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Abstract. This paper proposes a mutation testing approach for big
data processing programs that follow a data flow model, such as those
implemented on top of Apache Spark. Mutation testing is a fault-based
technique that relies on fault simulation by modifying programs, to create
faulty versions called mutants. Mutant creation is carried on by opera-
tors able to simulate specific and well identified faults. A testing process
must be able to signal faults within mutants and thereby avoid having
ill behaviours within a program. We propose a set of mutation opera-
tors designed for Spark programs characterized by a data flow and data
processing operations. These operators model changes in the data flow
and operations, to simulate faults that take into account Spark program
characteristics. We performed manual experiments to evaluate the pro-
posed mutation operators in terms of cost and effectiveness. Thereby, we
show that mutation operators can contribute to the testing process, in
the construction of reliable Spark programs.

Keywords: Big data - Spark programs - Mutation testing - Mutation
operators

Introduction

The intrinsic characteristics of data and associated processing environments
introduce challenges to the development of big data processing programs. These
programs need to deal with data Volume; Velocity in which data is produced;
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Variety of representation and Veracity level of the data. These technical char-
acteristics, allied to the Value of the knowledge obtained by processing big data
(the five V’s [18]), have contributed to the development of systems and frame-
works adapted to big data processing.

Existing frameworks adopt either control flow [4,6] or data flow approaches |3,
26,28]. In both cases, frameworks provide a complete and general execution envi-
ronment that automates lower level tasks (processing and data distribution and
fault tolerance), allowing developers to (mostly) concentrate on the algorithmic
aspects of big data programs.

Reliability of big data processing programs becomes important, due to the
fine-grain tuning required, regarding both the programming logic and particu-
larly, their extensive use of computational resources [12]. This introduces the
need to verify and validate programs before running them in production in
a costly distributed environment. In this context, software testing techniques
emerge as important and key tools. Testing big data processing programs is
an open issue that is receiving increasing attention [5,20]. There exist only few
works on functional testing of big data programs, most of them address testing
of programs built using control flow based programming models like MapRe-
duce [20].

This paper addresses big data programming testing by exploring the appli-
cation of Mutation Testing on Apache Spark programs. Mutation testing is a
fault-based technique that explores the creation of erroneous versions of a pro-
gram, called mutants, to generate and evaluate tests. Mutants are created by
applying modification rules, called mutation operators, that define how to cre-
ate faulty versions from a program. In this paper, we present a set of mutation
operators based on the data flow model of Apache Spark programs. We man-
ually applied our mutation operators in an experiment to show the feasibility
of mutation testing in Spark programs and to make a preliminary assessment
of application costs and effectiveness of the proposed mutation operators. The
results of these experiments agree with the preliminary results obtained using a
prototype, currently under development®.

This paper is organized as follows: Sect. 2 describes works that have addressed
some aspects of big data program testing. Section 3 introduces the main concepts
of mutation testing adopted in our work. Section 4 introduces Apache Spark and
presents the set of mutation operators that we designed for Spark programs.
Section 5 describes our experimental setting and discusses results. Section 6 con-
cludes the paper and discusses future work.

! The description of the prototype is out of the scope of this paper. The interested
reader can refer to https://github.com/jbsneto-ppgsc-ufrn/transmut-spark for tech-
nical details of the tool.
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2 Related Work

The emerging need of processing big data together with the democratization of
access to computing power has led to the proposal of environments providing
solutions that ease the development of big data processing programs at scale.
Even if these environments prevent programmers from dealing with the burden
of low level control issues (e.g. fault tolerance, data and process distribution),
programming must still consider several details regarding data flow (e.g., explicit
data caching, exchange, sharing requests). Thus, testing methodologies must be
proposed considering the particular characteristics of big data.

The testing of big data processing programs has gained interest as pointed out
in [5] and [20]. Most work has focused on performance testing since performance
is a major concern in a big data environment given the computational resources
required [20]. Regarding functional testing, few works have been done, most of
them being concentrated on MapReduce [20], leaving an open research area for
testing big data programs on other models and technologies.

The work in [8] applies symbolic execution to search for test cases and data.
It proposes to encode MapReduce correctness conditions into symbolic program
constraints which are then used to derive the test cases and test data. The
proposal in [16] applies a similar technique to test Pig Latin [22] programs. The
MRFlow technique in [19] builds a data flow graph to define the paths to test
and uses graph-based testing [1] to search for test cases in MapReduce.

Concerning data flow systems, most of the them support unit test execution
for their programs. The work in [14] provides a framework that supports execu-
tion of unit testing and property checking of Spark programs. The tool does not
provide support for the design of test cases, which is a critical part of the testing
process. The area is still lacking techniques and tools that exploit the character-
istics of big data processing programs, showing that more research needs to be
done. Mutation testing provides criteria for the systematic design of test cases.
In this context, our work explores both the design and application of mutation
testing in Spark.

3 Mutation Testing

Mutation testing is a fault-based technique based on creating variants of a pro-
gram, called mutants, simulating common faults inserted through simple mod-
ifications to the original program [1]. Mutants can be used to design test cases
that identify the simulated faults or to assess the quality of an already imple-
mented test set by looking if it can identify erroneous behaviors generated by the
mutants. Different studies [11,21,25] have shown the effectiveness of mutation
testing by comparing it with other testing criteria and techniques.

A general mutation testing process is shown in Fig.1. Given a source pro-
gram assumed to be nearly correct (developed by a competent programmer),
Mutation Generation consists in creating variations of the program ( Mutants),
by introducing changes or mutations to the source code. Examples of classic
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mutations include the replacement of literals in the program (value mutations);
substitution of operators in expressions or conditions (decision mutations) and
the deletion or duplication of statements (staterment mutations) [1]. This phase
of the testing process is strongly dependent on the model or language of the pro-
gram being tested and on a number of mutation operators, rules which define how
to derive mutants from the original program. The task of generating mutants
of a given program can be automated using parsing and source-to-source code
generation techniques.

. Mutation Operators
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Fig. 1. Mutation testing process (Adapted from [1]).

The production of test cases is the next stage of the process. In this step
input data, corresponding to each test case, is defined for the program and its
mutants. The results of executing the test cases with each mutant are compared
with the results obtained by the original program. A mutant is said to be killed
if its results differ from those of the original program for some test case. The
goal of a test set is then to kill as many mutants as possible. This indicates that
the test set was able to detect the potential inserted code defects. Mutants that
produce the same results as the original program, no matter which input data is
provided, cannot be killed and are said to be equivalent to the original program.

Given a program P and a set of test cases T', a mutation score is given by:

DM(P,T)
M(P) — EM(P)

where DM (P, T) is the number of killed mutants; M (P) is the number of
mutants and EM (P) is the number of mutants that are equivalent to P. The
mutation score measures the quality of the test set. This score is used to decide
whether to produce more test cases, to improve the test set or to stop the testing
process.

ms(P,T) =
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Mutation testing is strongly influenced by the programming model, language
and framework of the target program. Thus, mutation operators and tools have
been developed to support mutation testing for different contexts as shown
in [13]. Such contexts include mutation operators and tools for programs in spe-
cific languages like C [23] and Java [17], aspect-oriented programs [10] and web
services [15]. To the best of our knowledge, there is no previous work addressing
mutation testing for data flow programs in the context of big data processing.

4 Testing Apache Spark Programs

Apache Spark is a general-purpose analytics engine for large-scale data process-
ing on cluster systems [28]. It adopts a data flow-oriented programming model
with data models, execution plans and programming interfaces with built in
operations as building blocks for big data processing programs. Spark is cen-
tered on the concept of Resilient Distributed Dataset (RDD) [27], a read-only,
fault-tolerant data collection that is partitioned across a cluster. RDDs can be
processed by two kinds of operations: transformations and actions. Transforma-
tions are operations that result in a new RDD from processing another one.
Actions are operations that generate values that are not RDDs or that save
the RDD into an external storage system. Spark transformations are evaluated
under a lazy strategy when an action is called.

A Spark program is defined as a set of initial RDDs loaded from an external
storage, a sequence of transformations to be applied on these RDDs and actions
that trigger the program execution. The sequence of operations implementing a
Spark program is represented by a Directed Acyclic Graph (DAG) which acts as
execution plan defining dependencies between transformations and representing
the program data flow. These aspects are key elements for developing specific
testing methodologies.

Spark provides a set of transformations for a wide variety of data processing
operations. These transformations are described by a high-level interface with
input parameters, which are functions that are applied to process elements on
the RDD, and outputs. We classify transformations into families, according to
the type of processing operation: Mapping, apply functions to map one element
of the RDD to another (e.g., map and flatMap); Filtering, filter elements based
on predicate functions that determine whether an element should remain in the
RDD (e.g., filter); Aggregation, aggregate elements applying a binary function
on the RDD elements (e.g., reduceByKey and aggregateByKey); Set, operate like
mathematical set operations on two RDDs (e.g., union and intersection); Join,
make a relational-like join between two RDDs (e.g., (inner) join and leftOuter-
Join); and Ordering, for operations that sort the elements on the RDD (e.g.,
sortBy and sortByKey). We call unary transformations those that operate on a
single RDD and binary transformations those that operate on two RDDs.

In order to propose a fault based approach for testing Apache Spark pro-
grams, we first studied representative example programs and the framework
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documentation to identify common faults or mistakes. Within Spark’s program-
ming approach, a program is defined by a (i) data flow that defines data trans-
mission, sharing, caching and persistence strategies to be adopted by processes
running on cluster components; and (i) data processing operations. Considering
this characteristic of Spark programs we have classified faults that can emerge
within these complementary aspects and proposed a fault taxonomy. This tax-
onomy was then used as reference to the definition of the mutation operators
that are a key element of our mutation testing based approach?. The muta-
tion operators we propose have been designed considering the Spark data flow
model and its operations (transformations). These components are independent
of the programming language chosen to develop Spark programs (which can be
done in Scala, Java or Python). Thus, our mutation operators are agnostic to
the programming language and can be applied to any program that follows the
data flow model of Spark. The next sections introduce these operators and their
experimental validation.

4.1 Mutation Operators for Apache Spark Programs

Mutation operators are rules that define changes on a program to add simulated
faults. These operators are designed to mimic common faults, such as a missing
iteration of a loop or a mistake in an arithmetical or logical expression, or to
prompt testers to follow common test heuristics, such as requiring a test where
a specific action is executed [1].

Common faults and mistakes in Spark programs are generally related to the
incorrect definition of the data flow of a program, such as calling transformations
in a wrong order, and mistakes in specific transformations, such as calling the
wrong transformation or passing the wrong parameter.

In this paper, we propose two groups of mutation operators: data flow and
transformations. Data flow operators define modifications in the sequence of
transformations of a program (i.e., altering the flow of data between trans-
formations). Transformation operators define modifications in specific groups
of transformations, like replacing a transformation by another or changing a
parameter. This section introduces these operators intuitively see their formal
definition in [9].

Mutation Operators for the Data Flow: Operators in this class change the
sequence of operations that defines the data flow of a Spark program.

Unary Transformations Replacement (UTR) - Replace one unary transforma-
tion for another with the same input and output signature (RDD types).

Unary Transformation Swap (UTS) - Swap the calls of two transformations of
the program, provided that they have the same input and output signature.

2 The fault taxonomy of Spark programs and the mutation operators formalization
are out of the scope of this paper, but are described in [9].
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Unary Transformation Deletion (UTD) - Bypass a transformation that has the
same RDD type as input and output.

We also define operators similar to UTS and UTR, adapted to binary trans-
formations: Binary Transformation Swap (BTS) and Binary Transformations
Replacement (BTR).

To illustrate the mutation operators for data flow, let us consider the excerpt
from a Spark program presented in Fig.2. In this program we manipulate an
integer RDD (input: RDD[Int]). Line 1 filters the even numbers of the dataset.
Then, each number is mapped to its square (line 2). Finally, the RDD is sorted
(line 3). All the mutants generated for this program by our data flow mutation
operators are presented in Table 1. In that table, only the lines affected by the
mutation are included. For instance, applying the UTS operator to the transfor-
mations in lines 1 and 2, results in the mutant 7 of Table 1. In this mutant, the
filter transformation that was called on line 1 is swapped with the map transfor-
mation that was called on line 2 in the original program.

1 val even = input.filter(x => x % 2 == 0)
2 val square = even.map(x => x * x)
3 val sorted = square.sortBy(x => x)

Fig. 2. Example of part of a Spark program.

Table 1. Mutants generated with the data flow mutation operators.

Id|Operator|Lines Mutation
1| UTR 1 |val even =input.map( x =>x * x )
2| UTR 1 |val even =input.sortBy( x =>x )
3| UTR 2 |val square =even filter( x =>x % 2 ==0)
4| UTR 2 |val square =even.sortBy( x =>x )
5| UTR 3 |val sorted =square filter( x =>x % 2 ==0)
6| UTR 3 |val sorted =square.map( x =>x * x )
val even = input.map(x => x * x)
T UIs L2 |l square = even filter(x => x % 2 == 0)
val even = input.sortBy(x => x)
8| UTS 13 val sorted = square filter(x => x % 2 == 0)
ol UTS 23 val square = even.sortBy(x => x)%
val sorted = square.map(x => x * Xx)
10| UTD 1 |val even =input
11| UTD 2 |val square =even
12| UTD 3 |val sorted =square
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Mutation Operators for Transformations: In this class of operators,
changes are made in specific transformations in a Spark program. Table2 pro-
vides examples of mutants that are generated with the operators presented
below.

Table 2. Mutants generated with the transformation mutation operators.

Id|Operator|Line Mutation
1| MTR 2 |val square =even.map(x =>0)
2| MTR 2 |val square =even.map(x =>1)
3| MTR 2 |val square =even.map(x =>Int.MaxValue)
4| MTR 2 |val square =even.map(x *>Int MinValue)
5| MTR 2 |val square =even.map(x =>—(x * x))
6 FTD 1 |val even =input
7| NFTP 1 |val even =input.filter(x =>I(x % 2 ==0))
8| STR — |val rdd3 =rdd1.intersection(rdd2)
9 STR — |val rdd3 =rdd1.subtract(rdd2)
10| STR — |val rdd3 =rdd1
11| STR — |val rdd3 =rdd2
12| STR — |val rdd3 =rdd2.union(rdd1)
13| DTD — |val rdd4 =rdd3
14| DTI 1 |val even =input.filter(x =>x % 2 ==0).distinct()
15| DTI 2 |val square =even.map(x =>x x* x).distinct()
16| DTI 3 |val sorted =square.sortBy(x =>x).distinct()
17| ATR — |val rdd4 =rdd3.reduceByKey((x, y)=>x)
18] ATR — |val rdd4 =rdd3.reduceByKey((x, y)=>y)
19] ATR — |val rdd4 =rdd3.reduceByKey((x, y)=>x + x)
20 ATR — |val rdd4 =rdd3.reduceByKey((x, y)=>y + y)
21| ATR — |val rdd4 =rdd3.reduceByKey((x, y)=>y + x)
val rdd4 = rdd3.leftOuterJoin(rdd2)
22| JIR - .map(x => (x._1,
(x.-2..1, x._2._2.getOrElse(""))))
val rdd4 = rdd3.rightOuterJoin(rdd2)
23| JTR - .map(x => (x._1,
(x.-2.-1.getOrElse(0), x.-2._2)))
val rdd4 = rdd3.fullOuterJoin(rdd?2)
24| JTIR - .map(x => (x._1,
(x.-2._1.getOrElse(0), x._2._2.getOrElse(""))))
25| OTD 3 |val sorted =square
26 OTI 3 |val sorted =square.sortBy(x =>x, ascending =false)

Mapping Transformation Replacement (MTR) - for each mapping transforma-
tion (map, flatMap) in the program, replace the mapping function passed as a
parameter to that transformation by a different mapping function. We propose a
mapping function that returns a constant value of the same type as the original,
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or makes some modification to the value returned by the original function. For
example, for a mapping function that operates on integers, we can replace this
function by one that returns zero or another that reverses the sign of the value
returned by the original. In Table3 we present mapping values of basic types
and collections that can be returned by the mutant mapping function. To illus-
trate the MTR operator, consider the mapping transformation applied in line 2
of Fig. 2. The operator generates mutants 1-5 in Table 2.

Table 3. Mapping values for basic and collections types.

Type Mapping value
Numeric | 0,1, MAX, MIN, —x

Boolean | true, false, ~x

13}

String

List List(xz.head), x.tail, x.reverse, Nil

Tuple | (K, v), (K, vm)

General | null

Description: = represents the value generated by the original mapping
function; k£ and v represents the key and value generated by the original
mapping function in case of Key-Value tuples; k., and v, represents
modified values for the key and value, which is the application of other
mapping values respecting the type.

Filter Transformation Deletion (FTD) - for each filter transformation in the
program, create a mutant where the call to that transformation is deleted from
the program. For example, considering the filter transformation in line 1 of Fig. 2,
applying the FTD operator generates the mutation of line 6 in Table 2.

Negation of Filter Transformation Predicate (NFTP) - for each filter transfor-
mation in the program, replace the predicate function passed as a parameter to
that transformation by a predicate function that negates the result of the origi-
nal function. For the filter transformation in line 1 of Fig. 2, the NF'TP operator
generates the mutation 7 in Table 2.

Set Transformation Replacement (STR) - for each occurrence of a set transfor-
mation (union, intersection and subtract) in a program, create five mutants: (1-2)
replacing the transformation by each of the other remaining set transformations,
(3) keeping just the first RDD, (4) keeping just the second RDD, and (5) chang-
ing the order of the RDDs in the transformation call. For example, given the
following excerpt of code with a union between two RDDs:

val rdd3 = rdd1.union(rdd2)

The application of the STR operator to this transformation creates the five
mutants, described by lines 8-12 in Table 2.
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Distinct Transformation Deletion (DTD) - for each call of a distinct transforma-
tion in the program, create a mutant by deleting it. As the distinct transformation
removes duplicated data from the RDD, this mutation keeps the duplicates. For
example, the application of DTD in the following excerpt of code generates the
mutant 13 of Table 2:

val rdd4 = rdd3.distinct()

Distinct Transformation Insertion (DTI) - for each transformation in the pro-
gram, create a mutant inserting a distinct transformation call after that trans-
formation. Applying DTI to the transformations presented in Fig.2 generates
the mutants 14-16 of Table 2.

Aggregation Transformation Replacement (ATR) - for each aggregation transfor-
mation in the program, replace the aggregation function passed as a parameter
by a different aggregation function. We propose five replacement functions. For
an original function f(x,y), the replacement functions f,,(z,y) are defined as:
(1) a function that returns the first parameter (f,,(z,y) = x); (2) a function that
returns the second parameter (f,(z,y) = y); (3) a function that ignores the sec-
ond parameter and calls the original function with a duplicated first parameter
(fm(z,y) = f(z,x)); (4) a function that ignores the first parameter and calls
the original function with a duplicated second parameter (f,.(x,y) = f(y,vy));
and (5) a function that swaps the order of the parameters (f,,(x,y) = f(y, z)),
which generates a different value for non-commutative functions. For example,
considering the following excerpt of code with an aggregation transformation
(reduceByKey) and an aggregation function that adds two values, the applica-
tion of ATR generates the mutants 17-21 of Table 2.

val rdd4 = rdd3.reduceByKey((x, y) => x + y)

Join Transformation Replacement (JTR) - for each occurrence of a join trans-
formation ((inner) join, leftOuterJoin, rightOuterJoin and fullOuterJoin) in the
program, replace that transformation by the remaining three join transforma-
tions. Additionally, a map transformation is inserted after the join to adjust the
typing of the new join with the old one. This is necessary because depending on
the join type, the left side, right side, or both can be optional, which makes the
resulting RDD of the new join slightly different from the previous one. So we
adjust the type of the resulting RDD to be of the same type as the original join.
For example, replacing the join transformation by leftOuterJoin makes right-side
values optional. To keep type consistency with the original transformation, we
map empty right-side values to default values, in case of basic types, or null,
otherwise.

To illustrate the JTR operator, let us consider the following code snippet
where two RDDs are joined. Assume that rdd3 is of type RDD[(Int, Int)] and that
rdd2 is of type RDD[(Int, String)]. The resulting RDD of this join (rdd4) is of
type RDD[(Int, (Int, String))]. Applying JTR to this transformation generates the
mutants 22-24 of Table 1. Taking mutant 22 as an example, replacing join with



492 J. B. de Souza Neto et al.

leftOuterJoin, the resulting RDD is of type RDD[(Int, (Int, Option[String]))]. Thus,
the map following the leftOuterJoin serves to set the value of type Option[String]

to String. When this value is empty (None), we assign the empty string ("").
val rdd4 = rdd3.join(rdd2)

Order Transformation Deletion (OTD) - for each order transformation (sortBy
and sortByKey) in the program, create a mutant where the call to that transfor-
mation is deleted from the program. For example, considering the order trans-
formation called in line 3 of Fig. 2, the application of OTD generates the mutant
25 of Table 2.

Order Transformation Inversion (OTI) - for each order transformation in the
program, create a mutant where the ordering of that transformations is replaced
by the inverse ordering (ascending or descending). Applying OTI to the same
order transformation of Fig.2 generates the mutant 26 of Table2, where the
ascending ordering that is true by default was changed for false.

5 Experiments

We conducted experiments to evaluate the cost and effectiveness of the proposed
mutation operators. We selected a set of eight representative Spark programs® to
apply the mutation testing process described in Fig. 1. These programs perform
common data analysis such as text and log analysis, queries on tabular datasets
inspired by the benchmark presented in [2], and data exploration and recom-
mendation based on the collaborative filtering algorithm [24]. These programs
were selected to explore the features necessary to apply the operators, such as
having data flow and transformations commonly used in Spark programs and
that could be modified in the testing process.

The experiments presented in this section show a first assessment of the
mutation operators. The process described in Fig.1 was strictly followed, by
manually executing each step. For each code to be tested, and each applicable
mutation operator, the source was edited to simulate the application of the
operator, generating a mutant. A script was then executed to run each mutant.
Test cases were developed incrementally to kill the mutants. Comparison of the
results with the original program and metrics calculation were also executed
manually. Once we implemented a prototype mutation testing tool, the results
of these experiments evaluated and results were corroborated.

Finally, we performed a cost analysis based on the number of mutants gen-
erated and tests needed to kill all mutants (ms = 100%). We also analyzed
the effectiveness of the mutation operators by identifying the operators that
generated mutants that were killed by most of the tests and operators that gen-
erated mutants that were harder to kill. Table 4 summarizes the results for each

3 The programs used in the experiments of this work are publicly available at https: //
github.com/jbsneto- ppgsc-ufrn/spark-mutation-testing-experiments.
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program, showing the number of transformations in each program, number of
mutants, number of tests created, number of killed mutants, number of equiva-
lent mutants, and mutation score (ms).

Table 4. Total of mutants and tests per program.

Program Transformations | Mutants | Tests | Killed | Equiv. | ms (%)
NGramsCount 5 27 5 20 5 100
ScanQuery 3 12 3 12 0 100
AggregationQuery 3 15 3 11 2 100
DistinctUserVisitsPerPage 4 16 2 10 6 100
MoviesRatingsAverage 5 25 4 22 3 100
MoviesRecomendation 12 37 5 33 4 100
JoinQuery 11 27 6 25 2 100
NasaApacheWebLogsAnalysis| 7 55 4 49 6 100
Total 50 214 32 182 |28 —

Table 5 summarizes the results aggregated for each mutation operator. It
shows the total number of mutants generated by the operator, the number of
equivalent mutants and the killed ratio*. The killed ratio shows how easy it was
to kill the mutants generated with that mutation operator. Thus, operators with
a low ratio generated mutants harder to kill (they required more specific tests).
This measures the effectiveness of the mutation operator because mutants that
are not killed trivially (get killed by any test) simulate faults that are not easily
revealed.

Table 5. Total of mutants and killed ratio per mutation operator.

Mut. # of # of Killed Mut. # of # of Killed
Op. | Mutants | Equiv. | Ratio (%) Op. | Mutants | Equiv. | Ratio (%)
UTS 11 2 67,6 STR 10 2 34,4
BTS 1 0 75,0 DTI 31 10 27,7
UTR 22 2 39,0 DTD 1 0 25,0
BTR 0 37,5 ATR 20 4 46,4
UTD 0 32,0 JTR 6 3 22,2
MTR 82 5 76,1 OTI 0 30,0
FTD 7 0 34,4 OTD 4 0 20,0
NFTP 7 0 65,6

The mutation operators for data flow (UTS, BTS, UTR, BTR and UTD)
were responsible for 19,6% of the generated mutants. The number of mutants

4 The killed ratio is the ratio between the number of tests that killed the generated
mutants and the total number of tests that were executed with those mutants.
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generated by each of these operators depends on the number of transformations
that have the same input dataset type and the same output dataset type. The
number of mutants generated by UTS and BTS is equal to the number of two-
by-two combinations between these transformations. In the case of the UTR and
BTR, the number of mutants depends on the number of permutations of these
transformations. The UTD generates a number of mutants equal to the number
of transformations that have input and output datasets of the same type. From
these operators, UTR, BTR and UTD generated the most relevant mutants since
their mutants were killed by fewer tests.

The MTR operator generated the largest number of mutants (38,3% of total).
Mapping operations are common in big data processing programs, which explains
the number of mutants. The number of mutants depends on the type to which
data is being mapped according to Table 3. For example, a mapping transforma-
tion that generates a numeric value will generate five mutants since we define five
mapping values for numeric types. Analyzing the total, the mutants generated
with the MTR were the easiest to kill, as we can see in Table 5. Individually,
the mappings for 1, with numeric types, and List(z.head) and Nil, in list type,
obtained the best results with ratios below 70%.

The operators FTD and NFTP, related with filter transformations, and OTD
and OTI, related with order transformations, generate a number of mutants
equal to the number of transformations of the respective types. A subsumption
relationship between FTD and NFTP, and between OTD and OTI was observed
in the results. All tests that killed FTD mutants also killed NFTP mutants, just
as all tests that killed OTD mutants also killed OTI mutants, but the opposite
in both cases was not observed. This indicates that the FTD and OTD operators
are stronger than the NFTP and OTI operators, which in turn indicates that
when FTD and OTD are applied, the NFTP and OTI operators are not required.

The operator DTI generated 14.5% of all mutants, being the second operator
that generated the most mutants. DTT is the most applicable operator because
it can be applied after any transformation considering the resulting dataset is
always the same type as the original. This operator also generated the largest
number of equivalent mutants. This occurs because in some cases the operator
is applied after aggregation transformations, so the repeated data had already
been aggregated and the dataset no longer had duplicate data. In general, the
DTTI operator generated relevant mutants considering they were killed by less
than 30% of the tests. The number of mutants generated with DTD is equal to
the number of distinct transformations called in the program. In our experiment,
only one program used distinct, which explains the existence of only one mutant.

ATR generated 11,2% of the mutants in the experiment. The number of
mutants it generates is proportional to the number of aggregation transforma-
tions in the program, with five mutants for each transformation. The ATR oper-
ator has helped to improve the test set because it requires testing with diverse
data to aggregate in order to kill the mutants. All equivalent mutants generated
by ATR in our experiments were generated by the commutative replacement
(fm(z,y) = f(y,z)) because all aggregation functions applied in the programs
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were commutative. Even so, the commutative replacement mutation is useful
because aggregation operations in distributed environments must be commuta-
tive to be deterministic [7]. Thus, this mutation can ensure that the commutative
property is being taken into account in the testing process.

The mutation operators for binary transformations STR, for set-like trans-
formations, and JTR, for join transformations, generate mutants proportional to
the number of these types of transformations. A set transformation generate five
mutants, whereas a join transformation generates three mutants. Both operators
force the creation of test cases that include two input datasets with diversified
data, containing data common to both as well as data not shared between them.
In this manner, STR and JTR contribute to the improvement of the test set
as they require nontrivial test data. This can be seen in Table5 which shows
that the killed ratio was 34,4% for STR and 22,2% for JTR, which we consider
relevant results.

In general, the results showed a reasonable cost estimation for the mutation
operators proposed in this work and the viability of their application in the
mutation testing process. The number of mutants generated depends on the
amount of transformations in the program and their types. The analysis of these
aspects, as well as an analysis of the results shown in Table 5, such as the killed
ratio, can be used as a reference to the selection of the operators to apply to the
mutation testing of big data processing programs.

6 Conclusions and Future Work

The development of big data processing programs has gained interest in recent
years. The distributed environment and computational resources required to run
such programs make their costs high, which makes it necessary to validate and
verify them before production. This paper addressed this issue by proposing the
application of mutation testing to big data programs based on data flow systems.

We proposed a set of 15 mutation operators that take into account character-
istics and operations of data flow systems to model changes in Spark programs
and simulate faults. We applied these operators in an experiment to show their
feasibility and make a first assessment of costs and effectiveness. The results
showed the feasibility to apply mutation testing and design test cases for big
data programs, at a reasonable cost. The experiment also hinted at the quality
of mutation operators by showing which operators generated mutants, and hence
faults, which were more difficult to identify, thus leading to more interesting test
cases. This was revealed by the killed ratio for each operator in Table 5.

Our approach is complementary to traditional mutation testing criteria devel-
oped for Scala, Java and Python. The mutation analysis at the workflow level has
several advantages. First, it reflects the two-level organization of Apache Spark
programs, where the programmer defines the basic processing blocks (transfor-
mation) and the composition of these blocks (data flow). We designed our testing
criteria to deal with this composition. Second, it can be used in addition to tra-
ditional mutation testing at the programming language level. Finally, it can be
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generalised to other data flow big data processing frameworks which have simi-
larities in program definition and operations. Thus, we plan to do experiments to
apply the proposed mutation operators for testing programs in other data flow
frameworks such as Apache Flink [6], DryadLINQ [26] and Apache Beam [3].

Our work has shown that mutation testing can be successfully applied to
big data processing programs by designing mutation operators specific to this
class of programs. However, due to the effort required for generation, execution
and analysis of the mutants, mutation testing is dependent on automation so
that it can be viable. Thus, we are consolidating our prototype to automate the
process of generation and execution of mutants, to assist the mutation testing
of big data programs. Moreover, we plan to evaluate the effectiveness of our
mutation operators by comparing the test sets created in the process with other
test coverage criteria (e.g., input space partitioning and logic coverage [1]).
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