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Abstract. Blockchains are distributed ledgers that enable the disinter-
mediation of collaborative processes and, at the same time, foster trust
among partners. Modern blockchains support smart contracts, i.e., soft-
ware deployed on the blockchain, and guarantee their repeatable, deter-
ministic execution. Alas, blockchains and smart contracts lack standard-
ization. Therefore, smart contracts come with heterogeneous properties,
APIs and data formats. This hinders the integration of smart contracts
running in different blockchains, e.g., into enterprise business processes.
This paper introduces the Smart Contract Invocation Protocol (SCIP),
which unifies interacting with smart contracts of different blockchains.
The protocol supports invoking smart contract functions, monitoring
function executions, emitted events, and transaction finality, as well as
querying a blockchain. The protocol is accompanied by a prototypical
implementation of a SCIP endpoint in the form of a gateway.
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1 Introduction

Blockchains allow autonomous parties to engage in collaborative processes even
if they have a limited degree of mutual trust. What they trust is the blockchain,
which hosts exchanged data in a distributed, persistent, and immutable fashion.
Blockchains thus eliminate the need for trusted third-parties, e.g., certification
authorities, and lower complexity and operational costs. Smart contracts are
user-defined applications deployed on blockchains that can be executed deter-
ministically. They were first introduced by Ethereum [15] and later adopted by
other blockchain systems. Smart contracts are usually used to model the sensitive
business logic of collaborative scenarios that are governed by blockchains.

Blockchains can be categorized as permissionless and permissioned. Per-
missionless blockchains favor total decentralization, censorship resistance, and
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data immutability; permissioned blockchains favor data confidentiality, perfor-
mance, and strong transaction processing (TP) semantics [5]. Different block-
chains choose their own trade-offs at a finer degree [14]. This means that there
is no “one size fits all” blockchain system, and different types of blockchains will
continue to evolve and coexist. This results in the possibility that large-scale
(e.g., enterprise) applications have to deal with multiple blockchains at once,
each of which handling a subset of use-cases required for its own purposes [6,8].

However, blockchains lack sufficient standardization, which results in many
heterogeneous APIs, different protocols and message formats. This applies to the
modalities of invoking smart contract functions and monitoring their execution
as well. As a result, enterprises that need to integrate the smart contracts of
multiple blockchains into their processes will be faced with a tedious and error-
prone task adapting to many heterogeneous interfaces.

In this work, which is a continuation of our previous research [3,4,10], we aim
at providing a uniform way to interact with heterogeneous smart contracts by
conceptualizing and specifying the Smart Contract Invocation Protocol (SCIP),
which supports invoking smart contract functions and querying past and future
smart contract-related events uniformly, regardless of the underlying blockchain
technology. The goal is to provide an abstraction layer on top of blockchains,
exposing a uniform set of operations that allow external applications to interface
with smart contracts without needing to adapt to heterogeneous protocols and
APIs. We also implement a prototypical gateway as a reference implementation
of the protocol, and demonstrate the protocol’s benefits in a case study.

2 Motivation

Figure 1 illustrates a collaboration setup in the domain of smart grids (from the
point of view of an electrical energy provider) that requires the use of differ-
ent blockchain systems: a blockchain-based energy exchange system. The man-
agement of the system is implemented using a permissioned blockchain backed
by a consortium involving the various stakeholders, e.g., power plants, energy
providers, and consumer households. Using a permissioned blockchain guaran-
tees the necessary transaction processing performance and ensures confidential-
ity. The actual interactions between the stakeholders, e.g., selling and buying
energy, is implemented using a set of smart contracts deployed on the block-
chain. The scenario depicted here takes place when a power plant announces the
availability of electricity at a low price. The energy provider, which monitors
price changes, reacts by buying electricity in bulk from this plant and reduc-
ing the retail price of the energy it sells to households. These operations are
implemented as functions of the smart contracts. To facilitate public audits, a
signed digest of the previous operations is stored on a permissionless blockchain,
such as Ethereum, which ensures its immutability and assigns it to a specific
time instant. The digest guarantees auditors that a respective blockchain state
indeed existed at that specific time instant. The necessary logic is implemented
by a dedicated smart contract deployed on the permissionless blockchain.
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Fig. 1. Motivating scenario: energy management system with two blockchains.

Integrating different blockchains using traditional programming languages,
such as Java or a workflow language, requires dealing with different APIs, and
supporting different protocols and message formats. A typical invocation flow
of a state-changing smart contract function (one that writes on the blockchain)
is demonstrated in Fig. 2. Here, an external consumer application, such as our
electricity provider, wants to call the function Fn1 of the smart contract SC1, so
it submits a technology-specific, signed blockchain transaction (Tx) to one of the
nodes of the desired blockchain system ➊. Then the node verifies the request
and broadcasts it to the other nodes of the system ➋. Afterwards, the trans-
action enters the consensus process, which produces a so-called block, i.e., a set
of agreed-upon transactions that the system has to execute next. This block is
announced throughout the network and is cryptographically chained with the
previous blocks at each node ➌. When the execution of the new block reaches
Tx, all nodes extract the invocation parameters from its body, and use them
to invoke the function Fn1 inside SC1 ➍. To this end, some form of a virtu-
alization technology, like Docker, or Ethereum Virtual Machine (EVM) [15] is
used to instantiate and run the code of the desired smart contract. During the
execution, the code may read from and write to the current state causing it to
deterministically change on all nodes. Although some blockchains, like Hyper-
ledger Fabric [1], adopt a different internal flow of request processing, using
blockchain smart contracts still looks similar to external consumers: they need
to access a blockchain node and send technology-specific requests to it.

The previous scenario shows that common interactions between consumer
applications and smart contracts involve: (i) invoking smart contract functions,
(ii) the live monitoring of events that occur due to smart contract function
invocations, and (iii) querying of past events and invocations required for data
analytics and auditing. The detailed explanation of a smart contract invocation
flow further shows that (iv) interacting with smart contracts involves different
technologies – as a matter of fact, different networks. In addition, it is important
to note that certain blockchains only support a probabilistic model of transaction
durability [3,4], which (v) leaves it up to the client application to ensure that a
submitted transaction has sufficient probability of being permanently stored.
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Fig. 2. The typical invocation process of a blockchain smart contract function.

Problem Statement: The previous scenario shows that participating in mul-
tiple heterogeneous blockchains requires dealing with the specificities of each
blockchain system individually. This is a tedious and an error-prone task. There-
fore, the problem this research approaches is defining a set of common operations
that allow smart contract clients to invoke and monitor smart contracts of hetero-
geneous permissioned and permissionless blockchain systems and conceptualizing
and implementing a uniform protocol that supports these operations.

3 Smart Contract Invocation Protocol (SCIP)

Our answer to the problem statement is the Smart Contract Invocation Protocol
(SCIP) for the uniform interaction with heterogeneous smart contracts.

The SCIP protocol provides a homogeneous interface (roles, methods, data
and message formats) for heterogeneous blockchains. The core of the interface
consists of a set of methods that can be used by blockchain-external consumer
applications, which we will refer to as client applications, to interact with smart
contracts. The methods are provided to client applications via an entity, which
we will refer to as the gateway, as this entity mediates between two or more
different network technologies: the Internet and the blockchain networks. This
gateway is reachable using a Smart Contract Locator (SCL), which is a uni-
form URL defined in a previous work [10], that uniquely identifies a smart con-
tract outside the blockchain. For example, the SCL address to locate the digest-
storing smart contract of the motivating scenario in Sect. 2 could look as follows:
https://gateway.com?blockchain=ethereum&blockchain-id=eth-mainnet&address

=0xa0b73...0b80914 . Here, gateway.com is the domain of the gateway, which
is thus addressable from the Internet; ethereum tells that the blockchain type
is Ethereum; eth-mainnet indicates that the intended Ethereum instance is the
main chain; and 0xa0b73...0b80914 is the address (shortened for brevity) at
which the smart contract can be accessed within the the blockchain.

We assume that client applications authenticate themselves with the gateway
using OAuth 2.0, and that attacks like the Man-In-The-Middle (MITM) are thus
prevented. We further assume that the gateway is aware of the client’s digital
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Fig. 3. The metamodel of SCIP messages (bold boxes) and message content fields
(regular boxes). For readability, the metamodel is split into related sub-models.

certificate(s). These assumptions are in line with those by typical Blockchain-as-
a-Service (BCaaS [11]) vendors like Amazon1, Upvest2 or Kaleido3.

3.1 Protocol Specification

Figure 3 shows the metamodel of four request and two response messages of the
protocol. Table 1 specifies the details of call constructs. The four request mes-
sages define four methods: (i) the invocation of a smart contract function, (ii) the
subscription to notifications regarding function invocations or event occurrences,
(iii) the unsubscription from live monitoring, and (iv) the querying of past invo-
cations or events. All methods return a synchronous response message indicating
the success or failure of the request (standard HTTP responses), and some of
them additionally return one or more asynchronous responses or errors. Some
methods refer to the point in time at which an event or a function invocation
took place. In this context, time refers to the UTC timestamp of the trans-
action that triggered the event or invoked the function. Time is represented in
SCIP using the ISO 8601-1:2019 combined date and time representation. Certain
other methods have a parameter called degree of confidence (DoC). This refers
to the likelihood that a transaction included in a block will remain persistently
stored on the blockchain [4]: if a block turns out to be on a side branch of the
blockchain it – including the transaction – may eventually be dropped from the
blockchain. A value close to 1 means that the client application wants to receive
1 https://aws.amazon.com/managed-blockchain. Visited on May 6, 2020.
2 https://upvest.co Visited on May 6, 2020.
3 https://kaleido.io Visited on May 6, 2020.

https://aws.amazon.com/managed-blockchain
https://upvest.co
https://kaleido.io
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Table 1. Description of the fields used in SCIP request and response messages.

Name Type Description

Function Identifier string The name of the function

Event Identifier string The name of the event

Inputs Parameter[ ] A list of function inputs

Outputs Parameter[ ] A list of function/event outputs

Callback URL string The URL to which the callback message must be sent

Correlation Identifier string A client-provided correlation identifier

Degree of Confidence number The degree of confidence required from the transaction

Timeout number The number of seconds the gateway should wait for the

transaction to gain the required degree of confidence

Signature string The client’s base 64-encoded signature of the contents

of a request message

Timestamp string The time at which an event occurrence/function

invocation happened

Filter string A C-style Boolean expression to select only certain

event occurrences or function invocations

Timeframe string The timeframe in which to consider event

occurrences/function invocations

Occurrences Occurrence[ ] A list of event occurrences/function invocations

Parameter

Name string The name of the parameter

Type JSON schema The abstract blockchain-agnostic type of this parameter

Value any The value of this parameter

Occurrence

Parameters Parameter[ ] A list of event/function parameters

Timestamp see above

the result only after ruling out this possibility, whereas a value close to 0 means
that it wants to receive the result as soon as it is available. It is further impor-
tant to note that client messages are sent to the smart contract’s SCL, which
triggers the gateway. The actual SCIP endpoint is thus the gateway, which is
able to extract the id of the target smart contract from the SCL and to forward
incoming messages. The messages thus do not need any specific address in their
body.

The Invoke Method: This method allows an external application to invoke a
specific smart contract function. The structure of the Invocation request mes-
sage, as well as the asynchronous Callback message are explained in Fig. 3a.
Figure 4 shows the steps taken by the client application and the gateway when
this method is triggered: The client application formulates an Invocation
request message, signs it using the algorithm “SHA256withECDSA” [2] and the
normative curve “secp256k1”, and sends it to the gateway ➊. Then, the gateway
formulates a blockchain transaction out of the request message (using the func-
tion identifier, and input fields), and signs it on behalf of the client application.
Afterwards, it permanently stores the pair defined by the signed transaction
(Tx) and the Signed Request Message (SRM) ➋.

The reason is that blockchain transactions are always signed by their sub-
mitters. However, the client application has no chance to do that itself since
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it is unaware of the structure of the technology-specific transaction, which pre-
vents it from formulating it in the first place. Therefore, the gateway, which
knows the technical details, formulates the transaction and signs it on behalf
of the client application. If the client application and the gateway are managed
by two different legal entities, then the gateway might need to prove, e.g., to
auditors, that the resulting transaction is indeed based on actual inputs from a
unique client application request. To this end, the client application is obliged to
accompany the request message with a digital signature of its content. Then, the
gateway can store the pair consisting of this message along with the formulated
transaction in order to prove the desired property at any time. One option for
this pair to be stored is a dedicated smart contract deployed on the underlying
blockchain or on a different blockchain. Another option is to store it locally by
the gateway. It is left to the gateway to decide how to store it. On the other side,
if the client application and the gateway are managed by the same legal entity,
e.g., a gateway that manages the blockchain access for an enterprise with many
internal applications, then signing the request message is not mandatory.

In the next step, the gateway sends the signed transaction to a blockchain
node using its API ➌. The node, then, validates it and starts the consensus
process by announcing it to the network of nodes ➍, assigning a unique id to
the transaction and informing the gateway about it ➎. In response, the gateway
informs the client application about the successful submission of the transaction
(synchronous response to the original client request) ➏, and at the same time,
starts querying the blockchain node about the status of the transaction ➐. If
the transaction receives enough confidence, according to the degree of confidence
field of the request message before the timeout is reached, the gateway sends
an asynchronous message to the address specified by the callback URL field
containing the execution results ➑. Note that the gateway is allowed to have its
own internal timeout for such requests, which may differ from the one provided
by the client. Therefore, clients should expect an asynchronous timeout error
(wrapped as a response message) from the gateway even before the timeout they
provided is over. To facilitate the correlation between the request message and
the response message by the client application, the callback contains a copy of
the correlation identifier provided in the request message.
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The Subscribe Method: This method facilitates the live monitoring of smart
contracts by enabling a client application to receive asynchronous notifications
about the occurrences of custom or system-defined smart contract-related events
or smart contract function invocations. The structure of the Subscription
request message is explained in Fig. 3b. When receiving such a message, the
gateway identifies the designated event/function using the fields event identi-
fier or function identifier, respectively. The field parameters further helps the
gateway to differentiate between overloads (functions with the same name but
different parameters). Then the gateway starts monitoring the events or func-
tions. When an occurrence is detected, the associated event outputs/function
inputs are used to populate and evaluate the Boolean expression specified in the
filter. If the expression returns true and the transaction causing the occurrence
has reached the desired degree of confidence, a callback to the address speci-
fied in the callback URL field of the respective Subscription message is issued.
The Callback message, described in Fig. 3c, includes details about the param-
eters associated with this occurrence as well as its timestamp. The correlation
identifier of the request message is further included in the response message to
enable message correlation by the client application. Note that every subscrip-
tion made by a client application to the events/functions of a specific smart
contract is identified by its correlation identifier. A new Subscription with a
correlation identifier already in use overwrites the former one.

The Unsubscribe Method: This method is used to explicitly cancel subscrip-
tions of a client created using previous invocations of the Subscribe method.
The structure of the request messages is explained in Fig. 3b. It has four optional
fields, which can be used in three ways: (i) if only either function identifier or
event identifier plus parameters are present, then all respective subscriptions
that belong to the target smart contract are canceled; (ii) if only the correlation
identifier is provided, then only the subscription corresponding to the identifier
is canceled; (iii) if none of the parameters is provided, then all subscriptions to
the target smart contract are canceled. All other combinations are invalid. This
methods only has a synchronous response that indicates its success or failure.

The Query Method: This method allows a client application to query the pre-
vious occurrences of events or function invocations. The structure of the Query
request message, as well as the synchronous Query Result response message are
explained in Fig. 3c. When receiving a Query request message, the gateway scans
the history of the blockchain and searches for event occurrences/function invo-
cations with a prototype that matches the provided event identifier/function
identifier and parameters. Furthermore, timeframe specifies the time frame in
which the search results should be considered. If the start of this timeframe is not
provided, then the time of the genesis block is taken. Similarly, if the end time
is not provided, then the time of the latest known block is taken. An optional
filter can be specified similar to the Subscription message. Finally, the gate-
way synchronously returns a list of occurrences. Each occurrence indicates the
corresponding event/function and which values were emitted from it or passed
to it. It also indicates the timestamp when the occurrence took place.
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--> {"jsonrpc": "2.0" , "method": "Subscribe" , "id": 1,
"params": { "eventId": "priceChanged",

"params": [{"name": "newPrice",
"type": { "type":" integer",

"minValue": 0,
"maxValue": 65535 }

}, ...],
"doc": 98.9,
"corrId": "abcdefg12345",
"callback": "https ://my-domain.com/callbacks",
"filter": "newPrice <= 500" }

}
<-- {"jsonrpc": "2.0", "result": "OK", "id": 1}
<-- {"jsonrpc": "2.0", "method": "ReceiveCallback",

"params": { "eventId": "priceChanged",
"params": [{"name": "newPrice", "value": 410}, ...],
"timestamp": "2019 -11 -06 T17 :08:00Z",
"corrId": "abcdefg12345" }

}

Fig. 5. Example JSON-RPC message exchange for the Subscribe SCIP method (-->
from client application to gateway, whereas <-- in the other direction).

3.2 SCIP JSON-RPC Binding

SCIP does not prescribe SCIP endpoints which transport protocol to use to
exchange its messages. That is, it does not prescribe its binding to a lower-level
network protocol. In this paper, we propose a JSON-RPC [9] binding for SCIP4.
JSON-RPC is a stateless transport-agnostic remote procedure call (RPC) pro-
tocol that uses JSON as its serialization format. It is widely used to publish
the APIs of blockchains, such as Ethereum, and using it as a SCIP binding thus
maintains consistency with existing blockchain conventions. Figure 5 provides an
example SCIP message exchange using the JSON-RPC binding; a client appli-
cation subscribes to an event and receives a synchronous confirmation and an
asynchronous callback with an occurrence of the event.

3.3 Handling Data Types in SCIP

Generally, different blockchains support different encodings and types for param-
eters passed to or returned from smart contract functions or events. To hide this
heterogeneity, SCIP proposes a technology-agnostic, abstract format for the data
values using JSON Schema5. JSON Schema describes the structure of JSON data
instances using basic JSON types and allows one to declare constraints on val-
ues, group values into arrays and tuples, and nest values into JSON objects. This
way, native blockchain data types can be uniquely and abstractly described, and
client applications can formulate function inputs in text-based JSON, without
having to understand native data types.

Given the abstract specification of data inputs, the gateway can translate
them into blockchain-specific formats to interact with the blockchain. For exam-
4 Complete binding available at: https://github.com/lampajr/scip.
5 JSON Schema: https://json-schema.org.

https://github.com/lampajr/scip
https://json-schema.org
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{"scdl_version": "1.0.1", ... // generic smart contract properties
"name": "SC3", // smart contract name
"functions": [{ // list of functions

"name": "getDigest", ... // function name and other properties
"inputs": [{ // function inputs

"name": "client", // parameter name
"type": { // parameter type in JSON Schema

"type": "string",
"pattern": "^0x[a-fA -F0 -9]{40}$"

}}, ...], // other inputs of the function
stuptuonoitcnuf//,][:"stuptuo"

tcartnoctramsehtfosnoitcnufrehto//,]...,}
"events": [{ // event definitions

"name": "digestStored", ... // event name and other properties
"outputs": [...] // event outputs
}, ...] // other events of the smart contract

rotpircsedLDCSfodne//}

Fig. 6. Example SCDL descriptor [10] for an Ethereum smart contract.

ple, in the case of a smart contract invocation in Ethereum, the gateway will
formulate a suitable function selector in order to invoke the intended func-
tion. This function selector is defined as the first four bytes of the SHA-3 hash
of the signature of the function, which is a string composed of the function
name and the parenthesised list of parameter types separated by commas, e.g.,
"getDigest(address,string)" . In order for the gateway to know which native
data types to use, the request messages sent by the client application must
include the abstract parameter types embedded in the type fields of each param-
eter. Then the gateway, uses 1-to-1 mapping rules predefined for each blockchain
system to generate the corresponding native types out of the abstract ones6.
This means that the gateway performs an encoding of function inputs to exactly
match what the underlying blockchain expects, e.g., in terms of byte padding,
arrays bracketing, serialization of complex objects, etc. The described mapping
of course also applies when the client application specifies a function or event
to be monitored (using the Subscribe method), or to be queried (using the
Query method). Even though certain blockchains, like Hyperledger Fabric, have
untyped parameters (strings), the SCIP protocol still supports abstract types
to address cases like Ethereum and to enable clients to know whether a given
parameter expects a numerical or textual input.

In order for a client application to learn about the abstract parameter types
of functions, we assume that they have access to a Smart Contract Description
Language (SCDL) descriptor of their target smart contracts. Such is obtained
either via a dedicated SCDL registry or through direct contact with service
providers. SCDL is a result of our previous work [10], in which we analyzed
the smart contract capabilities of six prominent permissioned and permissionless
blockchains, and proposed an abstract, technology-agnostic language to describe
the external interfaces of smart contracts. For example, Fig. 6 shows a snippet
of the SCDL descriptor of the digest-storing Ethereum smart contract presented

6 Current mapping rules: https://github.com/floriandanielit/scdl#data-encoding.

https://github.com/floriandanielit/scdl#data-encoding
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in the motivating scenario of Sect. 2. The figure shows how abstract types are
associated with parameter descriptions (see the inputs of the function).

3.4 Deployment Modes for SCIP Gateways

SCIP gateways represent concrete implementations of SCIP and can be deployed
in a variety of configurations based on certain trade-offs. The two most immedi-
ate ones are: (a) BCaaS [11] providers, which act as intermediaries that facilitate
the integration of heterogeneous blockchain smart contracts for their clients.
These providers assume the responsibility of configuring the necessary SCIP
gateways and managing user credentials and permissions. In addition, they are in
charge of any costs incurred by accessing the underlying blockchain systems, e.g.,
the gas costs associated with Ethereum smart contract invocations [15]. To avoid
introducing a single-point-of-failure, they may create a distributed SCIP gateway
by replicating it so that it tolerates crash- or even Byzantine failures depending
on the replication method used [17]. Nonetheless, such a deployment requires
client applications to have a certain degree of trust in the BCaaS provider. (b)
Alternatively, an enterprise may deploy its own SCIP gateway on a trusted infras-
tructure, e.g. on-premise, so that availability, security, and trust concerns can be
controlled while still supporting its client applications with the uniform inter-
face provided by SCIP. A disadvantage of this deployment is that the enterprise
needs to manage the gateway and configure its access to the relevant blockchains
itself. In future work, we will investigate the benefits and drawbacks of these and
other deployments.

4 Validation

4.1 SCIP Gateway Implementation

We implemented a prototype of a SCIP gateway extending prior work intended
to allow business process engines to access blockchains [3,4]. Figure 7 shows
the resulting software architecture and highlights reused (light gray) and newly
implemented (dark gray) components. At the top, we implemented a JSON-RPC
server that exposes the SCIP methods and a JSON-RPC client that sends call-
back messages to client applications. Below them, the BAL (Blockchain Access
Layer) core provides the logic for handling requests and sending callbacks. An
Expression Parser supports the filter field of certain SCIP methods. A Security
Manager authenticates client applications using OAuth 2.0, and handles signa-
tures of the Invoke method. The core is managed by the Blockchain Manager,
which coordinates the work of the other components and communicates with the
adapter layer below it. For each supported blockchain (at the moment, Ethereum
and Hyperledger Fabric), we implemented a pluggable adapter module that han-
dles the specificities of the corresponding blockchain system. For example, it
handles how smart contracts are invoked, how parameters are encoded/decoded,
how events can be monitored and queried etc. Adapters communicate directly
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Fig. 7. The architecture of a prototypical SCIP gateway based on our previous work [3,
4]. Dark gray components are newly added or significantly modified.

with a blockchain node, and therefore, include a blockchain-specific protocol
client to perform blockchain-specific actions, e.g., submitting a transaction. Fur-
ther details and configuration instructions, e.g., on how to configure access to
multiple blockchains simultaneously, can be found on Github7.

4.2 Case Study Implementation

We now realize the motivating scenario of Sect. 2 using the prototypical SCIP
gateway. This case study implementation logic is illustrated in Fig. 88.

First, we implemented a simplified energy management system via a min-
imal setup of the Hyperledger Fabric permissioned blockchain that contains
an endorsing peer, a transaction ordering service, a certificate authority, and
a CLI node, which acts as an interface to external clients. We also deployed two
“chaincodes,” i.e., smart contracts in Hyperledger terminology, on this setup:
SC1 handles the relationship between power plants and electricity providers via
the functions changeWholesalePrice and buyWholesale, and SC2 handles the
relationship between electricity providers and consumer households via the func-
tion changeRetailPrice. The function changeWholesalePrice of SC1 emits the
event priceChanged when a new price is registered by a power plant. We simu-
late storing digests of the operations performed on the permissioned blockchain
on the Ethereum permissionless blockchain by using the Ganache9 Etherum sim-
ulator. On this blockchain, we deploy the smart contract SC3, which contains
the function storeDigest that is responsible for storing the digests. The access
to this blockchain is provided to client applications via the SCIP Gateway 1 and
SCIP Gateway 2 that use adapters to interface with their blockchains.

7 Available at https://github.com/ghareeb-falazi/BlockchainAccessLayer/.
8 Implementation available at: https://github.com/ghareeb-falazi/SCIP-CaseStudy.
9 Ganache: https://www.trufflesuite.com/ganache. Visited on May 6, 2020.

https://github.com/ghareeb-falazi/BlockchainAccessLayer/
https://github.com/ghareeb-falazi/SCIP-CaseStudy
https://www.trufflesuite.com/ganache
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Fig. 8. Description of the case study showing some of the exchanged messages.

The Java application that represents the electricity provider is connected
to the two gateways over a network. The client application monitors the event
priceChangedEvent in real time by submitting a Subscription request message
with a filter value of "newPrice <= 500" . When this condition is detected by the
gateway, it sends a callback to the client. The contents of the messages exchanged
during this interaction are shown in Fig. 5. In response to the event, the client
application buys energy from the power plant using the Invoke method, which
triggers the buyWholesale function. Afterwards, the application reduces the
retail price of the energy it is selling with another call to Invoke, but to trigger
the changeRetailPrice function this time. As the resulting transactions reach
confidence, the client application stores the digest of the two Invocation mes-
sages it issued in the SC3 smart contract of the permissionless blockchain. To
this end, it issues a third Invoke method call, but this time to Gateway 2. This
triggers the storeDigest function of SC3.

The use case shows how using the SCIP protocol to communicate with hetero-
geneous blockchains via gateways (that are transparent to clients) eases integra-
tion. SCIP allows a client to deal with a single protocol and to obtain a standard
handling of smart contract interaction tasks, such as subscription management,
event filtering, and the estimation of the degree of confidence of transactions.
These would be intricate and tedious tasks if the client had to master them for
each individual blockchain it needs to communicate with.

5 Related Work

Blockchain interoperability focuses on allowing blockchains to exchange data
and events. It can be approached in multiple ways: notary schemes, such as
Interledger [7], relay schemes, like Polkadot10 and Cosmos11, and hash-locking

10 Polkadot: https://polkadot.network/. Visited on: May 6, 2020.
11 Cosmos: https://cosmos.network/. Visited on: May 6, 2020.

https://polkadot.network/
https://cosmos.network/
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schemes, like the Lightning Network12. The problem interoperability solves is
enabling blockchains to communicate events though they cannot directly invoke
external systems. SCIP is different in that it provides a uniform interface for
external client applications to communicate with blockchains and smart con-
tracts.

The idea of blockchain gateways was introduced by Thomas et al. [6]. They
argue that the blockchain architecture should satisfy the same fundamental goals
of the Internet architecture, and, thus, they view blockchains as autonomous
systems that communicate with each other via gateways. These gateways collec-
tively support the reachability of data stored intra-domain, and facilitate inter-
domain transaction mediation. However, the proposed approach does not provide
a uniform entry point for external applications to blockchains.

On the other hand, connector-based integration approaches, like Unib-
right [12], introduce own platforms that communicate with blockchains on one
hand and with various kinds of other, blockchain-external applications via exten-
sible connectors on the other hand. However, unlike the SCIP protocol, these
approaches can cause vendor lock-in, as they rely on proprietary platforms. In
addition, they delegate the task of handling blockchain uncertainty to client
applications, which requires the involvement of blockchain experts.

Xu et al. [16] take another approach on blockchain integration: they consider
blockchains as software connectors providing external applications with com-
munication, coordination, conversion and facilitation services. Essentially, they
consider blockchains as a means to integrate applications with each other. How-
ever, they do not introduce the means that would allow client applications to
communicate directly with the blockchains themselves.

Finally, the Web Ledger Protocol 1.0 [13] outlines a generic data model and
syntax for blockchains. It also introduces the Ledger Agent HTTP API, which
describes a standard mechanism to create, append, and query the blockchain.
Unlike SCIP, this API does not support smart contracts and delegates too the
task of handling blockchain uncertainty to client applications.

6 Concluding Remarks and Outlook

In this work we conceptualized and specified the Smart Contract Invocation
Protocol (SCIP), a uniform protocol for the integration of heterogeneous smart
contracts into enterprise applications. The protocol supports methods triggering
smart contract functions, monitoring occurrences of events or function invoca-
tions in real time, and querying past occurrences. The protocol specification
comes equipped with an implementation of a gateway endpoint, which we vali-
dated through a case study using it in practice. The case study shows that the
benefits of SCIP are substantive in scenarios that involve multiple heterogeneous
blockchains. SCIP thus advances the state of the art in blockchain integration.

12 Lightning Network: https://lightning.network/. Visited on: May 6, 2020.

https://lightning.network/
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As future work, we plan to study alternative deployments of SCIP gateways
and analyze their properties and trade-offs. We also plan to study benefits and
drawbacks of alternative SCIP bindings. SCIP is available via GitHub (https://
github.com/lampajr/scip) and open to contributions by the community.

More in general, SCIP paves the road for SOA-based interoperability of smart
contracts and applications that transparently distribute application logic over
the Internet and one or more blockchains. This may raise the need for a new
wave of software engineering tools and methodologies.

References

1. Cachin, C., Vukolic, M.: Blockchain consensus protocols in the wild (keynote talk).
In: International Symposium on Distributed Computing (DISC 2017), pp. 1:1–1:16
(2017). https://doi.org/10.4230/LIPIcs.DISC.2017.1

2. Certicom Research: Standards for Efficient Cryptography 1 (SEC 1) Version 2.0.
Technical report, Certicom Corp. (2009). http://www.secg.org/sec1-v2.pdf
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