®

Check for
updates

A Combined Method for Usage of NLP
Libraries Towards Analyzing Software
Documents

Xinyun Cheng, Xianglong Kong®™), Li Liao, and Bixin Li

School of Computer Science and Engineering, Southeast University, Nanjing, China
{yukicheng,xlkong,1lliao,bx.li}@seu.edu.cn

Abstract. Natural Language Processing (NLP) library is widely used
while analyzing software documents. The numerous toolkits result in
a problem on NLP library selection. The selection of NLP library in
current work commonly misses some objective reasons, which may pose
threats to validity. And it is also not clear that whether the existing
guideline on selection still works for the latest versions. In this work,
we propose a solution for NLP library selection when the effectiveness
is unknown. We use the NLP libraries together in a combined method.
Our combined method can utilize the strengths of different NLP libraries
to obtain accurate results. The combination is conducted through two
steps, i.e., document-level selection of NLP library and sentence-level
overwriting. In document-level selection of primary library, the results are
obtained from the library that has the highest overall accuracy. Through
sentence-level overwriting, the possible fine-gained improvements from
other libraries are extracted to overwrite the outputs of primary library.
We evaluate the combined method with 4 widely used NLP libraries
and 200 documents from 3 different sources. The results show that the
combined method can generally outperform all the studied NLP libraries
in terms of accuracy. The finding means that our combined method can
be used instead of individual NLP library for more effective results.

Keywords: Natural Language Processing - NLP library selection -
Software document

1 Introduction

Software documents are important sources of knowledge in an information sys-
tem. The documents (e.g., requirement documents, design documents or logs) are
commonly written in natural language by some developers or automatically cre-
ated by generators for different purposes. To obtain the information contained in
software documents, many researchers directly use state-of-the-art Natural Lan-
guage Processing (NLP) libraries to carry out the tasks [11,21,26]. There are

Technical paper.

© Springer Nature Switzerland AG 2020
S. Dustdar et al. (Eds.): CAiSE 2020, LNCS 12127, pp. 515-529, 2020.
https://doi.org/10.1007/978-3-030-49435-3_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49435-3_32&domain=pdf
https://doi.org/10.1007/978-3-030-49435-3_32

516 X. Cheng et al.

several high-quality NLP libraries which are widely used in both industry and
academia, such as NLTK", spaCy?, Stanford CoreNLP?, Google’s SyntaxNet?,
OpenNLP? and so on. ALL the NLP libraries can provide API supports for
the common NLP tasks (e.g., tokenization and part-of-speech tagging). The rich
sources of candidates result in a new problem on the selection of suitable NLP
library while analyzing documents. In most cases, the selection of NLP library is
subjective [22,28,29,32]. And the results from different NLP libraries may also
be different, the subjective selection may pose threats to validity [17].

To solve the problem, Omran and Treude propose an empirical study to give a
guideline for choosing appropriate NLP libraries [17]. The guideline is expressed
as the best choice of NLP libraries for a specific type of software documents.
The effectiveness of NLP libraries is influenced by the NLP task and the source.
For example, spaCy performs best on Stack Overflow text with nearly 90% of
tokens tagged correctly in the experiments, while it is significantly outperformed
by Google’s SyntaxNet when parsing GitHub ReadMe text. However, the guide-
line cannot always help researchers to choose the best NLP library for a specific
task. There are three reasons for the possible inaccuracy. First, there exist a
great variety of software documents in real world [4,13,20], and it is too tedious
to produce an universal guideline for all the types of software documents. Sec-
ond, the NLP libraries are optimized continuously, the existing guideline may be
inaccurate in some upcoming scenarios. Third, different types of software docu-
ments may be analyzed together in some cases [6,31], the individual selection of
different NLP libraries on different documents and NLP tasks may weaken the
automation.

Since it is impractical to summarize an universal and continuously updated
guideline of NLP library selection, we turn to investigate a method to use them
together. In this paper, we propose a combined method which can utilize the
strengths of different NLP libraries to achieve more effective results. The com-
bined method is expected to generate more accurate results than single NLP
library. To obtain the combined results, we firstly choose the whole results from
the NLP library which has the highest overlapping degree. The overlapping
degree of a NLP library defined in our work is the average proportion of identical
outputs (e.g., tokens or part-of-speech tags) among the results achieved by it and
any other NLP library individually. The overlapped results have high possibility
to be correct due to the high quality of the studied NLP libraries. When the
primary NLP library is selected in the first step, we identify the result of each
sentence. The results of low-overlap sentences within a document are overwritten
with the fine-gained improvements from other NLP libraries.

Our study has two main novel aspects. First, we conduct an empirical study
to check whether the existing guideline fits to different versions of NLP libraries

! http://www.nltk.org/.

2 https:/ /spacy.io/.

3 https://nlp.stanford.edu/nlp/.

4 https://opensource.google.com/projects/syntaxnet.
5 http://opennlp.apache.org/.

http://www.nltk.org/
https://spacy.io/
https://nlp.stanford.edu/nlp/
https://opensource.google.com/projects/syntaxnet
http://opennlp.apache.org/

A Combined Method for Usage of NLP Libraries Towards 517

and different documents. The subjects include 4 publicly available NLP libraries
and 200 documents from 3 different sources. The results confirm that the exist-
ing guideline should be updated with the evolution of NLP libraries and the
change of given documents. Furthermore, each NLP library can generate its own
exclusive correctness. This finding inspires us to extract correct results from
different libraries to achieve a better effectiveness. The combined method for
usage of NLP libraries brings the second novelty of our work. It contains two
steps, i.e., document-level selection of NLP library and sentence-level overwrit-
ing. We evaluate the combined method according to a handmade benchmark
in our study. The results show that our method can outperform any individual
library in terms of accuracy on tokenization and part-of-speech tagging. The
numeric promotion is around 2%. Due to the high quality of the studied NLP
libraries, the improvements are meaningful in practice. And the majority of cor-
rect NLP results come from the outputs of primary NLP library. These findings
mean that our combined method can be used instead of individual NLP library
for more effective results in the analysis of software documents.
To sum up, this paper makes the following contributions.

— We conduct an empirical study to investigate the effectiveness of NLP
libraries, and prove that the existing guideline should be updated with the
evolution of libraries and each library has its own exclusive results.

— We propose a method to combine the strengths of different NLP libraries,
and the combined method can outperform any individual NLP library in the
experiments.

2 Background

In the section, we discuss some background knowledge of our method, i.e., NLP
Library, NLP task and software document.

2.1 NLP Libraries and Tasks

There are a lot of NLP libraries in both academia and industry, and the pub-
licly available libraries are very popular in the analysis of software documents.
Among them, we introduce several widely used NLP libraries in this section.
NLTK is a platform for building Python programs to work with human lan-
guage data. It provides a suite of text processing libraries. SpaCy is another free
open-source library for NLP which is called “Industrial-Strength Natural Lan-
guage Processing in Python”. Stanford CoreNLP is a set of open-source Java
NLP tools developed by Stanford University. Google’s SyntaxNet is a new open-
source natural language parsing model which is developed by Google. Apache
OpenNLP is a toolkit based on machine-learning for processing natural language
text.

NLP tasks denote the various purposes of analyzing documents. We list 3
frequently used NLP tasks as follow. Tokenization is the process of dividing a

518 X. Cheng et al.

string into several parts [30]. The resulting tokens will be used in other tasks.
When processing texts in English, tokenization of strings is impacted by the
rules on processing punctuations. Stop words removal is designed to save storage
space and improve search efficiency, some words or phrases will be filtered while
processing natural language texts. These stop words or phrases are commonly
insignificant. Part-of-speech is a basic grammatical property of a vocabulary.
Part-of-speech tagging is the process of determining the grammatical category
of each word in a given sentence and tagging it [5,18], the tags are usually used
in syntactic analysis and information retrieval.

2.2 Software Documents

Documents in software life-cycle may contain both oral words and formal state-
ments. The formal documents are usually generated by some approaches, and
the human-written documents may have a low degree of formalization. Accord-
ing to the different degree of formalization, we introduce three types of software
documents as below.

Feature requests are requirements of new features which are received by devel-
opers in order to modify the code and documents [26]. The documents of feature
requests can be extracted from JIRAS (an issue and project tracking system).
There is not a standard of the formalization of the language in the documents of
feature requests. ReadMe Files are written by the developers to help other people
understand the projects. Developers can author the files in different languages.
ReadMe files are more formal than descriptions of feature requests. Java API
documentation is quite different from the documents mentioned above. Java API
documentation has their own structures and not as casual as the descriptions
of feature requests. Moreover, Java API documentation contains many code ele-
ments which may obey the rules of grammar in daily expression. It is the official
text provided by the community’. Therefore, it can be treated as formal soft-
ware documents. In this work, we apply the four NLP libraries on three types
of software documents to conduct tokenization and part-of-speech tagging.

3 Approach

It is hard to predict the accuracy of NLP libraries while analyzing software doc-
uments, especially for the people which are not professional at NLP. Since the
subjective selection of NLP libraries may result in threats to the validity, and
random selection may obtain unexpected NLP results, we want to propose a
combined method to utilize the strengths of different NLP libraries. The over-
all framework of our combined method is illustrated in Fig.1. The combined
method mainly consists of two stages: document-level selection of NLP library
and sentence-level overwriting. In this section, we present the details of our app-
roach in sequence.

5 https://www.atlassian.com/software/jira.
" https://docs.oracle.com /javase/7/docs/api.

https://www.atlassian.com/software/jira
https://docs.oracle.com/javase/7/docs/api

A Combined Method for Usage of NLP Libraries Towards 519

a. Document-level Selection of NLP library b. Sentence-level Overwriting

fenenenen Optimization

Stanford
NLP
OpenNLP

Combined
el Resuns

S denotes low-overlap sentence

R SSLLCGRRELLLTTREEERRPEEy Outputs of primary libran--+

Fig. 1. Overall framework of the combined method

3.1 Document-Level Selection of NLP Library

For the given documents, we firstly apply NLTK, spaCy, Stanford CoreNLP and
OpenNLP to produce four sets of results independently. Then we calculate the
degree of overlap for each studied NLP library. The NLP library with highest
degree of overlap is selected as primary library, its outputs are transfered to
the next step as primary outputs. Document-level overlapping degree of a NLP
library defined in our experiment is the average proportion of identical outputs
(e.g., tokens or part-of-speech tags) among the results achieved by it and any
other NLP library individually. The degree of overlap between NLP library ¢ and
J is calculated as

_ {OQutputsi} N{Outputs;}|

= 2 1
01 {Outputs;}| + [{Outputs;}| (1)

where o; ; denotes the degree of overlap between NLP library ¢ and j, {Outputs; }
and {Outputs;} are the sets of all the annotations generated by NLP library ¢
and j, respectively.

The document-level overlapping degree of library i is calculated as

Yitoi;
o= @

where O; denotes the document-level overlapping degree of library i, and k is
the total number of studied NLP libraries.

We show the process of calculating document-level overlapping degree
through a case. Figure 2 shows an example of document from Java API Documen-
tation. The document contains 14 sentences, and we list the 2 selected sentences
in the figure. For the whole document, NLTK, spaCy, Stanford CoreNLP and
OpenNLP identify 244, 246, 242 and 246 tokens, respectively. Table 1 presents
the results of document-level overlapping degrees on part-of-speech tagging. In
the table, the first column presents the studied NLP libraries, and overlapping
degrees of the paired NLP libraries are shown in column 2 to 5. The last column

520 X. Cheng et al.

Interface Summary Interface Description CompositeData
The CompositeData interface specifies the behavior of a
specific type of complex open data objects which represent
composite data structures.

Sentence 1

CompositeDatalnvocationHandler An InvocationHandler that]_ Sentence 10
forwards getter methods to a CompositeData.

Fig. 2. Document from JavaDoc of javax.management.openmbean

presents the document-level overlapping degree. The data within parentheses in
row 2 to 5 denotes the number of identical tags for each pair of NLP libraries.
In this case, NLTK gets the highest document-level overlapping degree, so we
select NLTK as primary library.

Table 1. Document-level overlapping degree of NLP libraries on POS tagging

Document | NLTK (244) | spaCy (246) | CoreNLP (242) | OpenNLP (246) | Overlapping degree
NLTK - 0.89 (218) | 0.84 (203) 0.87 (213) 0.87
spaCy 0.89 (218) |- 0.82 (199) 0.87 (214) 0.86
CoreNLP | 0.84 (203) |0.82 (199) |- 0.81 (197) 0.82
OpenNLP | 0.87 (213) | 0.87 (214) | 0.81 (197) - 0.85

The reason for choosing a primary library is shown as follows. The studied
NLP libraries are all widely used and well maintained by professional teams.
So the expected effectiveness of these NLP libraries is high enough to ensure
that the identical overlapping results in their outputs are highly possible to be
correct. The selected NLP library in this step is supposed to have the best overall
effectiveness. We also record the results of each sentence separately, which will
be analyzed in the next step.

3.2 Sentence-Level Overwriting

After document-level selection, we obtain a primary NLP library which has the
best overall performance. Then we try to investigate the fine-gained improve-
ments on sentences. Due to the complex features of software documents, the
primary NLP library may not perform better than other NLP libraries on every
sentence within the document.

To locate the potential sentences, we calculate the overlapping degree of the
primary NLP library for each sentence by treating it as an individual docu-
ment. We apply the same formula as the previous step on each sentence. Once
the sentence-level overlapping degree of a particular sentence is less than the
document-level overlapping degree of the document it belongs to, we mark it
as low-overlap sentence. The outputs of primary NLP library on low-overlap

A Combined Method for Usage of NLP Libraries Towards 521

Table 2. Sentence-level overlapping degree of NLP libraries on POS tagging

Sentence 10 | NLTK (11) | spaCy (11) | CoreNLP (11) | OpenNLP (11) | Overlapping degree
NLTK - 0.64 (7) | 0.73 (8) 0.64 (7) 0.67
spaCy 0.64 (7) |- 0.82 (9) 0.64 (7) 0.70
CoreNLP | 0.73 (8) | 0.82 (9) |- 0.73 (8) 0.76
OpenNLP | 0.64 (7) | 0.64 (7) | 0.73 (8) - 0.67

sentences are highly possible to have great space for improvements. For the low-
overlap sentence, we overwrite its primary outputs with another set of results
from the library which has highest overlapping degree on it.

Table 2 presents the overlapping degree of sentence 10 in this above case. We
can find that the primary library NLTK obtains 0.67°, which is smaller than
the document-level degree (i.e., 0.87). And Stanford CoreNLP gets the highest
overlapping degree on it, so we overwrite the primary outputs on sentence 10
with the annotations generated by Stanford CoreNLP. In this case, the tag of
token getter changes from adjective to noun.

Algorithm 1: Combined usage of NLP libraries

Input : Given Document D, candidate NLP libraries {NLP}
Output: Combined NLP results
Initial ResultsSet{Initial R} «— Analyze(NLP, D);
for each NLP; € {NLP} do
for each (R;, Rj) € InitialR do
\ Document-level overlapping degree O(d;;) < Compare((R;, Rj) ;
end

O(di) — SIFPIN= O(dyy) / ({NLPY| - 1) 5

end

NLPprimary « {NLP;, max (O(d;))} ;

9 for each d € {D} do

10 for each s € {d} do

11 for each NLP, € {{NLP}-NLPp,imary} do

12 ‘ O(Sprimary,k:) — Compare((RpMmary; Ry) ;
13 end

1a O(sprimary) — Tpay "M Osprimary.k) / ({NLPY = 1) ;
15 if O(sprimary) < O(d) then

16 ‘ {Simprove} — (57 Rs)?

17 end

18 end

19 end

20 FinalResults «— Combine(Rprimary, {Simprove});

21 return FinalResults

N O s WwN e

The NLP library may have some exclusive correctness, which usually occur
on some controversial spots. If we directly use sentence-level overlapping degree
to combine the results, the exclusive results will be totally overwritten. In our
method, we can keep parts of the exclusive correctness, which are extracted when
other NLP libraries cannot generate the same wrong results. Algorithm 1 shows
the details of our combined method. O () represents the calculation of overlapping

522 X. Cheng et al.

degree, and R () denotes the related results of the subject. The document-level
selection of NLP library is implemented in line 2 to line 8, N L P, imary denotes
the primary NLP library. The sentence-level overwriting is implemented in line
9 to line 19.

4 Experiment

We propose a combined method for usage of NLP libraries to obtain more accu-
rate NLP results than individual NLP library. The outputs generated by our
method may include NLP annotations from several different NLP libraries. We
discuss the effectiveness of our method in this section.

4.1 Research Questions
Our experiments investigate the following research questions.

— RQ1: Does the existing guideline for NLP library selection still work for the
latest version of NLP libraries?

— RQ2: How effective is the combined method compared with individual NLP
library?

To answer RQ1, we evaluate the guideline according to the comparison of
NLP libraries on different documents in our study. RQ2 evaluates the effective-
ness of our method compared with individual NLP library on tokenization and
part-of-speech tagging. We also want to discuss the contributions of the two
sources of information in our final results.

4.2 Subjects

To answer the above two research questions, we conduct experiments with four
state-of-the-art NLP libraries and several documents from three different sources.

Selection of NLP Libraries. In the literature, there are a wide variety of
NLP libraries used in different studies. Since our method focuses on analysis of
software documents, we select several publicly available NLP libraries accord-
ing to empirical results in existing work [17]. In their work, NLTK achieves the
best overall results on tokenization, and spaCy performs better than other NLP
libraries on part-of-speech tagging. They also make a systematic literature review
of 1,350 conference papers in the area of software engineering [17]. Their results
show that Stanford CoreNLP is the most frequently used NLP library. Further-
more, we add a new NLP library in our experiments, i.e., Apache OpenNLP.
Apache OpenNLP is another widely used NLP library and it is proved to have a
good performance on text chunking and other NLP tasks [2]. Finally, we select
NLTK (version 3.4), spaCy (version 2.0.18), Stanford CoreNLP (version 3.9.2)
and OpenNLP (version 1.9.1) as NLP libraries in our experiments. These NLP
libraries are used as either individual NLP library or a source of outputs in

A Combined Method for Usage of NLP Libraries Towards 523

the combined method. The releasing time between our studied NLP libraries
and the existing work [17] is more than 2 years, which may result in different
performance.

Selection of Software Documents. We select several software documents
from feature requests in Jira, ReadMe files on GitHub and Java API documen-
tation randomly to evaluate the effectiveness of our method. For feature requests,
we select 160 descriptions from 8 Apache projects®, i.e., AXIF2, CXF, Hadoop
HDFS, Hadoop Common, Hadoop MapReduce, Hbase, Maven and Struts2.
These projects are widely used in research of software engineering [26,32], and
we select 20 feature requests from each project. For ReadMe files, we randomly
select 20 projects on Github? and remove Github markdown and code snippets
in the selected documents. For Java API documentations, 20 APIs of Java7
are randomly selected. The total number of tokens from the selected software
documents is around 40,000.

Selection of NLP Tasks. We select two NLP tasks in our experiments, i.e.,
tokenization and part-of-speech tagging. There are two reasons for this selection.
One reason is that these NLP tasks are widely used in the literatures [3,9,11,
14,23,25]. Once researchers want to analyze software documents, tokenization
and part-of-speech tagging are highly possible to be applied. The other reason
is that both the two tasks can produce individual outputs, which can help us to
conduct a quantitative assessment easily.

4.3 Experimental Steps

For each NLP task, we perform the following steps:

— To control the size of inputs from different sources, the selected 200 docu-
ments (i.e., 160 descriptions of feature requests, 20 ReadMe files and 20 API
documents) are repartitioned into 100 new documents. There are about 400
tokens in each document. All the documents are used to analyze the over-
lapping degree of the studied techniques, and help to evaluate the existing
guideline on NLP library selection.

— The four NLP libraries are applied to analyze the preprocessed documents
for tokenization and part-of-speech tagging, respectively.

— To obtain the benchmark of correct NLP results, 20 students in our group
conduct manual tokenization and part-of-speech tagging. Due to the limita-
tion of human labor, we only collect 50 documents (i.e., about 10,000 tokens
in total) to build the benchmark. We also perform a cross-validation to iden-
tify the controversial spots. The threshold value of controversy is set as 0.5
overlapping degree, i.e., more than 10 students generate different annota-
tions on it. We obtain 82 controversial results in total, and the final results

8 https://projects.apache.org/.
9 https://github.com/.

https://projects.apache.org/
https://github.com/

524 X. Cheng et al.

are determined through our discussion. For the other parts of studied docu-
ments, the handmade benchmarks are generated by results with the highest
degree of overlap.

— We apply the two-steps method on the collected 50 documents, and discuss
the effectiveness of our combined method and the four NLP libraries based
on the handmade benchmark generated in the above step.

4.4 Experimental Results

RQ1 Evaluation of the Existing Guideline

To evaluate the accuracy of tokenization and part-of-speech tagging for the stud-
ied NLP libraries, we compare the generated results with manual annotations.
Table 3 and Table 4 show the results of comparison on tokenization and part-of-
speech tagging, respectively. In the tables, column 1 lists all the studied libraries,
column 2 presents the number of identical results from the outputs of NLP
libraries and manual benchmark, column 3 presents the total number of results
generated by NLP libraries. Column 4 presents the accuracy of each studied
technique, i.e., the ratio of identical results to all the results. Columns 2 to 4
present the results on feature request, columns 5 to 7 present the results on
ReadMe file, and columns 8 to 10 present the results on JavaDoc. We list the
results of four individual NLP libraries at rows 3 to 6. And the last two rows in
the tables present the results of our combined method which will be discussed in
RQ2. From the data in Table 3 and Table 4, we have the following observations.

Table 3. Comparison on tokens (NLP libraries vs. Manual benchmark)

Feature request ReadMe file JavaDoc

Identical | Al | ACC | Identical | All | ACC | Identical | All | ACC
NLTK 2484 2545 | 98% | 3154 3238 | 98% | 4209 4256 | 99%
spaCy 2453 2580 | 96% | 3113 3335 | 95% | 4188 4348 | 97%
Stanford CoreNLP 2478 2529 | 98% | 3170 3243 | 98% | 4222 4245 | 99%
OpenNLP 2382 2535 | 94% | 3080 3218 | 96% | 4105 4221 | 97%
Combined method 2496 2543 | 99% | 3171 3215 99% | 4219 4243 | 99%
Overall improvement 1% 1% 0%

First, Stanford CoreNLP and NLTK perform best in terms of accuracy of
tokenization on software documents. This finding is different with the existing
guideline [17]. In that work, NLTK performs best on all kinds of software doc-
uments. Stanford CoreNLP performs worse than NLTK. Second, OpenNLP is
the most effective NLP library on part-of-speech tagging in our experiments.
While in the existing work [17], spaCy outperforms other NLP libraries on part-
of-speech tagging except on Readme files. Based on the findings, we can infer
that the guideline of NLP library selection should be updated with the change
of releasing version and given documents.

A Combined Method for Usage of NLP Libraries Towards 525

Table 4. Comparison on POS tags (NLP libraries vs. Manual benchmark)

Feature request ReadMe file JavaDoc

Identical | All | ACC | Identical | All | ACC | Identical | All | ACC
NLTK 2165 2545 | 85% | 2807 3238 | 87% | 3701 4256 | 87T%
spaCy 2241 2580 | 88% | 2851 3335 | 87% | 3732 4348 | 87%
Stanford CoreNLP 2123 2529 | 84% | 2717 3243 | 84% | 3549 4245 | 84%
OpenNLP 2197 2535 | 87% | 2842 3218 | 89% | 3665 4221 | 87%
Combined method 2308 2528 | 91% | 2931 3227 |91% | 3824 4252 | 90%
Overall Improvement 3% 2% 3%

Finding 1 The guideline of NLP library selection should be updated with the
change of releases and given documents.

RQ2 Effectiveness of the Combined Method

Table 5 presents the data of overlapping degree. In the tables, column 1 lists all
the six pairs of NLP libraries, while columns 2 to 4 and columns 6 to 8 present
the percentages of identical tokens/tags to the average number of tokens/tags
generated by the two NLP libraries. Column 5 and column 9 present the average
percentages of identical tokens/tags for each pair of NLP libraries. The perfor-
mance of studied NLP libraries is close to each other on both tokenization and
part-of-speech tagging.

Comparing the results in Table4 and Table5, we find that the accuracy of
part-of-speech tagging is higher than the overlapping degree of the paired NLP
libraries in most cases. The promotion on accuracy of all the four NLP libraries
indicates that every library has its own exclusive correctness on part-of-speech
tagging. This finding inspires us to combine the exclusive correctness of each NLP
library to achieve an improved effectiveness. The only one exception occurs on
the overlapping degree of NLTK and OpenNLP on part-of-speech tags. They
obtain 88% overlapped results, that is higher than the accuracy (i.e., 87%) in
Table4. We check the exception manually, and find that it is caused by the
identical wrong results generated by the two libraries.

Table 5. Degree of overlap on tokens and part-of-speech tags

Tokens Part-of-speech tags

Feature ReadMe | JavaDoc | Avg | Feature Request | ReadMe | JavaDoc | Avg

request
NLTK vs. spaCy 92% 95% 97% 95% | 79% 84% 85% 83%
NLTK vs. CoreNLP | 95% 88% 99% 94% | 75% 1% 82% 76%
NLTK vs. OpenNLP | 93% 94% 98% 95% | 82% 84% 88% 85%
spaCy vs. CoreNLP | 89% 94% 97% 94% | 74% 79% 83% 79%
spaCy vs. OpenNLP | 89% 94% 96% 93% | 80% 85% 86% 84%
CoreN vs. OpenNLP | 90% 87% 98% 92% | 77% 75% 84% 79%

526 X. Cheng et al.

Based on the degree of overlap in Table 5, we apply the combined method to
generate results through document-level selection and sentence-level overwriting.
The final results on tokenization and part-of-speech tagging are showed in last
two rows in Table3 and Table4. According to the comparison of results, the
combined method outperforms the studied libraries in most cases of tokenization
and part-of-speech tagging. The exceptions occur in tokenization of Java API
documentations by NLTK and Stanford CoreNLP. They already obtains a really
high accuracy of tokenization, so the improvements from other NLP libraries
cannot help too much in this case. Our combined method can achieve slight
improvements on tokenization and part-of-speech tagging on the basis of state-
of-the-art NLP libraries. Since the initial results of the NLP libraries already have
high quality, the 2% promotion is small but meaningful. The promotion means
that our combined method is better than the best selection of independent NLP
library. We can use the combined method instead of any individual NLP library
in the analysis of software documents.

Finding 2 The combined method can generally outperform the individual
NLP libraries in terms of effectiveness. The promotion on accuracy is around

2%.

To evaluate the contribution of two steps in our combined method, i.e.,
document-level selection of NLP library and sentence-level overwriting, we ana-
lyze the proportion of each source in the final correct results. In our experi-
ments, 1% of correct tokens and 4% of correct part-of-speech tags come from
the improvements in sentence-level overwriting, and the other correct results are
generated by the primary NLP library in document-level selection. Document-
level selection plays a more important role than sentence-level overwriting in
terms of contribution to correct results. However, the improvements of our com-
bined method on individual NLP library mainly come from the sentence-level
overwriting. The studied NLP libraries are all high-qualified toolkits with their
own exclusive correctness. This is the main reason that we do not simply treat
each sentence as an individual document and combined the results with highest
sentence-level overlapping degree into the results of a document. The final out-
puts should mainly inherit the results of a primary NLP library. In this way, we
can keep some exclusive correctness in the final results.

Finding 3 The majority of correct NLP results come from the outputs of
primary NLP library. The meaningful improvements of our combined method
on individual NLP library come from sentence-level overwriting.

A Combined Method for Usage of NLP Libraries Towards 527

5 Related Work

5.1 Analyzing Software Artifacts with NLP Libraries

The NLP-related researchers have proposed many meaningful works for the anal-
ysis of documents [7,10,12,15,24]. These jobs are mostly designed to obtain accu-
rate results of tokenization and part-of-speech tagging. Some works are already
considered in the widely used NLP libraries [1,8]. However, for the researchers
who are not professional at NLP, the common solution for NLP tasks is using
state-of-the-art NLP libraries. To solve the problem on selection of NLP libraries,
we propose a combined method to utilize the strengths of different NLP libraries.

5.2 Empirical Study on NLP Libraries

There are also several works which focus on the empirical comparison of current
NLP libraries. Tian and Lo [27] conduct a comparison of the effectiveness of part-
of-speech tagging on bug reports. In their work, Stanford CoreNLP performs bet-
ter than other toolkits. To investigate the impacts of NLP toolkits on analyzing
different texts, Pinto et al. [19] compared the results of tokenization and another
three NLP tasks achieved by four NLP libraries. Olney et al. [16] investigated
the accuracy of 9 part-of-speech taggers on more than 200 source code identifiers
Omran et al. [17] compared the results of tokenization and part-of-speech tags
achieved by four NLP libraries. Compared to their work, we select three types
of software documents, along with four publicly available NLP libraries in this
paper. We aim to check the effectiveness of the existing guideline, rather than
the comparison of current NLP libraries. According to our results, each NLP
library has its own exclusive results. This finding inspires us to investigate a
combined method.

6 Conclusion

This paper evaluates the existing guideline on NLP library selection with 4 pub-
licly available NLP libraries and 200 documents. The results report that the
guideline should be updated continuously and each library has its own exclusive
results. Based on these findings, we turn to investigate a combined method to
utilize the strengths of different libraries. The evaluation confirms that our com-
bined method can outperform any individual NLP library in the experiments.
In future, we will conduct the study on more NLP tasks with additional NLP
libraries and different software documents to improve the combined method.

Acknowledgments. This work is supported in part by the National Key R&D Pro-
gram of China under Grant 2018 YFB1003900, in part by National Natural Science
Foundation of China under Grant 61402103, Grant 61572126 and Grant 61872078, and
in part by Open Research Fund of Key Laboratory of Safety-Critical Software Fund
(Nanjing University of Aeronautics and Astronautics), under Grant NJ2019006.

528

X. Cheng et al.

References

10.

11.

12.

13.

14.

15.

16.

. Abebe, S.L., Tonella, P.: Natural language parsing of program element names for

concept extraction. In: Proceedings of the 18th IEEE International Conference on
Program Comprehension, pp. 156-159 (2010)

Arora, C., Sabetzadeh, M., Goknil, A., Briand, L. C., Zimmer, F.: Change impact
analysis for natural language requirements: an NLP approach. In: Proceedings
of the 23rd IEEE International Requirements Engineering Conference, pp. 6-15
(2015)

Asaduzzaman, M., Roy, C.K., Monir, S., Schneider, K.A.: Exploring API method
parameter recommendations. In: Proceedings of IEEE International Conference on
Software Maintenance and Evolution, pp. 271-280 (2015)

Swathi, B.P., Anju, R.: Reformulation of natural language queries on source code
base using NLP techniques. Int. J. Adv. Comput. Technol. 8(2), 3047-3052 (2019)
Brill, E.: A simple rule-based part of speech tagger. In: Proceedings of the 3rd
Applied Natural Language Processing Conference, pp. 152-155 (1992)

Cao, Y., Zou, Y., Luo, Y., Xie, B., Zhao, J.: Toward accurate link between code
and software documentation. Sci. China Inf. Sci. 61(5), 1-15 (2018). https://doi.
org/10.1007/s11432-017-9402-3

Capobianco, G., Lucia, A.D., Oliveto, R., Panichella, A., Panichella, S.: Improving
IR-based traceability recovery via noun-based indexing of software artifacts. J.
Softw.: Evol. Process 25(7), 743-762 (2013)

Gimpel, K., et al.: Part-of-speech tagging for Twitter: annotation, features, and
experiments. In: Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies, pp. 42-47 (2011)
Gupta, R., Pal, S., Kanade, A., Shevade, S.K.: DeepFix: fixing common C language
errors by deep learning. In: Proceedings of the 31st AAAI Conference on Artificial
Intelligence, pp. 1345-1351 (2017)

Gupta, S., Malik, S., Pollock, L.L., Vijay-Shanker, K.: Part-of-speech tagging of
program identifiers for improved text-based software engineering tools. In: Pro-
ceedings of the 21st IEEE International Conference on Program Comprehension,
pp. 3-12 (2013)

Hu, X., Li, G., Xia, X., Lo, D., Jin, Z.: Deep code comment generation. In: Pro-
ceedings of the 26th Conference on Program Comprehension, pp. 200-210 (2018)
Jiang, W., Huang, L., Liu, Q., Lii, Y.: A cascaded linear model for joint Chinese
word segmentation and part-of-speech tagging. In: Proceedings of the 46th Annual
Meeting of the Association for Computational Linguistics, pp. 897-904 (2008)
Khamis, N., Witte, R., Rilling, J.: Automatic quality assessment of source code
comments: the JavadocMiner. In: Hopfe, C.J., Rezgui, Y., Métais, E., Preece, A.,
Li, H. (eds.) NLDB 2010. LNCS, vol. 6177, pp. 68-79. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13881-2_7

Kim, K., et al.: FaCoY: a code-to-code search engine. In: Proceedings of the 40th
International Conference on Software Engineering, pp. 946-957 (2018)

Lynn, T., Scannell, K.P., Maguire, E.: Minority language Twitter: part-of-speech
tagging and analysis of Irish tweets. In: Proceedings of the Workshop on Noisy
User-generated Text, pp. 1-8 (2015)

Olney, W., Hill, E., Thurber, C., Lemma, B.: Part of speech tagging java method
names. In: Proceedings of IEEE International Conference on Software Maintenance
and Evolution, pp. 483-487 (2016)

https://doi.org/10.1007/s11432-017-9402-3
https://doi.org/10.1007/s11432-017-9402-3
https://doi.org/10.1007/978-3-642-13881-2_7

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

A Combined Method for Usage of NLP Libraries Towards 529

Al Omran, F.N.A., Treude, C.: Choosing an NLP library for analyzing software
documentation: a systematic literature review and a series of experiments. In:
Proceedings of the 14th International Conference on Mining Software Repositories,
pp. 187-197 (2017)

Petrov, S., Das, D., Mcdonald, R.: A universal part-of-speech tagset. Comput. Sci.
1(3), 2089-2096 (2011)

Pinto, A.M., Oliveira, H.G., Alves, A.O.: Comparing the performance of different
NLP toolkits in formal and social media text. In: Proceedings of the 5th Symposium
on Languages, Applications and Technologies, pp. 3:1-3:16 (2016)
Reinhartz-Berger, 1., Kemelman, M.: Extracting core requirements for software
product lines. Require. Eng. 25(1), 47-65 (2019). https://doi.org/10.1007/s00766-
018-0307-0

Reiss, S.P.: Semantics-based code search. In: Proceedings of the 31st International
Conference on Software Engineering, pp. 243-253 (2009)

Rodriguez, C., Zamanirad, S., Nouri, R., Darabal, K., Benatallah, B., Al-Banna,
M.: Security vulnerability information service with natural language query support.
In: Advanced Information Systems Engineering, pp. 497-512 (2019)

Santos, A.L., Prendi, G., Sousa, H., Ribeiro, R.: Stepwise API usage assistance
using n-gram language models. J. Syst. Softw. 131, 461-474 (2017)

Shokripour, R., Anvik, J., Kasirun, Z.M., Zamani, S.: Why so complicated? Sim-
ple term filtering and weighting for location-based bug report assignment recom-
mendation. In: Proceedings of the 10th Working Conference on Mining Software
Repositories, pp. 2-11 (2013)

Thung, F., Oentaryo, R.J., Lo, D., Tian, Y.: WebAPIRec: recommending web apis
to software projects via personalized ranking. IEEE Trans. Emerg. Top. Comput.
Intell. 1(3), 145-156 (2017)

Thung, F., Wang, S., Lo, D., Lawall, J.L.: Automatic recommendation of API
methods from feature requests. In: Proceedings of the 28th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, pp. 290-300 (2013)

Tian, Y., Lo, D.: A comparative study on the effectiveness of part-of-speech tagging
techniques on bug reports. In: Proceedings of the 22nd IEEE International Con-
ference on Software Analysis, Evolution, and Reengineering, pp. 570-574 (2015)
Tripathy, A., Rath, S.K.: Application of natural language processing in object ori-
ented software development. In: Proceedings of International Conference on Recent
Trends in Information Technology (2014)

van der Aa, H., Di Ciccio, C., Leopold, H., Reijers, H.A.: Extracting declarative
process models from natural language. In: Giorgini, P., Weber, B. (eds.) CAiSE
2019. LNCS, vol. 11483, pp. 365-382. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-21290-2_23

Webster, J.J., Kit, C.: Tokenization as the initial phase in NLP. In: Proceedings
of the 14th International Conference on Computational Linguistics, pp. 1106-1110
(1992)

Witte, R., Sateli, B., Khamis, N., Rilling, J.: Intelligent software development
environments: integrating natural language processing with the eclipse platform.
In: Butz, C., Lingras, P. (eds.) AI 2011. LNCS (LNAI), vol. 6657, pp. 408-419.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21043-3_49

Xu, C., Sun, X., Li, B., Lu, X., Guo, H.: MULAPI: improving API method recom-
mendation with API usage location. J. Syst. Softw. 142, 195-205 (2018)

https://doi.org/10.1007/s00766-018-0307-0
https://doi.org/10.1007/s00766-018-0307-0
https://doi.org/10.1007/978-3-030-21290-2_23
https://doi.org/10.1007/978-3-030-21290-2_23
https://doi.org/10.1007/978-3-642-21043-3_49

	A Combined Method for Usage of NLP Libraries Towards Analyzing Software Documents
	1 Introduction
	2 Background
	2.1 NLP Libraries and Tasks
	2.2 Software Documents

	3 Approach
	3.1 Document-Level Selection of NLP Library
	3.2 Sentence-Level Overwriting

	4 Experiment
	4.1 Research Questions
	4.2 Subjects
	4.3 Experimental Steps
	4.4 Experimental Results

	5 Related Work
	5.1 Analyzing Software Artifacts with NLP Libraries
	5.2 Empirical Study on NLP Libraries

	6 Conclusion
	References

