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Abstract. Document stores are frequently used as representation for-
mat in many applications. It is often necessary to transform a set of data
stored in a relational database (RDB) into a document store. There are
several approaches that execute such translation. However, it is difficult
to evaluate which target document structure is the most appropriate. In
this article, we present a set of query-based metrics for evaluating and
comparing documents schemas against a set of existing queries, that rep-
resent the application access pattern. We represent the target document
schema and the queries as DAGs (Directed Acyclic Graphs), which are
used to calculate the metrics. The metrics allow to evaluate if a given tar-
get document schema is adequate to answer the queries. We performed
a set of experiments to calculate the metrics over a set of documents
produced by existing transformation solutions. The metric results are
related with smaller coding effort, showing that the metrics are effective
to guide the choice of a target NoSQL document structure.
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1 Introduction

Relational databases (RDB) are widely used to store data of several types of
applications. However, they do not meet all requirements imposed by mod-
ern applications [18]. These applications handle structured, semi-structured and
unstructured data, and RDBs are not flexible enough, since they have a prede-
fined schema. In these scenarios, NoSQL databases [16] emerged as an option.
They differ from RDB in terms of architecture, data model and query language
[16]. They are generally classified according to the data model used: document,
column family, key-value or graph-based. These databases are called schema-free,
since there is no need to define a schema before storing data. This flexibility facil-
itates rapid application development and makes it possible to structure the data
in different ways. One of the most used NoSQL format are document stores.

RDB and document stores will be used together for a long period of time,
being necessary to investigate strategies to convert and migrate schema and
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data between them. Different approaches have been presented to convert RDB
to NoSQL document stores [4,8,9,17,20]. Some of them consider just the struc-
ture of the RDB in the conversion process [17,20]. While others also consider
the access pattern of the application [4,8,9]. However, none of the approaches
is concerned with the evaluation and the comparison of the output document
structure against the existing queries that need to be adapted and then executed.
Often, expert user knowledge is the only guarantee that the produced document
is appropriate.

The work from [5] presents eleven metrics to evaluate the structure of doc-
ument oriented databases. These metrics were based on those proposed in [14]
and [10] to evaluate XML schemas. Such evaluation is important to guide the
choice of an adequate document structure. However, the approach has no spe-
cific metrics for assessing the queries access pattern against document structure.
Despite not having a formal schema, a document has a structure used by the
queries to retrieve data. We consider that the document structure can be used
as an abstraction to represent a schema.

In this paper, we present a set of query-based metrics to evaluate a NoSQL
document schema in relation to a set of queries that represent the application
access patterns. We use DAGs (Directed Acyclic Graphs) to represent the queries
and the document schemas. DAGs as schema have already been used in a pre-
vious approach to converting RDB to NoSQL nested models [11]. Since it is
possible to produce different data schemas in an RDB to NoSQL conversion
scenario, it is important to have a procedure to choose the most appropriate
one. To help with this, we show how to use the query-based metrics alone or in
combination to evaluate and compare candidate NoSQL schemas.

We performed a set of experiments to validate the metrics, using as input
a set of NoSQL schemas generated from an existing RDB, and a set of queries
previously defined on the same RDB. All NoSQL schemas were generated using
RDB to NoSQL conversion rules already proposed in the literature. After com-
puting the metrics, we migrate the RDB data to a MongoDB instance, according
to the schemas previously generated. Then, we measure the necessary query cod-
ing effort/maintenance. The conversion showed that the metrics are effective to
guide on the choice of an appropriate document structure.

The contributions of this paper are summarized as follows:

– A set of metrics to evaluate and compare document schema against a set of
queries that represent the application access patterns, prior to the execu-
tion of an RDB to document transformation.

– A query score QScore and a schema score SScore, enabling to combine related
metrics.

– A comparison of 4 different RDB to NoSQL document conversion approaches
from the literature, through the query-based metrics and a set of previously
defined queries.

The remainder of this paper is organized as follows: Sect. 2 presents back-
ground about RDB to NoSQL conversion approaches and how we represent
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NoSQL document schemas as DAGs. In Sect. 3 we present our query-based
metrics. Section 4 shows how to combine the query-based metrics to evaluate
and compare NoSQL document schemas. Section 5 deals with experiments and
results. Related work is given in Sect. 6. Finally, conclusions and future work are
provided in Sect. 7.

2 Background

Different works present approaches for converting RDB to NoSQL document
[4,8,9,17,20]. The works [17,20] are automatic solutions that receive as input
the RDB metadata and E-R diagrams, respectively. [17] presents an algorithm
that considers the dependencies between tables and the number of PKs and
FKs during the conversion process. [20] presents an algorithm that uses the
dependencies between tables, however, the data nesting is performed only in the
FK to PK direction.

The approaches [4,8,9] are semi-automatic. The user needs to provide addi-
tional information about the RDB to guide the translation. In these approaches,
in addition to the E-R diagram, the user provides a kind of table classifica-
tion. This table classification is used to decide which tables should be embedded
together. The work from [4] develops an algorithm and four kinds of tables: main,
subclass, relationship and common. The conversion algorithm uses this classifi-
cation to nest the subclass and common tables in the main table. Relationship
tables are converted using references. The approach from [9] has a different clas-
sification composed of four classes: codifier, simple entity, complex entity and
N:N-link. Besides the classification, the user must provide the “table in focus”,
that represents the target NoSQL entity. The algorithm builds a tree with the
related tables. Finally, in [8], they are based on the creation of tags to guide
the process. The user annotates the E-R diagram with tags (frequent join, mod-
ify, insert and big size) that represent the data and query characteristics. From
these tags the algorithm decides to use embedded documents or references in
the conversion.

In a previous work, we created an approach to convert RDB to NoSQL nested
models [11]. We use a set of DAGs (Directed Acyclic Graphs) to capture the
source RDB and the target NoSQL document structure, which is an abstraction
used to represent a NoSQL schema. Each DAG lists a set of RDB tables which
are transformed into one NoSQL entity (document structure). Through our app-
roach we use the DAGs to represent the process of converting RDB to NoSQL
document from the works cited at the beginning of this section.

A DAG is defined as G = (V,E), where the set of vertices V is related with
the tables of the RDB and the set of edges E with the relationships between
tables. The direction of the edges defines the transformation flow. Each DAG
may be seen as a tree, where the root vertex is the target entity. The path from
one leaf vertex to the root vertex defines one transformation flow. Each vertex
contains the metadata of its respective RDB table, including the table name,
fields and primary key. The edge between two vertices encapsulates relationship
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data between two tables, including primary and foreign keys and which entity
is on the one or many side of the relationship. Through the DAG, we specify
the de-normalization process from a set of related tables to produce a NoSQL
entity. There are works with similar idea, but with different strategies [8,20].

Similarly, a NoSQL entity (document structure) is also represented by a
DAG. The root vertex is the first level of the collection and the remaining ver-
tices are the nested entities. The direction of the edges defines the direction
of nesting between entities. Besides that, the edge encapsulates nesting type
information, including embedded objects or array of embedded objects types.
Through a set of DAGs it is possible to represent a NoSQL schema, where each
DAG represents the structure of a collection. We define a NoSQL schema as
S = {DAG1, ...,DAGn|DAGi ∈ C}, where C is the set of collections of S.

3 Query-Based Metrics

This section presents our query-based metrics. We define six metrics to measure
the coverage that a particular NoSQL document schema has in relation to a
set of queries representing the application access pattern. The metrics are used
to identify which schema has the appropriate access pattern required by the
application. First, we present the key definitions and terminologies required to
introduce the query-based metrics. Then, we present the set of metrics.

3.1 Queries and Paths

The following are the key definitions and terminologies used in this paper.

Query as DAG. A query is defined as q = (Vq, Eq), where Vq is a set of
vertices, representing the query tables, and Eq is a set of edges, representing the
join conditions between query tables. The query q ∈ Q, where Q is the set of
queries.

We define two rules to convert an SQL SELECT statement into a DAG. SQL
statements including sub-queries and full outer join clauses are not supported.

– Rule 1: if the statement has only one table, then a DAG with one vertex
representing the table is created.

– Rule 2: if the statement has two or more tables, then it is necessary to define
which table is the root vertex of the DAG. After that, the other tables are
added to the DAG according to the join conditions of the statement.

To identify the join condition in Rule 2, we parse the SQL statement. Then,
we apply one of the following subrules to determine which table is the root
vertex:

– Rule 2.1: if it is a left join, returns the leftmost table in the FROM clause.
– Rule 2.2: if it is a right join, returns the rightmost table in FROM clause.
– Rule 2.3: if it is an inner join, returns the first table in the FROM clause.



534 E. M. Kuszera et al.

Path, Sub Path and Indirect Path. We define the types of paths considered
in the metrics to evaluate the schemas and queries DAGs:

– Path: a path p is a sequence of vertices v1, v2, ..., vj , such that (vi, vi+1) ∈ Vq,
1 ≤ i ≤ j−1, v1 is the root vertex and vj is the leaf vertex of the DAG. This
sequence of vertices may be called the path from the root vertex to the leaf
vertex.

– Sub Path: considering a path p = (v1, v2, ..., vk) and, for any i and j, such
that 1 ≤ i ≤ j ≤ k, a subpath of p is defined as pij = (vi, vi+1, ..., vj), from
vertex i to vertex j.

– Indirect Path: Considering a path p = (v1, v2, ..., vk) and, for any i, y and
j, such that 1 ≤ i ≤ y ≤ j ≤ k, an indirect path relative to p is defined
as pind = (vi, vi+1, ..., vj), where ∃vy ∈ p : vy /∈ pind. That is, an indirect
path pind is the one where all its vertices and edges are contained in path p,
but there are additional intermediate vertices in p that separate one or more
vertices of pind.

In addition, to make the query-based metric definitions more clear, we use
the following terms: Vq, Vs and Vc are the vertex set of a given query, schema
and collection (or DAG), respectively. Pq, Ps and Pc are the path set (all paths
from root to leaves) of a given query, schema and collection, respectively.

3.2 Direct Edge Coverage

Direct Edge (1) measures query edge coverage against the edges of a given schema
collection, considering the direction of edges (e.g. a → b). Edq and Edc denote the
set of query and collection edges considering the direction of the edges. Schema
coverage (2) is the maximum value found when applying DirectEdge metric for
each schema collection c ∈ C.

DirectEdge(c, q) = |(Edq ∩ Edc)|/|Edq| (1)

DirectEdge(q) = Max(C, q,DirectEdge) (2)

The function Max is a higher-order function that receives a set of elements
(e.g., collection set C), the query q and the metric function (e.g., DirectEdge). It
applies the metric for all elements of the collection and the query q and it returns
the higher value. It is used in other metrics in the remaining of the paper.

3.3 All Edge Coverage

All Edge (3) measures edge coverage between the query and schema collection,
regardless of edge direction (e.g. a → b or a ← b). Eq and Ec denote the query
and collection edges, respectively. Schema coverage (4) is the maximum value
found when applying AllEdge metric for each schema collection (ci).

AllEdge(c, q) = |(Eq ∩ Ec)|/|Eq| (3)

AllEdge(q) = Max(C, q,AllEdge) (4)
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3.4 Path Coverage

The Path Coverage metric measures the coverage of query paths in relation to
the collection paths. A query may have one or more paths (e.g. q6 in the Fig. 3
has two paths). Through the Path Coverage it is possible to measure the coverage
of the query paths relative to the collection paths (5). The Path Coverage for all
the schema (6) is the maximum value found when applying the metric for each
collection.

Path(c, q) = |(Pq ∩ Pc)|/|Pq| (5)

Path(q) = Max(C, q, Path) (6)

3.5 Sub Path Coverage

Through the Sub Path Coverage metric, it is checked if the query paths are
present in the collection as subpaths (7). We define the existSubPath function
that receives as parameters a query path (qp ∈ Pq) and a set of paths, where
the set of paths is the paths of a given collection (Pc). The function returns 1
if the query path was found or 0 if it was not found as a subpath. It is possible
to measure the sub path coverage of all the schema by applying the metric for
each collection (8). The result is the higher value returned.

existSubPath(qp, Pc) =

{
1 found qp as subpath inPc

0 not found qp as subpath inPc

SubPath(c, q) =
∑|Pq|

i=1 existSubPath(qpi, Pc)
|Pq| (7)

SubPath(q) = Max(C, q, SubPath) (8)

3.6 Indirect Path Coverage

Through the Indirect Path metric, it is checked if the query paths are present
in the schema as indirect paths (as defined in Sect. 3.1). To find indirect paths
in the schema we define the function existIndPath, that receives as parameters
the query path (qp) and a set of collections’ paths (Pc). If there is an indirect
path in the collection that matches the query path, the function returns 1, oth-
erwise it returns 0. In (9) we measure the indirect path coverage relative to the
collection level, and in (10) relative to the schema, by applying the metric for
each collection, where the largest value returned represents the schema coverage.

existIndPath(qp, Pc) =

{
1 found qp as an indirect path inPc

0 not found qp as an indirect path inPc
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IndPath(c, q) =
∑|Pq|

i=1 existIndPath(qpi, Pc)
|Pq| (9)

IndPath(q) = Max(C, q, IndPath) (10)

3.7 Required Collections Coverage

The Required Collections (11) metric returns the smallest number of collections
required to answer a given query. The function createCollectionPaths(q) returns
a set of paths that consists of collections that have the entities required to answer
the query.

ReqColls(q) = min(createCollectionPaths(q)) (11)

The metrics presented above enable to independently evaluate the queries.
In the next section we describe how to combined them to provide a broader
evaluation.

4 Combining the Metrics

In this section we present how to combine the metrics for measuring the overall
coverage of a schema with respect to a set of input queries. First, it is necessary
to calculate a QScore, which denotes a score per metric, or per combination of
related metrics, per query. This score enables to set up weights to prioritize the
importance of specific metrics. Second, we calculate a SScore, which is a score
for a set of queries over a given schema. The results are used to rank the input
schema. These scores are explained in the following sections.

4.1 Query Score (QScore)

The QScore yields a single value per metric, or a value that combines related
metrics. The score is calculated for a given metric and a given query qi. The
QScore for metrics DirEdge, AllEdge and ReqColls is the same value returned
by the metric:

QScore(DirEdge, q) = DirEdge(q) (12)

QScore(AllEdge, q) = AllEdge(q) (13)

QScore(ReqColls, q) = ReqColls(q) (14)

However, the QScore for metrics Path, Sub Path and Indirect Path is a unique
value and is namely as Paths. It returns the highest value among the three
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metrics, taking into account the depth of each path and an additional weight,
as defined below:

pathv = Path(qi) ∗ wp (15)

subpathv = (SubPath(qi) ∗ wsp)/depthSP (qi) (16)

indpathv = (IndPath(qi) ∗ wip)/depthIP (qi) (17)

QScore(Paths, qi) = max(pathv, subpathv, indpathv) (18)

First, the metric value is weighted according to its path type, divided by
the smallest depth in which the root vertex of path is located in the schema.
The depth is obtained by a specific function for each metric. The weights wp,
wsp and wip are used to set up a priority between Path, Sub Path and Indirect
Path metrics. The method for calculating QScore is inspired by the results of
[6], where the authors state that the depth of the required data in the collection
and the need to access data stored at different levels of the collection produce
negative impact. As the Path metric denotes the exact match between query
path and collection path (with depth = 1), one possibility is to set the wp with
the highest value, followed by smaller values for wsp and wip. In this way, schemas
with exact match are prioritized. Another aspect is related to data redundancy
that NoSQL schemas may present: a query path can be found as a Path, Sub
Path, and Indirect Path in the schema. Then, by defining distinct weights and
using path depth, we can prioritize a particular type of path coverage. For better
readability, we assign each calculation to a specific variable (15–17), which is then
used to calculate the QScore (18).

4.2 Schema Score (SScore)

SScore denotes the schema score for a given metric (except ReqColls) as the
sum of the QScore values for all the queries, where each query qi has a specific
weight wi, and the sum of all wi is equal to 1. Following the same idea of the
QScore, it has a single value for Path, SubPath, and IndPath, which is the sum
of its corresponding QScore. It is defined below:

SScore(metric,Q) =
|Q|∑
i=1

QScore(metric, qi) ∗ wi (19)

The SScore for ReqColls metric is a ratio between the number of queries
and the number of collections required to answer them. A schema that answers
each input query through only one collection has SScore equal to 1. It decreases
when the number of collections increases. It is defined as follows:

NC =
|Q|∑
i=1

QScore(ReqColls, qi)
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SScore(ReqColls,Q) =
|Q|
NC

(20)

NC is the number of collections required to answer all input queries, which
is the sum of all QScore. The expression for calculating SScore above is based
on the schema minimality metric presented in [3].

These scores show the coverage provided by the schema for each query, where
we can identify which queries require the most attention or are not covered by
the schema. The SScore field provides an overview of how well the schema fits
the query set. Since the metrics are not independent, we do not define a single
expression to calculate the overall score of the schema. The goal here is to provide
the user with a methodology for evaluating NoSQL schema using the proposed
metrics. Still, the user can use the metrics independently, according to their
needs and application requirements.

5 Experimental Evaluation

In this section we present the experiments to evaluate our query-based metrics
in an RDB to NoSQL documents conversion scenario, where different NoSQL
schemas are generated from the input RDB. In order to generate the candidate
NoSQL schemas we select four RDB to NoSQL conversion approaches from the
literature. The input queries represent the application’s access pattern over the
RDB, and are then known a priori. The goal is to show how to use the query-
based metrics to assist the user in the process of evaluation, comparison and
selection of the appropriate NoSQL schema before executing the data migration.
In the following sections we detail the execution of each of these steps.

5.1 Creating NoSQL Schemas from Conversion Approaches

We select four RDB to NoSQL document approaches from the literature, that
define different ways to convert relational data to nested data [8,9,17,20]. These
approaches were chosen because they contain the most diverse set of translation
rules. We apply the translation rules on the RDB of Fig. 1 to generate a set of
NoSQL schemas using our DAG approach to represent them. So, we create one
schema for each approach and set a label from A to D to identify them.

Figure 2 shows the graphical representation of the generated NoSQL schemas.
The vertices with gray background color represent the collections of the schemas
(root vertex). We can see that schemas differ in number of collections and
arrangement of entities. As a result, we have all approaches represented by the
same format, which allows us to evaluate and compare them objectively.

5.2 Defining the Evaluation Scenario

The schemas are evaluated considering the best matching between the queries
access patterns and the schema structure. We use Path, SubPath, IndPath,
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Fig. 1. Input RDB

Fig. 2. Generated NoSQL schemas by approach

DirEdge, AllEdge and ReqColls metrics to check if the entities are (or not) nested
according to the access pattern. To calculate SScore and QScore, we assigned the
same weight for all queries and for all paths metrics (wp = 1;wsp = 1;wip = 1).
This means that all queries and types of path coverage have the same priority.
The depth where query path starts is also considered in the calculation, priori-
tizing schemas where the entities are closest to the root of the DAG. However,
the user can define different weights and turn off the depth of path, according
to their needs.

The seven queries used to evaluate the schemas are presented in Fig. 3. These
queries have been chosen because they contain different access patterns. We show
the queries in SQL and also as DAG paths, which are produced according to the
translation rules from Sect. 3.1. Each query DAG contains the data path of each
SQL statement, but alternative DAGs could be built to represent different access
patterns.
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Fig. 3. Input queries used to evaluate the NoSQL schemas

5.3 Experimental Results

In this section we present the metrics result and the impact on query coding
effort for each schema1. Finally, preliminary results on query execution time are
presented. Table 1 summarizes all results and is used by the sections below.

Metrics Result. Table 1 shows the QScore for the Paths, DirEdge, AllEdge
and ReqColls metrics, by query. Paths is calculating taking into account the
Path, SubPath, and IndPath metrics (see Sect. 4.1). The SScore is also shown.
Considering the paths coverage, schema C has the highest score 0.93. This means
C best matches the access pattern of the query set. Following are the schemas
A, D and B, with schema B having the worst SScore = 0.08.

We use path metrics to identify which schema best covers the queries. For
instance, in schema C, the queries q1 − q6 are 100% covered by the schema
through the Path, SubPath or IndPath metrics. Only q7 is penalized for starting
at level 2 of the Orders collection, resulting in lower QScore (0.5). In contrast,
in the schema B we identify only the queries q1 and q6 that match paths metrics,
but both queries are penalized by the level where they are located in the schema.
For example, to answer q1 is necessary traverse the Orderlines collection to
find Customers entity, at level 3. If we look at schema B, we notice that the
Orderlines, Inventory, and Reorder collections are inverted in relation to the
query access pattern. As a result, there is no coverage for the path metrics for
queries q2 − q5 and q7.

Using the metrics DirEdge and AllEdge, we verify the degree to which
the entities in the schema are related to each other, as required by the access
pattern of the queries. For example, schema C has the highest DirEdge score
1 The tool implemented and all the results are available for download at: https://

github.com/evandrokuszera/nosql-query-based-metrics.

https://github.com/evandrokuszera/nosql-query-based-metrics
https://github.com/evandrokuszera/nosql-query-based-metrics
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and AllEdge score, which means that it has the closest access pattern to the
query set. In contrast, schema B has the highest AllEdge score (same value
as schema C) and the smallest DirEdge score, which means that entities are
related to each other in the schema B according to the query structure, but
the relationship direction is inverted, so it does not correspond properly to the
access pattern of queries. For example, the collection Orderlines has part of
the relationships between entities corresponding to the q4 − q6 query structure
(DirEdge > 0), but for the remaining queries, schema B is inverted.

For ReqColls metric, the schema C has the best result, with SScore = 1.0.
This means that all queries are answered accessing a single collection. Then, the
schemas are ranked as: C, B, D and A. This result is due to schema C being
the most redundant schema, in which the three collections encapsulate all RDB
entities, but using a different nesting order.

Query Coding Effort. We measured the impact on query coding effort for
each schema, to asses if it is related with metrics results. To measure the coding
effort, we use the number of lines of code (LoC) required to manually implement
the query. While they could be automatically generated, they would need to be
maintained during the application life cycle. The goal here is to check whether
high SScore schemas have less query implementation complexity.

We created four target database instances in MongoDB2 according to
schemas A, B, C and D. MongoDB was selected because it is a widely used
document store. We use our Metamorfose framework to migrate data from RDB
to MongoDB. After that, we implement all queries of Fig. 3 using the Mon-
goDB aggregation pipeline framework, that uses the concept of data processing
pipelines. Each pipeline consists of stages, where each stage transforms the doc-
uments what goes through it.

The LoC for each query was obtained by the MongoDB explain command,
with a standardized query format, facilitating line count. In addition to LoC, we
counted the number of stages used in the pipeline to fetch and project documents
according to the query DAG structure. Table 1 shows the LoC of each query by
schema. Considering the total LoC per schema, schema C has the smallest value
(103), followed by schemas A, D, and B. When considering the number of query
pipelines, schema C has the lowest value, followed by schemas B, A, and D. In
this case, B takes second place because its structure has no nested arrays, so no
extra stages are required to unwind arrays of documents.

Analyzing SScore results for Paths, DirEdge, and AllEdge metrics together
with the aggregate LoC and Stages, we can verify that schemas with higher
Paths and DirEdge scores require less lines of code when implementing queries.
For metric AllEdge this is not always true. This metric shows whether the
entities in the schema are related as the query access pattern. However, the
relationship may exist, but the direction may not match the pattern specified in
the query (case of schema B). In this case, more effort is required to project the
data according to the query pattern.
2 https://www.mongodb.com.

https://www.mongodb.com
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To summarize, the expert user can evaluate and compare schema options
before executing the translation from an RDB to a NoSQL document stores, by
applying the set of defined metrics and scores. Through these metrics we check
if the entities are (or not) nested according to the query access pattern. We also
check which queries need to fetch data from different collections, so the user can
decide which schemas to prioritize. We generated a set of queries and the LoC
metrics reflect the results of our metrics.

Query Execution Time. We measured query execution time to verify if it is
related with the metrics results. The last column of Table 1 shows the average
execution time in seconds (each query was executed 30x). It is worth noting
that query time for q1 − q3 returned zero for some schemas because the search
field is the index of collection. The results show that schema C is the most
adapted, followed by schemas B, A, and D. Schema B is the second one, even
though it did not match the queries access pattern. The reason is due to the
execution time of q5 for schemas A and D. For both schemas, it is necessary to
perform the MongoDB lookup operation (similar to SQL left join). In A, there
is a lookup operation between Orders, Products and Customers, and in D
between Products and Customers. In both cases, the fields used in the lookup
are located in nested arrays, which has significant impact, especially for schema
D, where the lookup field is located inside two nested object arrays. However,
these results are preliminary and need further investigation, where we plan to
extend our metrics set to consider the impact on data nesting, document size,
collection size, and the use of indexes have on query performance.

6 Related Work

Different works present formal definitions for NoSQL document data models
[1,2,19]. In [2], they present NoAM, the NoSQL Abstract Model that use as the
main modelling unit the concept of aggregates (set of entities) and is driven by
application use cases (functional requirements). [1] and [19] present approaches
that transform a conceptual model (UML) into NoSQL physical model. These
approaches consist in methodologies for defining NoSQL schemas according to
user-supplied parameters. However, they do not provide means to evaluate the
schema produced. Our approach aims to evaluate the NoSQL schema in relation
to a set of queries that represent the access pattern of the application.

There are works defining optimized schemas for column-family [7,13] and
document [8,12,15] oriented NoSQL databases. In [7] they present Graph based
Partition Algorithm (GPA) approach, that groups high affinity schema attributes
in the same column family to avoid loading unnecessary data to answer queries.
In a similar way, [13] describes a cost-based approach to schema design that
recommends a column-family NoSQL schema suitable for the application queries.
The authors of [12] and [8] present a conversion approach for generating NoSQL
document logical schema considering a previously provided conceptual model
and the expected workload of the application. Our query-based metrics approach
can be used to evaluate and compare the output schemas of these works.
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Considering the utilization of metrics, the work from [5] presents a metric
set to evaluate schemas of NoSQL document databases. It was based on the
works [14] and [10], that present structural metrics to evaluate XML documents.
Eleven structural metrics are defined to evaluate NoSQL Document schemas and
to assist the user in the process of selecting the most appropriate schema. Our
work is partially inspired by [5]. The way the authors represent the NoSQL
schema is similar to our approach based on DAGs. However, our approach has
a different purpose, which is to evaluate and compare NoSQL schemas based
on queries that represent the application access pattern instead of evaluating
only the schema structure. To the best of our knowledge, our work is the first
that presents a set of query-base metrics used to evaluate and compare NoSQL
document schemas using a set of queries.

7 Conclusions

We presented a solution to evaluate how adequate a NoSQL document schema is
with respect to a set of queries representing the application access patterns. Our
approach is used as a guide on the choice of the most adequate target document
schema in a scenario of RDB to NoSQL document transformation. The queries
and the set of target schemas are represented as DAGs.

We define a set of query-based metrics, which are calculated based on the
input DAGs (queries and schemas). The metrics enable to identify how the target
document schema covers the input original queries. The metrics can be analyzed
individually, or collectively, using a score per metric (QScore), or a score per
schema (SScore), enabling specialized analysis.

We applied the metrics on a set of schemas produced by existing RDB to
NoSQL transformations solutions. The evaluation of these different transforma-
tion approaches was only possible because we adopted the DAGs as a common
unified format. This also means that the approach is technology independent.
We executed all transformation scenarios, to confirm that the metrics can be
related to the coding effort of the queries, with respect to the LoC measure. In
addition, if the choice of a given output schema is not possible, the metrics may
guide the re-factoring of the existing queries. As future work, we aim to extend
the evaluation to integrate with cost-based approaches.
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6. Gómez, P., Casallas, R., Roncancio, C.: Data schema does matter, even in NoSQL
systems! In: 2016 IEEE Tenth RCIS, pp. 1–6, June 2016

7. Ho, L., Hsieh, M., Wu, J., Liu, P.: Data partition optimization for column-family
NoSQL databases. In: 2015 IEEE International Conferene on SmartCity, pp. 668–
675 (2015)

8. Jia, T., Zhao, X., Wang, Z., Gong, D., Ding, G.: Model transformation and data
migration from relational database to MongoDB. In: IEEE BigData, pp. 60–67
(2016)

9. Karnitis, G., Arnicans, G.: Migration of relational database to document-oriented
database: structure denormalization and data transformation. In: 2015 7th ICCI-
CSN, pp. 113–118 (2015)

10. Klettke, M., Schneider, L., Heuer, A.: Metrics for XML document collections. In:
Chaudhri, A.B., Unland, R., Djeraba, C., Lindner, W. (eds.) EDBT 2002. LNCS,
vol. 2490, pp. 15–28. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
36128-6 2

11. Kuszera, E.M., Peres, L.M., Fabro, M.D.D.: Toward RDB to NoSQL: transforming
data with metamorfose framework. In: Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing, SAC 2019, pp. 456–463 (2019)

12. de Lima, C., dos Santos Mello, R.: A workload-driven logical design approach for
NoSQL document databases. In: Proceedings of the 17th iiWAS (2015)

13. Mior, M.J., Salem, K., Aboulnaga, A., Liu, R.: NoSE: schema design for NoSQL
applications. In: 2016 IEEE 32nd ICDE, pp. 181–192 (2016)

14. Pusnik, M., Hericko, M., Budimac, Z., Sumak, B.: Xml schema metrics for quality
evaluation. Comput. Sci. Inf. Syst. 11, 1271–1289 (2014)

15. Reniers, V., Van Landuyt, D., Rafique, A., Joosen, W.: Schema design support
for semi-structured data: finding the sweet spot between NF and De-NF. In: 2017
IEEE International Conference on Big Data (Big Data), pp. 2921–2930 (2017)

16. Sadalage, P.J., Fowler, M.: NoSQL Distilled: A Brief Guide to the Emerging World
of Polyglot Persistence, 1st edn. Addison-Wesley Professional, Boston (2012)

17. Stanescu, L., Brezovan, M., Burdescu, D.D.: Automatic mapping of MySQL
databases to NoSQL MongoDB. In: 2016 FedCSIS, pp. 837–840, September 2016

18. Stonebraker, M., Madden, S., Abadi, D.J., Harizopoulos, S., Hachem, N., Helland,
P.: The end of an architectural era (it’s time for a complete rewrite). In: Proceedings
of 33rd VLDB, University of Vienna, Austria, 23–27 September 2007, pp. 1150–
1160 (2007)

19. Li, X., Ma, Z., Chen, H.: QODM: a query-oriented data modeling approach for
nosql databases. In: 2014 IEEE WARTIA, pp. 338–345 (2014)

20. Zhao, G., Lin, Q., Li, L., Li, Z.: Schema conversion model of SQL database to
NoSQL. In: 2014 Ninth 3PGCIC, pp. 355–362 (2014)

https://doi.org/10.1007/3-540-45816-6_38
https://doi.org/10.1007/978-3-030-00847-5_16
https://doi.org/10.1007/3-540-36128-6_2
https://doi.org/10.1007/3-540-36128-6_2

	Query-Based Metrics for Evaluating and Comparing Document Schemas
	1 Introduction
	2 Background
	3 Query-Based Metrics
	3.1 Queries and Paths
	3.2 Direct Edge Coverage
	3.3 All Edge Coverage
	3.4 Path Coverage
	3.5 Sub Path Coverage
	3.6 Indirect Path Coverage
	3.7 Required Collections Coverage

	4 Combining the Metrics
	4.1 Query Score (QScore)
	4.2 Schema Score (SScore)

	5 Experimental Evaluation
	5.1 Creating NoSQL Schemas from Conversion Approaches
	5.2 Defining the Evaluation Scenario
	5.3 Experimental Results

	6 Related Work
	7 Conclusions
	References




