

en

E
nt

ra
nc

e

O
p

en

P
la

tf
or

m

Fr
ee

Li

ce
ns

in
g

O
p

en

P
ub

lis
h

C
ho

ic
e

of

P
ro

gr
am

m
in

g
La

ng
ua

ge

P
la

tf
or

m
 F

ee

E
nt

ra
nc

e
Fe

e

M
on

et
iz

ed

D
oc

um
en

ta
-

tio
n

M
on

et
iz

ed

A
P

Is
C

om
m

er
ci

al

Li
ce

ns
in

g
C

lo
se

d

S
ou

rc
e

S
er

vi
ce

R
at

in
g

R
ev

ie
w

in
g

R
an

ki
ng

Te
st

in
g

Fr
am

ew
or

k
Is

su
e

Tr
ac

ki
ng

M
ul

ti-
d

ev
.

Li
ne

s

S
er

vi
ce

E

xe
cu

tio
n

ID
E

B
Y

O
L

Fr
ee

P

la
tf

or
m

patterns in Sect. 2.1 are described using sets of design decisions. The architec-
tural analysis checks to which extend an ecosystem architecture realizes those
design decisions. With this respect, architects can 1) assess suitability of an
ecosystem architecture and 2) compare alternative architectures. Specifically, the
analysis has three outcomes: firstly, to which extend the architecture supports
the business objectives, i.e., innovation, strategic growth, and business scalabil-
ity. Secondly, to which extend it supports the quality attributes, i.e., creativity,
profitability, sustainability, and interoperability. Finally, according to the value of
contextual factors, suggestions to apply specific patterns and a list of exemplary
real-world ecosystems are given.

4.3.1 Analyzing and Comparing Architectures #1 and #2
The PoC architect conducts the analysis to evaluate suitability of Architectures
#1 and #2. A report of the analysis is generated. Table 2 shows how the two
architectures match with the patterns. Accordingly, Architectures #1 and #2
respectively fulfill OSS-based Ecosystem (100%, 50%), Partner-based Ecosys-
tem (0%, 66.6%), and Resale Software Ecosystem (33.3%, 88.8%). This means,
Architecture #1 fulfills innovation the most, while Architecture #2 enhances
business scalability and strategic growth. Furthermore, the majority of
decisions in Architecture #1 contributes to creativity while sustainability
and interoperability are partially supported. The main shift in Architecture
#2 is to include partners, who can generate revenue. Decisions like entrance fee
and commercial licenses support profitability.

The results of analysis show that, comparing the two architectures, Architec-
ture #1 is a more suitable candidate with respect to the business vision in Sect. 3,

Modeling and Analyzing Architectural Diversity of Open Platforms 49

as it fulfills innovation to a better extend (100% vs. 50%). However, sustainabil-
ity can be improved by considering the relevant design decisions, e.g., including
rating and ranking. In addition, the analysis shows that existing ecosystems,
with contextual factors similar to the PoC (cf. Sect. 4.1.1), conform to the OSS-
based Ecosystem pattern, which confirms the suitability of this pattern for the
PoC. Exemplary ecosystems provided are Mozilla, Eclipse, and Apache Cordova.
The full report of analysis can be found in [14].

5 Evaluation

In our evaluation, we investigate on whether SecoArc supports architects in mod-
eling diverse design decisions and analyzing alternative ecosystem architectures
with respect to the business objectives and quality attributes. For this purpose,
we design a questionnaire with which we can interview architects on the qual-
ity characteristics of SecoArc. The questionnaire is aligned with the ISO/IEC
25010 quality model [16] and serves the goal to assess the functional suitability of
SecoArc. In this context, the functional suitability is the degree to which SecoArc
satisfies the need of architects and provides value during decision-making. The
questionnaire will be used to conduct a semi-structured interview with the chief
architect of the PoC, who is responsible to make design decisions and to integrate
the various components into one architecture.

5.1 Questionnaire

We design the questionnaire by referring to the sub-characteristics of functional
suitability, i.e., completeness, correctness, and appropriateness [16] and casting
doubt on the main elements of SecoArc, i.e., design process, modeling language,
and architectural analysis technique, as well as tool support. As shown in Table 3,
the questionnaire consists of 17 questions. The interviewee responds the ques-
tions in three scales, i.e., No/Partially/Yes, while reasoning about the responses.
Using the semi-structured interview technique [15], we collect data on strong
and weak aspects of SecoArc based on open conversations. Full responses can be
found in [14].

5.2 Results

In summary, the interviewee expresses that the ready-to-use components of
SecoArc contribute to an improved decision-making. Table 3 briefly refers to
the responses. In the following, we report the results.

1) Modeling Language & Design Process: The architect approves that the
mode ling language of SecoArc is a domain-specific language. With the design
process, they help with familiarizing oneself with the novel and complex archi-
tecture of the ecosystem around the platform. The built-in features provide a
correct basis to explicitly design the ecosystem-specific design decisions of PoC.
Furthermore, custom features can appropriately be added. This adds flexibility

50 B. Jazayeri et al.

Table 3. Interview questionnaire and results

Q1 Does the domain knowledge of SecoArc contribute to familiarizing you with critical design decisions of
the ecosystem around your platform? +

Q2 Does the design process appropriately guide you through the ecosystem design? +

Q3 Are the business decisions, application and infrastructure modeling features complete in terms of being
su cient for modeling your ecosystem? +

Q4 (or rather contradictory or wrong)? +

Q5 Does grouping of features help you to better understand the design space? +
Q6 Are you able to appropriately express custom decisions of your ecosystem? +
Q7 Are the visual notation of business decisions and application and infrastructure features appropriate? +
Q8 Are the architectural models easy to change or reuse, so you can use them during the system evolution? o
Q9 Can you appropriately express the relationships between the three architectures? +

Q10 +

Q11 Does the analysis help you to consider complementary business decisions and application and
infrastructure features wrt. your business objectives? +

Q12 Does the analysis make you aware of the correctness of your design decisions? E.g., by revealing the
contradictory decisions to your business objectives and quality attributes? +

Q13 o
Q14 +
Q15 Is the modeling workbench easy-to-use to design the ecosystem around your platform? +
Q16 +
Q17 +

No (-) / Partially (o) / Yes (+)

To
o

l
S

up
p

o
rt

A
rc

hi
te

ct
ur

al

A
na

ly
si

s
M

o
d

el
in

g
 L

an
g

ua
g

e
&

 D
es

ig
n

P
ro

ce
ss

to the language, because the custom features are treated the same way as the
built-in features, e.g., to group them or relate them to the human actors. Another
point of appropriateness is the abstraction provided by the visual notations and
the central presentation of business decisions.

2) Architectural Analysis Technique: The architect finds it beneficial during
the decision-making to have an estimation of suitability of the PoC architec-
ture based on the practice-proven knowledge of existing ecosystems and being
able to compare different architectures. This also helps to take further actions
by including complementary decisions or re-considering the ones that threaten
achieving the business objectives and quality attributes.

3) Tool Support: Availability of the tool and guide material impact the uptake
by enabling the architect to work with the ecosystem-related concepts right away.
The tool is consistent with the functions described in the specification.

4) Limitation and Future Work: Although our approach is concerned with
modeling support at design time, there is an inherent need for consistency
between the models and code during the system evolution (Q8). A way to
address this issue is to apply Aspect-Oriented Software Development to weave
the decisions in the code, another way is to introduce traceability links [19]. Fur-
thermore, future research on extensive quality models for software ecosystems
is required, to address more business objectives, quality attributes, and their
trade-offs (Q13).

6 Related Work

To our knowledge, there is no previous work that provides a modeling language
supporting automatic analysis with respect to business, application, and infras-
tructure aspects, by considering the knowledge of diverse platforms. ADLs are

Modeling and Analyzing Architectural Diversity of Open Platforms 51

the early approaches to describe system architecture [20]. Existing ADLs, most
relevant to open platforms, support specific domains, e.g., mobile applications [6]
and automotive systems [21] while business aspects are less in focus.

A body of work in literature conceptualizes economic aspects. Boucharas
et al. [22] formalize modeling ecosystems in three levels: the software ecosystem,
supply network, and software vendor. Yu and Deng [23] propose a graph-
based approach based on the i* modeling framework for strategic buyer-supplier
relationships. While this work focuses on software supply chain processes, our
focus in on structure of ecosystem architecture. However, this work complements
ours and can be leveraged during the business modeling activity.

Further work mainly investigates technical aspects. Christensen et al. [24]
present a modeling approach for the organizational, business, and software struc-
tures. However, the approach does not deal with the relation between the techni-
cal architecture and actors. Sadi et al. contribute to a goal-oriented ecosystem
design by an NFR-based specification and analysis method for openness require-
ments [9]. Furthermore, modeling sustainable collaborations in [25] helps clar-
ify developers’ objectives and their dependencies. In comparison to our work,
SecoArc embeds the existing domain knowledge and provides automated tool
support. Other work [3] surveys ecosystem variabilities. Our work is built on
this work while extending them by modeling and analysis support.

7 Conclusion and Future Work

Opening software platforms became a novel architectural approach to enable
third-party service development. Designing open platforms faces many architec-
tural variabilities, and informed decision-making is crucial for platform providers
to achieve their business objectives. However, there is a lack of comprehensive
architectural guidelines that can help to tackle the variabilities while relating
the design decisions to business objectives. This paper presents a pattern-driven
methodological support comprising a design process, modeling language, and
architectural analysis technique, which consolidates the knowledge of 111 open
platforms and is ready-to-use as a tool. Our contributions support platform
providers in informed decision-making based on the knowledge of best practices.
Future work is required to enhance business modeling coupled with applica-
tion and infrastructure architectures, facilitate trade-off analysis of more quality
attributes, and establish consistency between architecture and code.

References

1. Bosch, J.: Software ecosystems: taking software development beyond the bound-
aries of the organization. J. Syst. Softw. 7(85), 1453–1454 (2012)

2. REVaMP2 Project. www.revamp2-project.eu. Accessed 20 Mar 2020
3. Berger, T., et al.: Variability mechanisms in software ecosystems. Inf. Softw. Tech-

nol. 56(11), 1520–1535 (2014)
4. Malavolta, I., et al.: What industry needs from architectural languages: a survey.

IEEE Trans. Softw. Eng. 39(6), 869–891 (2013)

http://www.revamp2-project.eu/

52 B. Jazayeri et al.

5. Hohpe, G., et al.: The software architect’s role in the digital age. IEEE Softw.
33(6), 30–39 (2016)

6. Dörndorfer, J., Hopfensperger, F., Seel, C.: The SenSoMod-modeler-a model-driven
architecture approach for mobile context-aware business applications. In: Cap-
piello, C., Ruiz, M. (eds.) CAiSE 2019. LNBIP, vol. 350, pp. 75–86. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-21297-1 7

7. Woods, E., Bashroush, R.: Modelling large-scale information systems using ADLs–
an industrial experience report. J. Syst. Softw. 99, 97–108 (2015)

8. Zimmermann, A., et al.: Evolving Enterprise Architectures for Digital Transfor-
mations. Gesellschaft für Informatik eV (2015)

9. Sadi, M.H., Yu, E.: Accommodating openness requirements in software platforms:
a goal-oriented approach. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS,
vol. 10253, pp. 44–59. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
59536-8 4

10. CIO Magazine: 5 Mistakes to Avoid When Deploying an Enterprise App Store.
cio.com/article/2394413. Accessed 20 Mar 2020

11. Jazayeri, B., et al.: Patterns of store-oriented software ecosystems: detection, clas-
sification, and analysis of design options. In: Latin American PLOP (2018)

12. Jazayeri, B., Zimmermann, O., Engels, G., Kundisch, D.: A variability model for
store-oriented software ecosystems: an enterprise perspective. In: Maximilien, M.,
Vallecillo, A., Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 573–
588. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69035-3 42

13. Jazayeri, B., Platenius, M.C., Engels, G., Kundisch, D.: Features of IT service
markets: a systematic literature review. In: Sheng, Q.Z., Stroulia, E., Tata, S.,
Bhiri, S. (eds.) ICSOC 2016. LNCS, vol. 9936, pp. 301–316. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46295-0 19

14. SecoArc Material & Supplementary Documents of the Case Study.
sfb901.uni-paderborn.de/secoarc. Accessed 20 Mar 2020

15. Hove, S.E., Anda, B.: Experiences from conducting semi-structured interviews in
empirical software engineering research. In: METRICS 2005, pp. 10–pp. IEEE
(2005)

16. ISO/IEC 25010. iso.org/standard/35733.html. Accessed 20 Mar 2020
17. Hohpe, G., et al.: Twenty years of patterns’ impact. IEEE Softw. 30(6), 88–88

(2013)
18. Ben Hadj Salem, M.A.: Performance measurement practices in software ecosystem.

Int. J. Prod. Perform. Manag. 62(5), 514–533 (2013)
19. Könemann, P., Zimmermann, O.: Linking design decisions to design models in

model-based software development. In: Babar, M.A., Gorton, I. (eds.) ECSA 2010.
LNCS, vol. 6285, pp. 246–262. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15114-9 19

20. Medvidovic, N., et al.: A classification and comparison framework for software
architecture description languages. IEEE Trans. Softw. Eng. 26(1), 70–93 (2000)

21. Kolagari, R.T., et al.: Model-based analysis and engineering of automotive archi-
tectures with EAST-ADL: revisited. Int. J. Concept. Struct. Smart Appl. 3(2),
25–70 (2015)

22. Boucharas, V., et al.: Formalizing software ecosystem modeling. In: International
Workshop on Open Component Ecosystems, pp. 41–50. ACM (2009)

23. Yu, E., Deng, S.: Understanding software ecosystems: a strategic modeling app-
roach. In: The 3rd International Workshop on Software Ecosystems, pp. 65–76
(2011)

https://doi.org/10.1007/978-3-030-21297-1_7
https://doi.org/10.1007/978-3-319-59536-8_4
https://doi.org/10.1007/978-3-319-59536-8_4
https://www.cio.com/article/2394413/5-mistakes-to-avoid-when-deploying-an-enterprise-app-store.html
https://doi.org/10.1007/978-3-319-69035-3_42
https://doi.org/10.1007/978-3-319-46295-0_19
https://sfb901.uni-paderborn.de/projects/tools-and-demonstration-systems/tools-from-the-2nd-funding-period/secoarc/
https://www.iso.org/standard/35733.html
https://doi.org/10.1007/978-3-642-15114-9_19
https://doi.org/10.1007/978-3-642-15114-9_19

Modeling and Analyzing Architectural Diversity of Open Platforms 53

24. Christensen, H.B., et al.: Analysis and design of software ecosystem architectures–
towards the 4S telemedicine ecosystem. Inf. Softw. Technol. 56(11), 1476–1492
(2014)

25. Sadi, M.H., Dai, J., Yu, E.: Designing software ecosystems: how to develop sus-
tainable collaborations? In: Persson, A., Stirna, J. (eds.) CAiSE 2015. LNBIP,
vol. 215, pp. 161–173. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
19243-7 17

https://doi.org/10.1007/978-3-319-19243-7_17
https://doi.org/10.1007/978-3-319-19243-7_17

	Modeling and Analyzing Architectural Diversity of Open Platforms
	1 Introduction
	2 Background
	2.1 Architectural Patterns of Software Ecosystems
	2.2 Case Study

	3 Architectural Variabilities of the PoC
	4 Modeling and Analyzing Architectural Diversity by Using SecoArc
	4.1 Specify Organizational Context of Platform Provider
	4.2 Model Ecosystem Architecture
	4.3 Assess Fulfillment of Business Objectives and Quality Attributes Using the SecoArc Architectural Analysis Technique

	5 Evaluation
	5.1 Questionnaire
	5.2 Results

	6 Related Work
	7 Conclusion and Future Work
	References

